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Abstract Usually one compares the accuracy of two competing classifiers using null hypoth-
esis significance tests. Yet such tests suffer from important shortcomings, which can be
overcome by switching to Bayesian hypothesis testing. We propose a Bayesian hierarchical
model that jointly analyzes the cross-validation results obtained by two classifiers onmultiple
data sets. The model estimates more accurately the difference between classifiers on the indi-
vidual data sets than the traditional approach of averaging, independently on each data set, the
cross-validation results. It does so by jointly analyzing the results obtained on all data sets, and
applying shrinkage to the estimates. The model eventually returns the posterior probability
of the accuracies of the two classifiers being practically equivalent or significantly different.

1 Introduction

The statistical comparison of learning algorithms is fundamental in machine learning; it is
typically carried out through hypothesis testing. In this paper we assume that one isinterested
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in comparing the accuracy of two learning algorithms for classification (referred to as clas-
sifiers in the following). However our discussion readily applies to any other measure of
performance.

Assume that two classifiers have been assessed via cross-validation on a single data set.
The recommended approach for comparing them is the correlated t-test (Nadeau and Bengio
2003). If instead one aims at comparing two classifiers onmultiple data sets the recommended
test is the signed-rank test (Demšar 2006). Both tests are based on the frequentist framework
of the null-hypothesis significance tests (nhst), which has severe drawbacks.

First, the nhst computes the probability of getting the observed (or a larger) difference
in the data if the null hypothesis was true. It does not compute the probability of interest,
which is the probability of one classifier being more accurate than another given the observed
results.

Second, the claimed statistical significances do not necessarily imply practical signifi-
cance, since null hypotheses can be easily rejected by increasing the number of observations
(Wasserstein and Lazar 2016). Thus for instance the signed-rank can reject the null hypothe-
sis when dealing with two classifiers whose accuracies are nearly equal, but which have been
compared on a large number of data sets.

Third, when the null hypothesis is not rejected, we cannot assume the null hypothesis to
be true (Kruschke 2015, Chap. 11). Thus nhst tests cannot recognize equivalent classifiers.

These issues can be overcome by switching to Bayesian hypothesis testing (Kruschke
2015, Sec. 11) which are recently being applied also in machine learning (Lacoste et al.
2012; Corani and Benavoli 2015; Benavoli et al., under review).

Let us denote by δi the actual difference of accuracy between the two classifiers on the
i-th data set. Usually δi is estimated via cross-validation. We propose the first model that
represents both the distribution p(δi ) across the different data sets and the distribution of the
cross-validation results on the i-th data set given δi .

Following Kruschke (2013) we analyze the results by adopting a region of practical equiv-
alence (rope). In particular we consider two classifiers to be practically equivalent if their
difference of accuracy belongs to the interval (−0.01, 0.01). This mitigates the risk of claim-
ing significance because of a thin difference of accuracy in simulation, which is likely to be
swamped by other sources of uncertainty when the classifier is adopted in practice (Hand
et al. 2006). There are however no correct rope limits; thus other researchers might set the
rope differently. Based on the rope we compute the posterior probability of the two classifiers
being practically equivalent or significantly different. Such probabilities convey meaning-
fully information even when they do not exceed the 95% threshold: this is a more informative
outcome than that of a nhst.

Moreover, the hierarchical model estimates the δi ’s more accurately than the traditional
approach of computing, independently on each data set, the mean of the cross-validation
differences. It does so by jointly estimating the δi ’s and shrinking them towards each other.
We prove theoretically that such shrinkage yields lower estimation error than the traditional
approach.

2 Existing approaches

Let us introduce some notation. We have a collection of q data sets; the actual mean differ-
ence of accuracy between the two classifiers on the i-th data set is δi . We can think of δi as
the average difference of accuracy that we would obtain by repeating many times the proce-
dure of sampling from the actual distribution as many instances as there are in the actually
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available data set, train the two classifiers and measure the difference of accuracy on a large
test set.

Usually δi is estimated via cross-validation. Assume that we have performed m runs of k-
fold cross-validation on each data set, using the same folds for both classifiers. The differences
of accuracy on each fold of cross-validation are xi = {xi1, xi2, . . . , xin}, where n = mk.
The mean and the standard deviation of the results on the i-th data set are x̄i and si . The mean
of the cross-validation results is also the maximum likelihood estimator (MLE) of δi .

The values xi = {xi1, xi2, . . . , xin} are correlated because of the overlapping training
sets built during cross-validation. In particular, there is a) correlation among folds within the
same run of cross-validation and b) correlation among folds from different cross-validation
runs. Nadeau and Bengio (2003) proposed ρ = 1

k (k is the number of folds) as an approxi-
mated estimation of the correlation when repeated random train/test splits are adopted. This
validation method is slightly different from cross-validation, but such heuristic is generally
used (Witten et al. 2011, Chap. 5.5) also for the modeling the correlations (a) and (b) of
cross-validation, given the lack of better options. The statistic of the correlated t-test is thus:

t = xi/

√
ŝ2i

(
1

n
+ ρ

1 − ρ

)
. (1)

The denominator of the statistic is the standard error, which is informative about the accu-
racy of x̄i as an estimator of δi . The standard error of the correlated t-test accounts for the
correlation of cross-validation results. The statistic of Eq. (1) follows a t distribution with
n-1 degrees of freedom. When the statistic exceeds the critical value, the test claims δi to be
significantly different from zero. This is the standard approach for comparing two classifiers
on a single data set.

The signed-rank test is instead the recommended method (Demšar 2006) to compare two
classifiers on a collection of q different data sets. It is usually applied after having performed
cross-validation on each data set. The test analyzes the mean differences measured on each
data set (x̄1, x̄2, . . . , x̄q ) assuming them to be i.i.d.. This is a simplistic assumption: the x̄i ’s
are not i.i.d. since they are characterized by different uncertainty; indeed their standard errors
are typically different.

The test statistic is:
T+ = ∑

{i : x̄i≥0}
ri (|x̄i |) = ∑

1≤i≤ j≤n
T+
i j ,

where ri (|x̄i |) is the rank of |x̄i | and

T+
i j =

{
1 if x̄i ≥ x̄ j ,
0 otherwise.

