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Mathematics seems to endow one with something like a new sense.

Charles Darwin

2
Basic Mathematical Concepts

Chapter Overview

T   the basic mathematics underlying shape analysis
and classification. It starts by presenting some elementary concepts,

including propositional logic, functions and complex numbers, and follows
by covering important topics in linear algebra, such as vector spaces, linear
transformations and metric spaces. Since several properties of shapes ex-
hibit a differential nature, a review of the main related concepts from differ-
ential geometry and multivariate calculus is subsequently presented. Next,
the key operations known as convolution and correlation are introduced and
exemplified, which is followed by a review of probability and statistics, in-
cluding probability distributions, autocorrelation and the Karhunen-Loève
transform. The chapter concludes by presenting the main issues in Fourier
analysis, from the Fourier series to discrete convolution performed in the
frequency domain.

2.1 Basic Concepts
This chapter presents some basic mathematical concepts so as to provide the key to
the full understanding and application of image and shape analysis, not only in the
context of the present book but also of the most modern approaches covered else-
where in the related literature. Every effort has been made to develop this chapter
in an introductory fashion that should be accessible even to those with only ele-
mentary mathematical background. For those who are already familiar with the
covered subjects, this chapter might still be read as a review. Although the top-
ics are presented in a logical, progressive and integrated sequence throughout the

27

© 2009 by Taylor & Francis Group, LLC



!
!

“shapeanalysis” — 2009/2/26 — 15:55 — page 104 — #130 !
!

!
!

!
!

104 SHAPE ANALYSIS AND CLASSIFICATION

The Laplacian of a bivariate function z = g(x, y) is the scalar field given by

∇2g (x, y) =
∂2g
∂x2 +

∂2g
∂y2 .

For example, the Laplacian of the function g (x, y) = x2+2y2 is ∇2g (x, y) = 2x+4y,
which is immediately verified to be a plane.

Finally, the divergent of a vector field "g (x, y) =
[
gx (x, y) , gy (x, y)

]
is the scalar

field defined as

"∇."g (x, y) =
∂gx (x, y)
∂x

+
∂gy (x, y)
∂y

.

For instance, the divergent of the vector function "h (x, y) = 2xı̂+ 4y ̂ is the constant
function "∇."h (x, y) = 6.

To probe further: Multivariate Calculus

Excellent classical textbooks on multivariate calculus include [Apostol, 1969; Ed-
wards & Penney, 1998; Leithold, 1990; Williamson & Trotter, 1996]. The compre-
hensive textbook [Kreyszig, 1993] also covers several related aspects, while [Schey,
1997] provides a nice introduction to the main differential operators.

2.5 Convolution and Correlation
The convolution and correlation are both operations involving two functions, let
us say g(t) and h(t), and producing as result a third function. Informally speak-
ing, these two operations provide a means for “combining” or “mixing” the two
functions as to allow important properties, such as the convolution and correla-
tion theorems to be presented in Section 2.7.3. In addition, convolution provides
the basis for several filters, and correlation provides a means for comparing two
functions. These operations are presented in the following, first with respect to
continuous domains, then to discrete domains.
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CHAPTER 2. BASIC MATHEMATICAL CONCEPTS 105

2.5.1 Continuous Convolution and Correlation
Let g(t) and h(t) be two real or complex functions. The convolution between these
functions is the univariate function resulting from the operation defined as

q (τ) = g (τ) ∗ h (τ)
= (g ∗ h) (τ)

=

∞∫

−∞

g (t) h (τ − t) dt.
(2.22)

The correlation between two real or complex functions g(t) and h(t) is the function
defined as

q (τ) = g (τ) ◦ h (τ)
= (g ◦ h) (τ)

=

∞∫

−∞

g∗ (t) h (τ + t) dt.
(2.23)

As is clear from the above equations, the correlation and convolution operations
are similar, except that in the latter the first function is conjugated and the signal of
the free variable t in the argument of h(t) is inverted. As a consequence, while the
convolution can be verified to be commutative, i.e.,

(g ∗ h) (τ) =
∞∫

−∞

g (t) h (τ − t) dt a=τ−t
=

∞∫

−∞

g (τ − a) h (a) da = (h ∗ g) (τ)

we have that the correlation is not, i.e.,

(g ◦ h) (τ) =
∞∫

−∞

g∗ (t) h (τ + t) dt a=τ+t
=

∞∫

−∞

g∗ (a − τ) h (a) da ! (h ◦ g) (τ)

However, in case both g(t) and h(t) are real, we have

(g ◦ h) (τ) =
∞∫

−∞

g (t) h (τ + t) dt a=τ+t
=

∞∫

−∞

g (a − τ) h (a) da = (h ◦ g) (−τ)

In other words, although the correlation of two real functions is not commutative,
we still have (g ◦ h) (τ) = (h ◦ g) (−τ). In case both g(t) and h(t) are real and even,
then (g ◦ h) (τ) = (h ◦ g) (τ). For real functions, the convolution and correlation are
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106 SHAPE ANALYSIS AND CLASSIFICATION

related as

g (τ) ∗ h (−τ) =
∞∫

−∞

g (t) h (t − τ) dt a=t−τ
=

∞∫

−∞

g (a + τ) h (a) da = h (τ) ◦ g (τ)

If, in addition, h(t) is even, we have

g (τ) ∗ h (τ) =
∞∫

−∞

g (t) h (t − τ) dt = h (τ) ◦ g (τ) = (g ◦ h) (−τ)

An interesting property is that the convolution of any function g(t) with the Dirac
delta reproduces the function g(t), i.e.,

(g ∗ δ) (τ) =
∞∫

−∞

g (t) δ (τ − t) dt =
∞∫

−∞

g (τ) δ (τ − t) dt = g (τ)
∞∫

−∞

δ (τ − t) dt = g (τ)

An effective way to achieve a sound conceptual understanding of the convolution
and correlation operations is through graphical developments, which is done in the
following with respect to the convolution. Let g(t) and h(t) be given by Equations
2.24 and 2.25, as illustrated in Figure 2.53.

g (t) =




1.5 if −1 < t ! 0,

0 otherwise,
(2.24)

and

h (t) =




2 if 0 < t ! 2,

0 otherwise.
(2.25)

Figure 2.53: Two functions g(t) and h(t) to be convolved.

