
Artificial	Neural	Networks

Perceptron

The	Perceptron	is	a	very	simple	linear	binary	classifier.	It	basically	maps	and	input	vector	x	to	a	binary	output	f(x).

Given	a	weight	vector	w,	the	Perceptron's	classfication	rule	is:	f(x) = 1	if	w ⋅ x + b > 0	or	f(x) = 0	otherwise.	Here,	b	is	a	bias	value	which	is
responsible	for	shifting	the	Perceptron's	hyperplane	away	from	the	origin.

Practical	example

First	we	do	all	necessary	imports.

In	[1]:

import	pandas	as	pd
import	numpy	as	np
import	matplotlib.pyplot	as	plt

from	matplotlib.colors	import	ListedColormap

from	sklearn.preprocessing	import	LabelEncoder,	StandardScaler
from	sklearn.linear_model	import	Perceptron
from	sklearn.neural_network	import	MLPClassifier
from	sklearn.model_selection	import	train_test_split
from	sklearn.metrics	import	accuracy_score

#	Setting	random	seed.
seed	=	10

The	most	simple	examples	for	Perceptron	are	the	basic	logic	operations,	such	as:	AND,	OR	and	XOR.

The	AND	operation	is	defined	as:

x0 x1 y

0 0 0

1 0 0

0 1 0

1 1 1

Below	we	run	the	Perceptron	to	learn	the	logical	AND.

In	[2]:

#	Setting	the	input	samples.
X	=	np.array([[0,	0],
														[0,	1],
														[1,	0],
														[1,	1]],
													dtype=np.double)

#	Setting	the	expected	outputs.
y_AND	=	np.array([0,	0,	0,	1])

#	Creating	and	training	a	Perceptron.
p	=	Perceptron(random_state=seed,	eta0=0.1,	max_iter=1000)
p.fit(X,	y_AND)

#	Obtaining	f(x)	scores.
pred_scores	=	p.decision_function(X)
print("Perceptron's	AND	scores:	{}".format(pred_scores))

Then,	we	plot	the	Perceptron's	decision	boundary.	The	colorbar	to	the	left	shows	the	scores	achieved	by	w ⋅ x + b.	Each	point	color	indicates
a	different	class	(blue	=	1,	red	=	0).

Perceptron's	AND	scores:	[	-2.00000000e-01		-1.00000000e-01		-2.77555756e-17			1.00000000e-01]



In	[3]:

#	Method	to	plot	the	Perceptron's	decision	boundary.
#	This	code	is	based	on	http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
def	plot_decision_boundary(classifier,	X,	y,	title):
				xmin,	xmax	=	np.min(X[:,	0])	-	0.05,	np.max(X[:,	0])	+	0.05
				ymin,	ymax	=	np.min(X[:,	1])	-	0.05,	np.max(X[:,	1])	+	0.05
				step	=	0.01

				cm	=	plt.cm.coolwarm_r
				#cm	=	plt.cm.RdBu

				thr	=	0.0
				xx,	yy	=	np.meshgrid(np.arange(xmin	-	thr,	xmax	+	thr,	step),	np.arange(ymin	-	thr,	ymax	+	thr,	step))

				if	hasattr(classifier,	'decision_function'):
								Z	=	classifier.decision_function(np.hstack((xx.ravel()[:,	np.newaxis],	yy.ravel()[:,	np.newaxis])))
				else:
								Z	=	classifier.predict_proba(np.hstack((xx.ravel()[:,	np.newaxis],	yy.ravel()[:,	np.newaxis])))[:,	1]

				Z	=	Z.reshape(xx.shape)

				plt.contourf(xx,	yy,	Z,	cmap=cm,	alpha=0.8)
				plt.colorbar()

				plt.scatter(X[:,	0],	X[:,	1],	c=y,	cmap=ListedColormap(['#FF0000',	'#0000FF']),	alpha=0.6)

				plt.xlim(xmin,	xmax)
				plt.ylim(ymin,	ymax)

				plt.xticks((0.0,	1.0))
				plt.yticks((0.0,	1.0))

				plt.title(title)

#	Plotting	Perceptron	decision	boundary.
#	The	colorbar	shows	the	scores	obtained	for	f(x).
plot_decision_boundary(p,	X,	y_AND,	'AND	decision	boundary')
plt.show()

The	OR	operation	is	defined	as:

x0 x1 y

0 0 0

1 0 1

0 1 1

1 1 1

Below	we	run	the	Perceptron	to	the	logical	OR,	print	its	achieved	scores	and	plot	its	decision	boundary.



In	[4]:

y_OR	=	np.array([0,	1,	1,	1])
p.fit(X,	y_OR)

#	Obtaining	f(x)	scores.
pred_scores	=	p.decision_function(X)
print("Perceptron's	OR	scores:	{}".format(pred_scores))

plot_decision_boundary(p,	X,	y_OR,	'OR	decision	boundary')
plt.show()

Finally,	we	analyze	the	XOR	operation,	which	is	defined	as:

x0 x1 y

0 0 0

1 0 1

0 1 1

1 1 0

Below	we	plot	XOR.