For a large enough number of samples (e.g., q>10), the statistic under the null hypothesis is
normally distributed. When the test rejects the null hypothesis, it claims that the median of
the population of the δi ’s is different from zero.

The two tests discussed so far are null-hypothesis significance test (nhst) and as such they
suffer from the drawbacks discussed in the Sect. 1.

Let us now consider the Bayesian approaches. Kruschke (2013) presents a Bayesian t-test
for i.i.d. observations, which is thus not suitable for analyzing the correlated cross-validation
results. The Bayesian correlated t-test (Corani and Benavoli 2015) is instead suitable. It
computes the posterior distribution of δi on a single data set, assuming the cross-validation
observations to be sampled from a multivariate normal distribution whose components have
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the same mean δi , the same standard deviation σi and are equally cross-correlated with
correlation ρ = 1

k .
As for the analysis of multiple data sets, Lacoste et al. (2012) models each data set as

an independent Bernoulli trial. The two possible outcomes of the Bernoulli trial are the first
classifier beingmore accurate than the second or vice versa. This approach yields the posterior
probability of the first classifier being more accurate than the second classifier on more than
half of the q data sets. A shortcoming is that its conclusions apply only to the q available
data sets without generalizing to the whole population of data sets.

3 The hierarchical model

Wepropose aBayesian hierarchicalmodel for comparing two classifiers. Its core assumptions
are:

δ1, . . . , δq ∼ t (δ0, σ0, ν), (2)

σ1, . . . , σq ∼ unif(0, σ̄ ), (3)

xi ∼ MV N (1δi , �i). (4)

The i-th data set is characterized by the mean difference of accuracy δi and the standard
deviation σi . Thus we model each data set as having its own estimation uncertainty. Notice
that instead the signed-rank test simplistically assumes the x̄i ’s to be i.i.d.

The δi ’s are assumed to be drawn from a Student distribution with mean δ0, scale factor
σ0 and degrees of freedom ν. The Student distribution is more flexible than the Gaussian,
thanks to the additional parameter ν.When ν is small, the Student distribution has heavy tails;
when ν is above 30, the Student distribution is practically a Gaussian. A Student distribution
with low degrees of freedom robustly deals with outliers and for this reason is often used for
robust Bayesian estimation (Kruschke 2013).

We assume σi to be drawn from a uniform distribution over the interval (0, σ̄ ). This prior
(Gelman 2006) yields inferences which are insensitive to the value of σ̄ if σ̄ is large enough.
We adopt σ̄ = 1000s̄, where s̄ is the mean standard deviation observed on the different data
sets (s̄ = ∑q

i si/q).
Equation (4) models the fact that the cross-validation measures xi = {xi1, xi2, . . . , xin} of

the i-th data set are generated from a multivariate normal whose components have the same
mean (δi ), the same standard deviation (σi ) and are equally cross-correlated with correlation
ρ. Thus the covariance matrix �i is patterned as follows: each diagonal elements equals σ 2

i ;
each non-diagonal element equals ρσ 2

i . Such assumptions are borrowed from the Bayesian
correlated t-test (Corani and Benavoli 2015).

We complete the model with the prior on the parameters δ0, σ0 and ν of the high-level
distribution. We assume δ0 to be uniformly distributed within 1 and −1. This choice works
for all the measures bounded within ±1, such as accuracy, AUC, precision and recall. Other
type of indicators might require different bounds.

For the standard deviation σ0 we adopt the prior uni f (0, s̄0), with s̄0 = 1000sx̄ , where sx̄
is the standard deviation of the x̄i ’s.

As for the prior p(ν) on the degrees of freedom, there are two proposals in the literature.
Kruschke (2013) proposes an exponentially shaped distribution which balances the prior
probability of nearly normal distributions (ν > 30) and heavy tailed distributions (ν < 30).
We re-parameterize this distribution as a Gamma(α,β) with α = 1, β = 0.0345. Juárez and
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Table 1 Characteristics of the Gamma distribution for different values of α and β

α β mean sd p(ν < 30)

Juárez and Steel (2010) 2 0.1 20 14 0.80

Kruschke (2013) 1 0.0345 29 29 0.64

0.5 0.05 10 14 0.92

0.5 0.15 3 5 0.99

5 0.05 100 45 0.02

5 0.15 33 15 0.47

The last four rows show the characteristic of the extreme distributions assumed by our hierarchical model.
The hierarchical model however contains all the priors corresponding to intermediate values of α and β

Steel (2010) proposes instead p(ν) = Gamma(2, 0.1), assigning larger prior probability to
normal distributions, as shown in Table 1.

We have no reason for preferring a prior over another, but the hierarchical model shows
some sensitivity on the choice of p(ν). We model this uncertainty by representing the coef-
ficients α and β of the Gamma distribution as two random variables (hierarchical prior). In
particular we assume p(ν) = Gamma(α, β), with α ∼ unif(α, ᾱ) and β ∼ unif(β, β̄), set-

ting α=0.5, ᾱ=5, β=0.05, β̄=0.15. The mean and standard deviation of the limiting Gamma
distribution are given in Table 1; they encompass a wide range of different prior beliefs. In
this way the model becomes more stable, showing only minor variations when the limiting
ranges of α and β are modified. Being more expressive it also fits better the data as we show
in the experimental section.

The priors for the parameters of the high-level distribution are thus:

δ0 ∼ unif(−1, 1),

σ0 ∼ unif(0, σ̄0),

ν ∼ Gamma(α, β),

α ∼ unif(α, ᾱ),

β ∼ unif(β, β̄).

3.1 The region of practical equivalence

Our knowledge about a parameter is fully represented by the posterior distribution. Yet it is
handy to summarize the posterior in order to take decisions. In Corani and Benavoli (2015)
we summarized the posterior distribution by reporting the probability of positiveness and
negativeness; however in this way we considered only the sign of the differences, neglecting
their magnitude.

