
Support	Vector	Machines	(SVMs)
SVMs	are	very	powerful	binary	classifiers,	based	on	the	Statistical	Learning	Theory	(SLT)	framework.	SVMs	can	be	used	to	solve	hard
classification	problems,	where	they	look	for	an	optimal	hyperplane	able	to	maximize	the	classifier	margin.

Practical	example	-	classifier	margin

First	of	all	we	do	all	necessary	imports.

In	[1]:

import	pandas	as	pd
import	numpy	as	np
import	matplotlib.pyplot	as	plt

from	mpl_toolkits.mplot3d	import	Axes3D

from	sklearn.datasets	import	make_blobs,	make_circles
from	sklearn.preprocessing	import	LabelEncoder,	StandardScaler
from	sklearn.model_selection	import	train_test_split
from	sklearn.metrics	import	accuracy_score
from	sklearn.svm	import	SVC

#	Setting	random	seed.
seed	=	10

Then,	we	generate	a	very	simple	linear	separable	dataset	and	plot	it.

In	[2]:

#	Generating	a	linear	separable	dataset	with	50	samples	and	2	classes.
X,	y	=	make_blobs(n_samples=50,	centers=2,	center_box=[-7.5,	7.5],	random_state=seed)

#	Method	to	plot	the	linear	separable	dataset.
def	plot_data(X,	y):
				class0	=	np.where(y	==	0)[0]
				plt.scatter(X[class0,	0],	X[class0,	1],	c='red',	marker='s')

				class1	=	np.where(y	==	1)[0]
				plt.scatter(X[class1,	0],	X[class1,	1],	c='blue',	marker='o')

plot_data(X,	y)
plt.show()

Next,	we	train	a	SVM	classifier	with	linear	kernel	and	plot	the	optimal	hyperplane	as	well	as	the	classifier	margins.

In	[3]:

svm	=	SVC(C=100,	kernel='linear',	random_state=seed)
svm.fit(X,	y)

plot_data(X,	y)

#	Method	to	plot	SVMs'	hyperplane	and	margins.
#	This	code	is	based	on	http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html
def	plot_margins(svm,	X,	y):
				xmin,	xmax	=	plt.xlim()
				ymin,	ymax	=	plt.ylim()

				#	create	grid	to	evaluate	model
				xx	=	np.linspace(xmin,	xmax,	30)
				yy	=	np.linspace(ymin,	ymax,	30)
				XX,	YY	=	np.meshgrid(xx,	yy)
				xy	=	np.vstack([XX.ravel(),	YY.ravel()]).T
				Z	=	svm.decision_function(xy).reshape(XX.shape)

				#	plot	decision	boundary	and	margins
				plt.contour(XX,	YY,	Z,	colors='black',	levels=[-1,	0,	1],	alpha=1.0,	linestyles=['--',	'-',	'--'])

plot_margins(svm,	X,	y)
plt.show()

In	the	above	plot,	the	filled	line	represents	the	optimal	hyperplane	found	while	the	dashed	lines	represent	the	hyperplanes	defined	by	the
support	vectors.	The	margin	of	the	classifier	is	the	distance	between	the	optimal	hyperplane	and	any	of	the	support	vector	hyperplanes.

Practical	example	-	Non-linear	decision	boundary

SVMs	are	linear	classifiers.	Since	most	of	the	real	world	problems	are	not	linearly	separable,	how	can	we	deal	with	them?

Next,	we	will	show	a	very	simple	application	of	the	Kernel	Trick,	which	ables	us	to	learn	non-linear	decision	boundaries.

First,	we	generate	a	very	simple	and	not	linearly	separable	dataset.

In	[14]:

X,	y	=	make_circles(n_samples=100,	noise=0.05,	factor=0.5,	random_state=seed)
plot_data(X,	y)
plt.show()

Then,	we	try	to	fit	a	custom	SVM	with	linear	kernel.	Clearly,	this	classifier	will	not	achieve	good	results.

In	[5]:

svm	=	SVC(C=100,	kernel='linear',	random_state=seed)
svm.fit(X,	y)

plot_data(X,	y)
plot_margins(svm,	X,	y)
plt.show()

However,	if	we	apply	a	polynomial	kernel	of	degree	2,	we	are	able	to	learn	the	optimal	decision	boundary	for	this	dataset.

In	[6]:

svm	=	SVC(C=100,	kernel='poly',	degree=2,	random_state=seed)
svm.fit(X,	y)

plot_data(X,	y)
plot_margins(svm,	X,	y)
plt.show()

The	Kernel	Trick	consists	of	implicitly	mapping	a	lower	dimensional	dataset,	which	is	not	linearly	separable,	to	a	higher	dimensional	space
where	the	data	becomes	linearly	separable.