In	[5]:

y_XOR	=	np.array([0,	1,	1,	0])
plt.scatter(X[:,	0],	X[:,	1],	c=y_XOR,	cmap=ListedColormap(['#FF0000',	'#0000FF']),	alpha=1.0)
plt.show()

Clearly,	this	is	not	a	linear	separable	problem.	In	other	words,	it	is	not	possible	to	separate	the	two	classes	with	a	single	hyperplane.

This	kind	of	problem	motivates	us	to	use	Multilayer	Perceptrons	(MLPs),	which	are	shown	in	the	sequence.

Multilayer	Perceptron	(MLP)

A	MLP	is	a	neural	network	which	is	composed	by	at	least	three	different	layers:	an	input	layer,	a	hidden	layer	and	an	output	layer.	Except	for
the	input	layer,	the	remaining	ones	are	composed	by	Perceptrons	with	nonlinear	activation	functions	(e.g.,	sigmoid	or	tanh).

MLPs	are	usually	trained	using	the	backpropagation	algorithm	and	are	able	to	deal	with	not	linearly	separable	problems.

Below	we	present	an	example	for	the	XOR	problem.

Perceptron's	OR	scores:	[-0.1		0.1		0.1		0.3]



Practical	example	-	XOR

In	[6]:

#	Creating	a	MLPClassifier.
#	hidden_layer_sizes	receive	a	tuple	where	each	position	i	indicates	the	number	of	neurons
#	in	the	ith	hidden	layer
#	activation	specifies	the	activation	function	(other	options	are:	'identity',	'logistic'	and	'relu')
#	max_iter	indicates	the	maximum	number	of	training	iterations
#	There	are	other	parameters	which	can	also	be	changed.
#	See	http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
mlp	=	MLPClassifier(hidden_layer_sizes=(5,),
																				activation='tanh',
																				max_iter=10000,
																				random_state=seed)

#	Training	and	plotting	the	decision	boundary.
mlp.fit(X,	y_XOR)
plot_decision_boundary(mlp,	X,	y_XOR,	'XOR')
plt.show()

pred	=	mlp.predict_proba(X)
print("MLP's	XOR	probabilities:\n[class0,	class1]\n{}".format(pred))

Practical	example	-	Breast	Cancer

First	of	all,	we	load	the	dataset,	encode	its	labels	as	int	values	and	split	it	into	training	and	test	sets.

In	[7]:

#	Loading	Breast	Cancer	dataset.
data	=	pd.read_csv('data/breast_cancer.csv')

#	Creating	a	LabelEncoder	and	transforming	the	dataset	labels.
le	=	LabelEncoder()
y	=	le.fit_transform(data['diagnosis'].values)

#	Extracting	the	instances	data.
X	=	data.drop('diagnosis',	axis=1).values

#	Splitting	into	train	and	test	sets.
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size=0.34,	stratify=y,	random_state=seed)

Then,	we	create,	train	and	test	a	MLPClassifier.

MLP's	XOR	probabilities:
[class0,	class1]
[[	0.90713158		0.09286842]
	[	0.0837964			0.9162036	]
	[	0.04619978		0.95380022]
	[	0.95695933		0.04304067]]



In	[8]:

mlp	=	MLPClassifier(hidden_layer_sizes=(10,),
																				activation='tanh',
																				max_iter=10000,
																				random_state=seed)

mlp.fit(X_train,	y_train)
y_pred	=	mlp.predict(X_test)
accuracy	=	accuracy_score(y_test,	y_pred)
print("MLP's	accuracy	score:	{}".format(accuracy))

We	can	observe	that	its	accuracy	score	was	rather	low.

Unfortunately,	MLPs	are	very	sensitive	to	different	feature	scales.	So,	it	is	normally	necessary	to	normalize	or	rescale	the	input	data.

In	[9]:

#	Creating	a	StandardScaler.	This	object	normalizes	features	to	zero	mean	and	unit	variance.
scaler	=	StandardScaler()
scaler.fit(X_train)

#	Normalizing	train	and	test	data.
X_train_scaled,	X_test_scaled	=	scaler.transform(X_train),	scaler.transform(X_test)

#	Training	MLP	with	normalized	data.
mlp.fit(X_train_scaled,	y_train)

#	Testing	MLP	with	normalized	data.
y_pred	=	mlp.predict(X_test_scaled)
accuracy	=	accuracy_score(y_test,	y_pred)
print("MLP's	accuracy	score:	{}".format(accuracy))

MLP's	accuracy	score:	0.6288659793814433

MLP's	accuracy	score:	0.979381443298969