A more informative summary of the posterior is obtained introducing a region of practical
equivalence (rope), constituted by a range of parameter values that are practically equivalent
to the null difference between the two classifiers.We thus summarize the posterior distribution
by reporting how much probability lies within the rope, at its left and at its right. The limits
of the rope are established by the analyst based on his experience; thus there are no uniquely
correct limits for the rope (Kruschke 2015, Chap. 12). In this paperwe consider two classifiers
to be practically equivalent if their mean difference of accuracy lies within (−0.01,0.01).

The rope yields a realistic null hypothesis that can be verified. If a large mass of posterior
probability lies within the rope, we claim the two classifiers to be practically equivalent. A
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sound approach to detect equivalent classifiers could be very useful in online model selec-
tion (Krueger et al. 2015) where one should quickly discard algorithms that are practically
equivalent.

3.2 The inference of the test

We focus on estimating the posterior distribution of the difference of accuracy between the
two classifiers on a future unseen data set. We compute the probability of left, rope and right
being the most probable outcome on the next data set.

Thus we compute the probability by which p(le f t) > max(p(rope), p(right)) or
p(right) > max(p(rope), p(le f t)) or p(rope) > max(p(le f t), p(right)). This is similar
to the inference carried out by the Bayesian signed-rank test (Benavoli et al. 2014).

To compute such inference, we proceed as follows:

1. initialize the counters nle f t = nrope = nright = 0;
2. for i = 1, 2, 3, . . . , Ns repeat

– sample μ0, σ0, ν from their posteriors;
– define the posterior of the mean difference accuracy on the next dataset, i.e.,

t (δnext ; δ0, σ0, ν);
– from t (δnext ; δ0, σ0, ν) compute the three probabilities p(le f t) (integral on (−∞, r ])),

p(rope) (integral on [−r, r ]) and p(right) (integral on [r,∞); notice that −r and r
denote the lower and upper bound of the rope);

– determine the highest among p(le f t), p(rope), p(right) and increment the respec-
tive counter nle f t , nrope, nright ;

3. compute P(le f t) = nle f t/Ns , P(rope) = nrope/Ns and P(right) = nright/Ns ;
4. decision: when P(rope) > 1 − α (α is the size of the test) declare the two classifiers to

be practically equivalent; when P(le f t) > 1− α or P(right) > 1− α, declare the two
classifiers to be significantly different.

3.3 The shrinkage estimator

The δi ’s of the hierarchical model are independent given the parameters of the higher-level
distribution. If such parameters were known, the δi ’s would be conditionally independent
and they would be independently estimated. Instead such parameters are unknown, causing
the δ0 and the δi ’s to be jointly estimated. The hierarchical model jointly estimates the δi ’s by
applying shrinkage to the x̄i ’s, namely it pulls the estimates close to each other. It is known
that the shrinkage estimator achieves a lower error than MLE in case of uncorrelated data;
see (Murphy 2012, Sec 6.3.3.2) and the references therein. However there is currently no
analysis of shrinkage with correlated data, such as those yielded by cross-validation. We
study this problem in the following.

To this end, we assume the cross-validation results on the q data sets to be generated by
the hierarchical model:

δi ∼ p(δi ),

xi ∼ MV N (1δi ,�), (5)

where for simplicity we assumed the variances σ 2
i of the individual data sets to be equal to

σ 2 and known. Thus all data sets have the same covariance matrix �, which is defined as
follows: all variances are σ 2 and all correlations equal ρ. Note that Eq. (5) coincides with (4).
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This is a general model that makes no assumptions about the distribution p(δi ). We denote
the first two moments of p(δi ) as E[δi ] = δ0 and Var[δi ] = σ 2

0 .
We study the MAP estimates of the parameters δ1, . . . , δm, δo, σ

2
o , which asymptotically

tend to the Bayesian estimates. A hierarchical model is being fitted to the data. Such model is
a simplified version of that presented in Sect. 3. In particular p(δi ) is Gaussian for analytical
tractability.

P(x̄, δ, δ0, σ
2
0 ) =

q∏
i=1

N (xi ; 1δi ,�)N
(
δi ; δo, σ

2
o

)
p

(
δo, σ

2
o

)
. (6)

This model is misspecified since p(δi ) is generally not Gaussian. Nevertheless, it correctly
estimates the mean and variance of p(δi ), as we show in the following.

Proposition 1 The derivatives of the logarithm of P(x̄, δ, δ0, σ
2
0 ) are:

d

dδi
ln(P(·)) = δo − δi

σ 2
o

+ x̄i − δi

σ 2
n

,

d

dδo
ln(P(·)) =

−qδo +
q∑

i=1
δi

σ 2
o

+ d

dδo
ln

(
p

(
δo, σ

2
o

))
,

d

dσo
ln(P(·)) =

qδ2o +
q∑

i=1
δ2i − 2δo

q∑
i=1

δi − qσ 2
o

σ 3
o

+ d

dσo
ln

(
p

(
δo, σ

2
o

))
.

If we further assume that p(δo, σ 2
o ) ≈ constant (flat prior), by equating the derivatives to

zero, we derive the following consistent estimators:

σ 2
o = 1

q

q∑
i=1

(δ̂i − δ̂o)
2, (7)

δ̂i =
σ̂ 2
o x̄i + σ 2

n
1
q

q∑
i=1

x̄i

σ̂ 2
o + σ 2

n
= wx̄i + (1 − w) 1q

q∑
i=1

x̄i , (8)

wherew = σ̂ 2
o /(σ̂ 2

o +σ 2
n ) and, to keep a simple notation,we have not explicited the expression

σ̂o as a function of x̄i , σ 2
n . Notice that the estimator δ̂i shrinks the estimate towards 1

q

∑q
i=1 x̄i

that is an estimate of δ0. Hence, the Bayesian hierarchical model consistently estimates δ0
and σ 2

0 from data and converges to the shrinkage estimator δ̂i (xi ) = wx̄i + (1 − w)δ0.
Consider the generative model (5). The likelihood regarding the i-th data set is:

p(xi |δi ,�) = N (xi ; 1δi ,�)

= exp
(− 1

2 (xi − 1δi )
T�−1(xi − 1δi )

)
(2π)n/2

√|�| . (9)

Let us denote by δ the vector of the δi ’s. The joint probability of data and parameters is:

P(δ, x1, . . . , xq) =
q∏

i=1

N (xi ; 1δi ,�)p(δi ).
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Let us focus on the i-th group, denoting by δ̂i (xi ) an estimator of δi . The mean squared error
(MSE) of the estimator w.r.t. the true joint model P(δi , xi ) is:∫∫ (

δi − δ̂i (xi )
)2

N (xi ; 1δi ,�)p(δi )dxi dδi . (10)

Proposition 2 The MSE of the maximum likelihood estimator is:

MSEMLE =
∫∫

(δi − x̄i )
2 N (xi ; 1δi ,�)p(δi )dxi dδi

= 1

n2
1T�1,

which we denote in the following also as σ 2
n = 1

n2
1T�1.