In	the	above	example,	the	standard	linear	kernel	calculates	the	standard	dot	product	as	the	similarity	between	two	vectors	u	and	v.	That	is:	
k(u, v) = u ⋅ v.

When	we	apply	a	polynomial	kernel	of	degree	2,	we	are	calculating	the	similarity	between	two	vectors	u	and	v	as:
k(u, v) = (u ⋅ v)2

k(u, v) = (u1v1 + u2v2)2

k(u, v) = u2
1v2

1 + 2u1v1u2v2 + u2
2v2

2

The	above	calculation	can	be	rewritten	as:

k(u, v) =

u2
1

√2u1u2

u2
2

⋅

v2
1

√2v1v2

v2
2

,

which	is	a	dot	product	of	two	three	dimensional	vectors.

Finally,	we	will	plot	the	original	dataset	in	this	new	three	dimensional	space.

[] []

In	[24]:

to3d	=	lambda	x	:	[x[0]	**	2,	np.sqrt(2)	*	x[0]	*	x[1],	x[1]	**	2]
X_3D	=	np.array(list(map(to3d,	X)))

fig	=	plt.figure(1,	figsize=(8,	6))
ax	=	Axes3D(fig,	elev=-150,	azim=115)

class0	=	np.where(y	==	0)[0]
ax.scatter(X_3D[class0,	0],	X_3D[class0,	1],	X_3D[class0,	2],	c='red',	marker='s')

class1	=	np.where(y	==	1)[0]
ax.scatter(X_3D[class1,	0],	X_3D[class1,	1],	X_3D[class1,	2],	c='blue',	marker='o')

ax.set_xlabel('x[0]	**	2')
ax.set_ylabel('np.sqrt(2)	*	x[0]	*	x[1]')
ax.set_zlabel("x[1]	**	2")

ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])

plt.show()

As	it	can	be	seen,	the	original	dataset	is	linear	separable	in	this	new	three	dimensional	space.

Practical	example	-	Breast	Cancer

Finally,	as	a	last	example,	we	will	apply	SVMs	on	the	Breast	Cancer	dataset.

In	[8]:

#	Loading	Breast	Cancer	dataset.
data	=	pd.read_csv('data/breast_cancer.csv')

#	Creating	a	LabelEncoder	and	transforming	the	dataset	labels.
le	=	LabelEncoder()
y	=	le.fit_transform(data['diagnosis'].values)

#	Extracting	the	instances	data.
X	=	data.drop('diagnosis',	axis=1).values

#	Splitting	into	train	and	test	sets.
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size=0.34,	stratify=y,	random_state=seed)

Since	this	dataset	has	high	dimensionality	and	probably	is	not	linearly	separable,	we	will	apply	a	SVM	with	Radial	Basis	Function	(RBF)	kernel.

In	[9]:

svm	=	SVC(kernel='rbf')
svm.fit(X_train,	y_train)

y_pred	=	svm.predict(X_test)
accuracy	=	accuracy_score(y_test,	y_pred)
print("SVM's	accuracy	score:	{}".format(accuracy))

Unfortunately,	SVMs	are	sensitive	to	data	scale.	Thus,	we	will	standartize	the	dataset	and	train	the	SVM	again.

In	[10]:

scaler	=	StandardScaler()
scaler.fit(X_train)

#	Normalizing	train	and	test	data.
X_train_scaled,	X_test_scaled	=	scaler.transform(X_train),	scaler.transform(X_test)

#	Training	SVM	with	normalized	data.
svm.fit(X_train_scaled,	y_train)

#	Testing	SVM	with	normalized	data.
y_pred	=	svm.predict(X_test_scaled)
accuracy	=	accuracy_score(y_test,	y_pred)
print("SVM's	accuracy	score:	{}".format(accuracy))

Multiclass	problems

SVMs	were	designed	to	deal	with	binary	classification	problems.	Several	approaches	are	available	to	deal	with	multiclass	problems.	Some	of
them	are:

One-vs-one	classifiers:	suppose	the	classification	problem	is	composed	by	k	classes.	Thus,	k(k − 1) /2	SVMs	are	fitted,	each	one	for	a
different	pair	of	classes.	For	prediction,	the	class	that	received	most	of	the	votes	is	returned	as	output.
One-vs-all	classifiers:	suppose	the	classification	problem	is	composed	by	k	classes.	Then,	k	different	classifiers	are	fitted,	one	for
each	class.

The	sklearn.svm.SVC	class	implements	the	one-vs-one	scheme.

SVM's	accuracy	score:	0.6288659793814433

SVM's	accuracy	score:	0.9845360824742269