Now consider the shrinkage estimator δ̂i (xi ) = wx̄i + (1 − w)δ0 with w ∈ (0, 1), which
pulls the MLE estimate x̄i towards the mean δ0 of the upper-level distribution.

Proposition 3 The MSE of the shrinkage estimator is:

MSESHR =
∫∫

(δi − wx̄i − (1 − w)δ0)
2 N (xi ; 1δi ,�)p(δi )dxi dδi

= w2σ 2
n + (1 − w)2σ 2

0 .

As we have seen, the hierarchical model converges to the shrinkage estimator with w =
σ 2
0 /(σ 2

0 +σ 2
n ). The shrinkage estimator achieves a smaller mean squared error than the MLE

since:

MSESHR = w2σ 2
n + (1 − w)2σ 2

0 = σ 4
0 + σ 2

n σ 2
0

(σ 2
0 + σ 2

n )2
σ 2
n

= σ 2
0

(σ 2
0 + σ 2

n )
σ 2
n < σ 2

n = MSEMLE.

3.4 Implementation and code availability

We implemented the hierarchical model in Stan (Carpenter et al. 2017), a language for
Bayesian inference. In order to improve the computational efficiency, we exploit a quadratic
matrix form to compute simultaneously the likelihood of the q data sets. This provides a
speedup of about one order of magnitude compared to the naive implementation in which the
likelihoods are computed separately on each data set. Inferring the hierarchical model on the
results of ten runs of tenfolds cross-validation on 50 data sets (a total of 5000 observations)
takes about three minutes on a standard laptop. For the sake of completeness we recall that
the computation of the much simpler signed-rank test is instead immediate.

The Stan code is available from https://github.com/BayesianTestsML/tutorial/tree/
master/hierarchical. The same repository provides the R code of all the simulations of Sect. 4.

4 Experiments

4.1 Estimation of the δi ’s under misspecification of p(δi )

According to the proofs of Sect. 3, the shrinkage estimator of the δi ’s has lower mean squared
error than themaximum likelihood estimator, constituted by the arithmetic mean of the cross-
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Table 2 Estimation error of the
δi ’s

q Mean squared error
MLE Shrinkage

5 .00036 .00017

10 .00036 .00014

50 .00036 .00012

validation results. This result holds even if the p(δi ) of the hierarchical model is misspecified:
it only requires the hierarchical model to reliably estimate the first two moments of p(δi ).

To verify this theoretical result we design the following experiment. We consider these
numbers of data sets: q = {5, 10, 50}. For each value of q we repeat 500 experiments
consisting of:

– sampling of the δi ’s (δ1, δ2, . . . , δq ) from the bimodal mixture

p(δi ) = π1N (δi |μ1, σ1) + π2N (δi |μ2, σ2),

with k=2, μ1=0.005, μ2=0.02, σ1=σ2=σ=0.001, π1 = π2 = 0.5.
– For each δi :

– implement two classifiers whose actual difference of accuracy is δi , following the
procedure given in “Appendix”;

– perform 10 runs of 10-folds cross-validation with the two classifiers;
– measure the mean of the cross-validation results x̄i (MLE).

– infer the hierarchical model using the results referring to the q data sets;
– obtain the shrinkage estimates of each δi ;
– measure MSEMLE and MSESHR as defined in Sect. 3.3.

As reported in Table 2, MSESHR is at least 50% lower than MSEMLE for every value of
q . This confirms our theoretical findings. It also shows that the mean of the cross-validation
estimates is a quite noisy estimator of δi , even if ten repetitions of cross-validation are
performed. The problem is that all such results are correlated and thus they have limited
informative content.

Interestingly, the MSE of the shrinkage estimator decreases with q . Thus the presence
of more data sets allows to better estimate the moments of p(δi ), improving the shrinkage
estimates as well. Instead the error of the MLE does not vary with q since the parameters of
each data set are independently estimated.

4.2 Comparison of equivalent classifiers

In this section we adopt a Cauchy distribution as p(δi ); this is an idealized situation in which
the hierarchical model can recover the actual p(δi ).Wewill relax this assumption in Sect. 4.7.

We simulate the null hypothesis of the signed-rank test by setting themedian of the Cauchy
to δ0 = 0. We set the scale factor of the distribution to 1/6 of the rope length; this implies
that 80% of the sampled δi ’s lies within the rope, which is the most probable outcome.

We consider the following numbers of data sets: q = {10, 20, 30, 40, 50}. For each value
of q we repeat 500 experiments consisting of:

– sampling the δi ’s (δ1, δ2, . . . , δq ) from p(δi );
– for each δi :
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10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of data sets (q)

Hierarchical test
Simulated case: δ0 : 0

p(rope)
equiv. recognition (95%)

Fig. 1 Behavior of the hierarchical classifier when dealing with two actually equivalent classifiers

– implement two classifiers whose actual difference of accuracy is δi , following the
procedure given in “Appendix”;

– perform ten runs of tenfold cross-validation with the two classifiers;

– analyze the results through the signed-rank and the hierarchical model.

The signed-rank test (α=0.05) rejects the null hypothesis about 5% of the times for each
value of q . It is thus correctly calibrated. Yet, it provides no valuable insights. When it does
not reject H0 (95% of the times), it does not allow claiming that the null hypothesis is true.
When it rejects the null (5% of the times), it draws a wrong conclusion since δ0=0.

The hierarchical model draws more sensible conclusions. The posterior probability
p(rope) increases with q (Fig. 1): the presence of more data sets provides more evidence that
they are equivalent. For q = 50 (the typical size of a machine learning study), the average
p(rope) reported in simulations is larger than 90%. Figure 1 shows also the equivalence recog-
nition, which is the proportion of simulations in which p(rope) exceeds 95%. Equivalence
recognition increases with q , reaching about 0.7 for q = 50.

Moreover in our simulations the hierarchical model never estimated p(left)>95% or
p(right)>95%, so it made no Type I errors. In fact nsht commits a rate α of Type I errors
under the null hypothesis, while Bayesian estimation with rope typically makes less Type I
errors (Kruschke 2013).

Running the signed-rank twice? We cannot detect practically equivalent classifiers by
running twice the signed-rank test, e.g., once with null hypothesis δ0 = 0.01 and once with
the null hypothesis δ0 = −0.01. Even if the signed-rank test does not reject the null in both
cases, we still cannot affirm that the two classifiers are equivalent, since non-rejection of the
null does not allow claiming that the null is true.

4.3 Comparison of practically equivalent classifiers

We now simulate two classifiers whose actual difference of accuracy is practically irrelevant
but different from zero. We consider two classifiers whose average difference is δ0=0.005,
thus within the rope.

We consider q = {10, 20, 30, 40, 50}. For each value of q we repeat 500 experiments as
follows:
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Fig. 2 When faced with two practically equivalent classifiers, the signed-rank rejects H0 more often as q
increases

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of data sets (q)

Actual δ0: 0.005

p(rope)
equiv. recogn. (95%)

Fig. 3 When faced with two practically equivalent classifiers, the hierarchical test responds to an increase of
q by increasing the probability of rope

– set p(δi ) as a Cauchy distribution with δ0=0.005 and the same scale factor as in previous
experiments (the rope remains the most probable outcome for the sampled δi ’s);

– sample the δi ’s (δ1, δ2, . . . , δq ) from p(δi );
– implement for each δi two classifierswhose actual difference of accuracy is δi andperform

ten runs of tenfold cross-validation;
– analyze the cross-validation results through the signed-rank and the hierarchical model.

The signed-ranked test is more likely to reject the null hypothesis as the number of data
sets increases (Fig. 2). When 50 data sets are available, the signed-rank rejects the null
in about 25% of the simulations, despite the trivial difference between the two classifiers.
Indeed one can reject the null of the signed-rank test when comparing two almost equivalent
classifiers, by comparing them on enough data sets. As reported in the ASA statement on
p value (Wasserstein and Lazar 2016), even a tiny effect can produce a small p value if the
sample size is large enough.

The behavior of the hierarchical test is far more sensible. The hierarchical test increases
the posterior probability of rope (Fig. 3) when the number of data sets in which the classifiers
show similar performance increases. It is slightly less effective in recognizing equivalence
than in the previous experiment since δ0 is now closer to the limit of the rope. When q=50,
it declares equivalence detection with 95% confidence in about 40% of the simulated cases.

The hierarchical test thus effectively detects classifiers that are practically equivalent; this
is instead impossible for the signed-rank test.

The hierarchical model is more conservative as it rejects the null hypothesis less easily
than the signed rank test. The price to be paid is that it might be less powerful at claiming sig-
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Fig. 4 The signed-rank test is generally more powerful than the hierarchical test in the detection of significant
differences between classifiers. Yet the two tests have similar power when δ0 is far enough from the rope

nificance when comparing two classifiers whose accuracies are truly different.We investigate
this setting in the next section.

4.4 Simulation of practically different classifiers

We now simulate two classifiers which are significantly different. We consider different
values of δ0: {0.015, 0.02, 0.025, 0.03}. We set the scale factor of the Cauchy to σ0=0.01 and
the number of data sets to q=50.

We repeat 500 experiments for each value of δ0, as in the previous sections.We then check
the power of the two tests for each value of δ0. The power of the signed-rank is the proportion
of simulations in which it rejects the null hypothesis (α=0.05). The power of the hierarchical
test is the proportion of simulations in which it estimates p(right) > 0.95.

As expected, the signed-rank test is indeed more powerful in this setting than the hier-
archical model, especially when δ0 lies just slightly outside the rope (Fig. 4). The two tests
have however similar power when δ0 is larger than 0.02.

4.5 Discussion

The main experimental findings so far are as follows. First, the shrinkage estimator of the
δi ’s yields a lower mean squared error than the MLE estimator, even under misspecification
of p(δi ).

Second, the hierarchical model effectively detects equivalent classifiers, unlike the nhst
test.

However, it is also less powerful than the signed-rank when comparing two significantly
different classifiers. The difference in power is however not necessarily large, as shown in
the previous simulation.

In the next section we discuss how the probabilities returned by the hierarchical model
can be interpreted in a more meaningful way than simply checking if they are larger than
(1 − α).

4.6 Interpreting posterior odds

The ratio of posterior probabilities (posterior odds) shows the extent towhich the data support
one hypothesis over the other. For instance we can compare the support for left and right
by computing the posterior odds o(left, right) = p(le f t)

p(right) . When o(left, right) > 1 there is
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Table 3 Grades of evidence
corresponding to posterior odds

Posterior odds Evidence

1–3 weak

3–20 positive

>20 strong

evidence in favor of left; when o(left, right) < 1 there is evidence in favor of right. Rules of
thumb for interpreting the amount of evidence corresponding to posterior odds are discussed
by Raftery (1995) and summarized in Table 3.

Thus even if none of the three probabilities exceeds the 95% threshold, we can still draw
meaningful conclusions by interpreting the posterior odds. We will adopt this approach in
the following simulations.

The p values cannot be interpreted in a similar fashion, since they are affected both by
sample size and effect size. In particular (Wasserstein and Lazar 2016) show that smaller
p values do not necessarily imply the presence of larger effects and larger p values do not
imply a lack of effect. A tiny effect can produce a small p value if the sample size is large
enough, and large effects may produce unimpressive p values if the sample size is small.

4.7 Experiments with Friedman’s functions

The results presented in the previous sections refer to conditions in which the actual p(δi )
(misspecified or not) is known. In this section we perform experiments in which the δi ’s
are not sampled from an analytical distribution; rather, they are due to different settings of
sample size, noise etc. This is a challenging setting for the hierarchical model, whose p(δi )
is unavoidably misspecified.

We generate data sets via the three functions (F#1, F#2 and F#3) proposed by Friedman
(1991).

Function F#1 contains ten features x1, . . . , x10, each uniformly distributed over [0, 1].
Only five features are used to generate the response y:

F#1 : y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε1,

where ε1 ∼ N (0, 1). We turn this regression problem into a classification one by discretizing
y in two bins, delimited by the median of y (which we estimate on a sample of 10,000
instances).

Functions F#2 and F#3 have four features x1, . . . , x4 uniformly distributed over the
ranges:

0 ≤ x1 ≤ 100,

40π ≤ x2 ≤ 560π,

0 ≤ x3 ≤ 1,

1 ≤ x4 ≤ 11.

The functions are:

F#2 : y =(x21 + (x2x3 − (1/x2x4))
2)0.5 + ε2,

F#3 : y = arctan

(
x2x3 − (1/x2x4)

x1

)
+ ε3,
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Table 4 Settings of the Friedman functions

Function type σε n random feats Tot settings

F#1 {0.5,1,2} {30,100,1000} {0,20} 3 · 3 · 2 =18
F#2 {62.5,125,250} {30,100,1000} {0,20} 3 · 3 · 2 =18
F#3 {0.05,0.1,0.2} {30,100,1000} {0,20} 3 · 3 · 2 =18

where ε2 ∼ N (0, σ 2
ε2

) and ε3 ∼ N (0, σ 2
ε3

). The original paper sets σε2=125 and σε3=0.1.
Also in this case we turn the problem into a classification one by discretizing the response
variable in two bins, around the median of y.

We consider 18 settings for each function, obtained by varying the sample size (n), the
standard deviation of the noise (σε) and either considering only the original features or adding
further twenty Gaussian features, all independent of the class (random features). We have
overall 54 settings: 18 settings for each function. They are summarized in Table 4.

As a pair of classifiers we consider linear discriminant analysis (lda) and classification
trees (cart), as implemented in the caret package for R, without any hyper-parameter
tuning. As first step we need to measure the actual δi between two given classifiers in each
setting, which then allows us to know the population of the δi ’s.

Our second step will be to check the conclusions of the signed-rank test and of the hier-
archical model when they are provided with cross-validation results referring to a subset of
settings.

Measuring δi

We start by measuring the actual difference of accuracy between lda and cart in each setting.
In the i-th setting we estimate δi as follows:

– for j=1:500

– sample training data according to the specifics of the i-th setting: <function type, n,
σε , number of random features;

– fit lda and cart on the generated training data;
– sample a large test set (5000 instances) and measure the difference of accuracy di j

between cart and lda;

– set δi 	 1/500
∑

j di j .

Our procedure yields accurate estimates since each repetition is performed on indepen-
dently generated data characterized by large test sets.

For instance if two classifiers have mean difference of accuracy x̄=0.09, with standard
deviation s=0.06; the 95% confidence interval of their difference is tight:

x̄ ± 1.96 · s√
n

= 0.09 ± 1.96 · 0.06√
500

= [0.085 − 0.095].

If instead we had performed 500 runs of tenfolds cross-validation obtaining the same
value of x̄ and s, the confidence interval of our estimates would be about 3.5 times larger, as

the standard error would be s
√

1
n + ρ

1−ρ
instead of s√

n
, as shown in Eq. (1).
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Ground-truth

We compute the δi of each setting using the above procedure. The ground-truth is that lda is
significantly more accurate than cart. More in detail, 65% of the δi ’s belong to the region to
the right of the rope (lda being significantly more accurate than cart). Thus right is the most
probable outcome of the next δi . Moreover, the mean of the δi ’s is δ0=0.02 (in favor of lda).

Assessing the conclusions of the tests

We run 200 times the following procedure:

– random selection of 12 out of 18 settings for each Friedman function, thus selecting 36
settings;

– in each setting:

– generate a data set according to the specific of the setting;
– run ten runs of tenfolds cross-validation of lda and cart using paired folds;

– analyze the cross-validation results on the q=36 data sets using the signed rank and the
hierarchical test.

We start checking the power of the tests, defined as the proportion of simulations in which
the null hypothesis is rejected (signed-rank) or the posterior probability p(right) exceeds 95%
(hierarchical test).

The two tests have roughly the same power: 28% for the signed-rank and 27.5% for the
hierarchical test. In the remaining simulations the signed-rank does not reject H0; in those
cases it conveys no information since the p values cannot be interpreted.

We can instead interpret the posterior odds yielded by the hierarchical model, obtaining
the following results:

– in 11% of the simulations both o(right, rope) and o(right, le f t) are larger than 20,
providing strong evidence in favor of lda even though p(right) does not exceed 95%;

– in a further 33% of the simulations both o(right, rope) and o(right, le f t) are larger
than 3, providing at least positive evidence in favor of lda.

We have moreover to point out a 2% of simulations in which the posterior odds provide
erroneously positive evidence for rope over both right and left. In no case there is positive
evidence for left over either rope or right.

Thus the interpretation of posterior odds allows drawing meaningful conclusions even
when the 95% threshold is not exceeded. The probabilities are sensibly estimated, even if
p(δi ) is unavoidably misspecified.

As a further check we compare MSEMLE andMSEShr. Also in this case MSEMLE is much
lower than MSEShr (Fig. 5), with an average reduction of about 60%. This further confirms
the properties of the shrinkage estimator.

4.8 Sensitivity analysis on real-world data sets

We now consider real data sets. In this case we cannot know the actual δi ’s: we could repeat a
few hundred times cross-validation but the resulting estimates would have large uncertainty
as already discussed.

We exploit this setting to perform sensitivity analysis and to further compare the conclu-
sions drawn by the hierarchical model and of the signed-rank test.
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Fig. 5 Boxplots ofMSEMLE andMSEShr over 200 repetitions of our experiment with the Friedman functions

Table 5 Posterior probabilities
computed by two variants of the
hierarchical model

Hierarchical Gamma(2,0.1)

pair left rope right left rope right

nbc-hnb 1.00 0.00 0.00 1.00 0.00 0.00

nbc-j48 0.80 0.02 0.18 0.80 0.01 0.20

nbc-j48gr 0.84 0.02 0.14 0.84 0.01 0.15

hnb-j48 0.03 0.10 0.87 0.03 0.02 0.95

hnb-j48gr 0.03 0.07 0.90 0.03 0.02 0.95

j48-j48gr 0.00 1.00 0.00 0.00 1.00 0.00

We consider 54 data sets taken from the webpage1 of WEKA data sets. We consider four
classifiers: naive Bayes (nbc), hidden naive Bayes (hnb), decision tree (j48), grafted decision
tree (j48gr). Witten et al. (2011) provides a summary description of all such classifiers with
pointers to the relevant papers. We perform ten runs of tenfolds cross-validation for each
classifier on each data set. We run all experiments using the WEKA2 software.

A fundamental step of Bayesian analysis is to check how the posterior conclusions depend
on the chosen prior and how the model fits the data. The hierarchical model shows some
sensitivity on the choice of p(δi ), being instead robust to the other assumptions (see later
for further discussion). The Student distribution is more flexible than the Gaussian and we
have found that it consistently provides better fit to the data. Yet, the model conclusions are
sometimes sensitive on the prior on the degrees of freedom p(ν) of the Student.

In Table 5 we compare the posterior inferences of the model, using the prior p(ν) =
Gamma(2, 0.1) (proposed by Juárez and Steel (2010)) or using the more flexible model
described in Sect. 3, where the parameters of the Gamma are described as random variables
with their own prior distributions. Such two variants are referred to as Gamma(2,0.1) and
hierarchical in Table 5.

In some cases the estimates of the two models differ by some points (Table 5). This means
that the actual high-level distribution from which the δi ’s are sampled is not a Student (or a
Gaussian), otherwise the estimate of the two models would converge.

Which model better fits the data? We respond to this question by adopting a visual
approach. We start considering that the shrinkage estimates of the δi ’s are identical between
the twomodels.We then compute the density plot of the shrinkage estimates (our best estimate
of the δi ’s). We take such density as the ground truth (this is actually our best approximation
to the ground truth) and we plot it in thick black (Fig. 6). Then we sample 8000 δi ’s from
both variants of the model, obtaining two further densities. We then plot the three densities

1 http://www.cs.waikato.ac.nz/ml/weka/datasets.html.
2 http://www.cs.waikato.ac.nz/ml/weka/.
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Fig. 6 Comparison of the densities estimated by p(δi ) of two variants of the hierarchical model in selected
cases

for each pair of classifiers (Fig. 6). We produce all the density plots using the default kernel
density estimation provided in R. In general the hierarchical model, being more flexible, fits
better the data than the model equipped with a simple Gamma prior.

4.8.1 Sensitivity on the prior on σ0 and σi

The model conclusions are moreover robust with respect to the specification of the priors
p(σi ) and p(σ0). Recall that σi is the standard deviation on the i-th data set while σ0 is the
standard deviation of the high-level distribution.

Our model assumes σi ∼ unif(0, σ̄ ) where σ̄ = 1000s̄ where s̄ is the average of the
sample standard deviations of the different data sets. The posterior distribution of σi is
however substantially unchanged if we adopt instead σ̄ = 100s̄.

The same consideration applies to σ0, whose prior is p(σ0) = uni f (0, s̄0). We obtain the
same posterior distribution for σ0 using as upper bound s̄0 = 1000sx̄ or s̄0 = 100sx̄ , where
sx̄ is the standard deviation of the x̄i ’s.
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Table 6 Posterior probabilities
of the hierarchical model and p
values of the signed-rank

Hierarchical Signed-rank

pair left rope right p value

nbc-hnb 1.00 0.00 0.00 0.00

nbc-j48 0.80 0.02 0.18 0.46

nbc-j48gr 0.84 0.02 0.14 0.39

hnb-j48 0.03 0.10 0.87 0.07

hnb-j48gr 0.03 0.07 0.90 0.08

j48-j48gr 0.00 1.00 0.00 0.00

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02

j48 vs j48gr

Fig. 7 Boxplots of the differences of accuracy x̄i ’s between j48 and j48gr on 54 data sets

4.9 Comparing the signed-rank and the hierarchical test

We compare the conclusions of the hierarchical model and of the signed-rank test on the
same cases of the previous section. The results are given in Table 6.

Both the signed-rank and the hierarchical test claim with 95% confidence hnb to be
significantly more accurate than nbc.

In the following comparisons apart from the last one, the two tests do not draw any
conclusion with 95% confidence. The signed-rank does not reject the null hypothesis, while
the hierarchical test does not achieve probability larger than 95%.

When the signed-rank test does not reject the null hypothesis, it draws a non-informative
conclusion. We can instead always interpret the posterior odds yielded by the hierarchical
model. When comparing nbc and j48, there is a positive evidence for right (j48 being more
accurate than nbc) over left and strong evidence for right over rope. We thus conclude that
there is positive evidence of j48 being practically more accurate than nbc. Similarly, we
conclude that there is positive evidence of j48gr being practically more accurate than nbc.

When comparing hnb and j48, there is strong evidence for right (hnb being more accurate
than j48) over both left and rope. We conclude that there is strong evidence of j48 being
practically more accurate than hnb. We draw the same conclusion when comparing hnb and
j48gr.

The two test draw opposite conclusions when comparing j48 and j48gr. The signed-rank
declares j48gr to be significantly more accurate than j48 (p value 0.00) while the hierarchical
model declares them to be practically equivalent, with p(rope)=1. The reason why the two
tests achieved opposite conclusions is that the differences have a consistent sign but are
small-sized. Most data sets yield a positive difference in favor of j48gr; this leads the signed
rank test to claim significance. Yet the differences lies mostly within the rope (Fig. 7). The
hierarchical model shrinks them further towards the overall mean and eventually claims the
two classifiers to be practically equivalent. The posterior probabilities remain unchanged
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even adopting the half-sized rope (−0.005, 0.005). It thus seems fair to conclude that, even
if most signs are in favor of j48gr, the accuracies of j48 and j48gr are practically equivalent.

5 Conclusions

The proposed approach is a realistic model of the data generated by cross-validation across
multiple data sets. Through the rope it also defines a sensible null hypothesis which can be
verified, allowing the test to detect classifiers that are practically equivalent. The interpreta-
tion of the posterior odds allows drawing meaningful conclusions even when the posterior
probabilities do not exceed 95%. Thanks to shrinkage, the hierarchical model estimates the
δi ’s more accurately than the usual approach of averaging (independently on each data set)
the cross-validation differences. An interesting research direction is thus the adoption of a
non-parametric approach for the high-level distribution p(δi ). This is a non-trivial task which
we leave for future research.

Acknowledgements The research in this paper has been partially supported by the Swiss NSF grants
ns. IZKSZ2_162188 and n. 200021_146606.

Appendix

Implementing two classifiers with known difference of accuracy

On the i-th data setwe need to simulate two classifierwhose actual difference of accuracy is δi .
We start by sampling the instances from a naive Bayes model with two features. Let us denote
byC the class variableswith states {c0, c1} andby F andG the two featureswith states { f0, f1}
and {g0, g1}. The naive Bayes model is thusG ← C → F . The parameters of the conditional
probability tables are: P(c0)=0.5; P( f0|c0) = θ f ; P( f0|c1) = 1 − θ f ; P(g0|c0) = θg;
P(g0|c1) = 1 − θg with θ f > 0.5. The remaining elements of the conditional probability
tables are the complement to 1 of the above elements. We set θ f =0.9 and θg = θ f + δi . We
sample the data set from this naive Bayes model.

During cross-validation we train and test the two competing classifiers C → F and
C → G. Their expected accuracies are θ f and θg respectively, and thus their expected
difference of accuracy is δi = θ f −θg . To explain this statement, let us first consider classifier
C → F . Assume that the marginal probabilities of the class have been correctly estimated.
The classification thus depends only on the conditional probability of the feature given the
class. If F= f0 the most probable class is c0 as long as P̂(c0| f0) > 0.5, where P̂ denotes the
conditional probability estimated from data. The accuracy of this prediction is θ f . It F= f1,
the most probable class is c1 as long as P̂(c1| f1) = θ f > 0.5. Also the accuracy of this
prediction is θ f . If the bias of conditional probability (P̂(c0| f0) >0.5 and P̂(c1| f1) >0.5) is
correctly estimated the accuracy of classifier C → F on a large test set is θ f . Analogously,
the accuracy of classifier C → G in the same conditions is θg , so that their difference is δi .
Since the sampled data set have finite size the mean difference of accuracy x̄i measured by
cross-validation will fluctuate with some variance around δi .
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Proofs

Proof of Proposition 1 Consider the hierarchical model:

P
(
x̄, δ, δ0, σ

2
0

)
=

q∏
i=1

N (xi ; 1δi ,�)N
(
δi ; δo, σ

2
o

)
p

(
δo, σ

2
o

)
, (11)

We aim at computing the derivative of the log(P(x̄, δ, δ0, σ
2
0 ))w.r.t. the parameter δi , δ0, σ 2

o .
Consider the quadratic term from the first and second Gaussian:

1

2
(xi − 1δi )

T�−1(xi − 1δi ) + 1

2σ 2
o

(δi − δo)
2;

its derivatives w.r.t. δi is 1T�−1(xi − 1δi ) + 1
σ 2
o
(δi − δo). Exploiting the fact that

1T�−1(xi − 1δi ) = 1T�−1(xi − 1x̄i + 1x̄i − 1δi )

= 1T�−1(1x̄i − 1δi ),

it follows that

d

δi
ln(P(·)) ∝ 1

σ 2
n

(x̄i − δi ) + 1

2σ 2
o

(δi − δo)
2,

where σ 2
n = 1

1T �−11
= 1

n2
1T�1. The latter equality can be derived by Corani and Benavoli

(2015) [Appendix], i.e.,

1

1T�−11
= n

1 + (n − 1)ρ
= 1

n2
1T�1.

The other derivatives can be computed easily. 
�
Proof of Proposition 2 Let us consider the likelihood:

p(xi |δi ,�) = N (xi ; 1δi ,�)

= exp(− 1
2 (xi − 1δi )

T�−1(xi − 1δi ))

(2π)n/2
√|�| . (12)

Let us define x̄i = ∑n
j=1 xi j/n. The MSE of the maximum likelihood estimator is:

MSEMLE =
∫∫

(δi − x̄i )
2 N (xi ; 1δi ,�)p(δi )dxi dδi .

Consider that (δi − x̄i )2 = (
δi − 1

n 1T xi
)2

where 1
n 1T is a linear transformation of the vari-

able xi . From the properties of the Normal distribution, it follows that∫ (
δi − 1

n 1T xi
)2

N (xi ; 1δi ,�)dxi = 1

n2
1T�1

and since ∫ (
1

n2
1T�1

)
p(δi )dxi dδi = 1

n2
1T�1,

we derive the first result. 
�
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Proof of Proposition 3 TheMSE of the shrunken estimator can be obtained in a similar way.
First observe that

(δi − wx̄i − (1 − w)δ0)
2

= w2 (δi − x̄i )
2 + (1 − w)2 (δi − δ0)

2

+ 2w(1 − w) (δi − x̄i ) (δi − δ0)

and its expected value w.r.t. N (xi ; δi , σ
2
n )p(δi ) is:∫ [

w2σ 2
n + (1 − w)2 (δi − δ0)

2] p(δi )dδi

= w2σ 2
n + (1 − w)2σ 2

0 , (13)

where we have denoted σ 2
n = 1

n2
1T�1. 
�
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