The first step required in order to obtain the convolution between these two
functions consists in determining h(−t), which is achieved, as discussed in Sec-
tion 2.1.3, by reflecting h(t) with respect to the y-axis, as illustrated in Figure 2.54 (a).
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CHAPTER 2. BASIC MATHEMATICAL CONCEPTS 107

Figure 2.54: Illustration of the basic operations involved in the convolu-
tion of the functions g(t) and h(t). See text for explanation.

Let us now restrict our attention to a specific value of the variable τ, for example,
τ = 1. When this value is added to the argument of h(−t), the function shifts to
the right, as illustrated in Figure 2.54 (b). According to Equation 2.22, the function
h(τ − t) is now multiplied by g(t), shown again in Figure 2.54 (c), thus yielding the
function g(t)h(τ − t) in Figure 2.54 (d).

The convolution at τ = 1 is finally given by the integral of g(t)h(τ − t), which
corresponds to the area below the function in Figure 2.54 (d):

(g ∗ h) (τ) =
∞∫

−∞

g (t) h (τ − t) dt = 3

Thus we have obtained the convolution value for τ = 1, as shown in Figure 2.55.
By repeating the above procedure for all (and infinite) possible values of τ, we

get the complete convolution shown in Figure 2.56.
The correlation can be understood in a similar manner, except for the fact that

the second function is not reflected and, for complex functions, by the conjugation
of the first function. Figure 2.57 shows the correlation of the above real functions,
i.e., g (t) ◦ h (t).
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108 SHAPE ANALYSIS AND CLASSIFICATION

Figure 2.55: The convolution (g ∗ h) (τ) for τ = 1.

Figure 2.56: The complete convolution (g ∗ h) (t).

Figure 2.57: The correlation (g ◦ h) (t) .

Let us now consider that both g(t) and h(t) have finite extension along the do-
main, i.e., g (t) , h (t) = 0 for t < r and t > s. Recall from Section 2.2.4 that the
inner product between two functions g(t) and h(t) with respect to the interval [a, b]
is given by

〈g, h〉 =
b∫

a

g∗ (t) h (t) dt

Observe that this equation is similar to the correlation equation, except that the lat-
ter includes the parameter τ in the argument of the second function, which allows
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CHAPTER 2. BASIC MATHEMATICAL CONCEPTS 109

the second function to be shifted along the x-axis with respect to the first function.
As a matter of fact, for each fixed value of τ, the correlation equation becomes an
inner product between the first function and the respectively shifted version of the
second. This property allows us to interpret the correlation as a measure of the ‘sim-
ilarity’ between the two functions with respect to a series of relative shifts between
these functions. Figure 2.58 illustrates this fact. The correlation f (t) = (g ◦ h) (t)

Figure 2.58: The correlation (c) between two time limited functions
g(t) (a) and h(t) (b) provides an indication about the similar-
ity between the several pieces along the functions. Observe
that in (c) the correlation f (t) = (g ◦ h) (t) is shown only for
t " 0, the other half being omitted for simplicity’s sake.

slides the “template” function g(t) along the function h(t), calculating the inner
product for each of these situations, in such a way that each correlation intensity
provides an indication of the ‘similarity’ between the functions. The maximum
intensity is verified for t = 80, which corresponds to the reference position of the
sought pattern in the function h(t). In other words, the correlation allows us to seek
for the position where the two functions are most similar (in the sense of larger
inner product).

However, it should be borne in mind that the inner products implemented by
the correlation only make sense when the functions have their amplitudes properly
normalized, or at least nearly so. For instance, if the first peak in Figure 2.58(b),
centered at t = 31, were high enough, the correlation function would peak near
t = 10, causing a false alarm. Among the many possible normalization schemes,
it would be possible to apply the affine transformation described in Section 2.1.4

© 2009 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
id

ad
e 

de
 S

ao
 P

au
lo

 (U
SP

) (
C

R
U

ES
P)

], 
[R

ob
er

to
 C

es
ar

] a
t 0

9:
34

 0
4 

A
ug

us
t 2

01
6 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9780849379406.ch2&iName=master.img-069.jpg&w=312&h=223


!
!

“shapeanalysis” — 2009/2/26 — 15:55 — page 110 — #136 !
!

!
!

!
!

110 SHAPE ANALYSIS AND CLASSIFICATION

in order to map both functions to be correlated into the [0, 1] interval, or to use the
statistic normal transformation described in Section 2.6.2.

The convolution and correlation can be straightforwardly extended to 2D func-
tions g(x, y) and h(x, y) as presented in the following:

2D Convolution:

(g ∗ h) (α, β) =
∞∫

−∞

∞∫

−∞

g (x, y) h (α − x, β − y) dx dy

2D Correlation:

(g ◦ h) (α, β) =
∞∫

−∞

∞∫

−∞

g∗ (x, y) h (x + α, y + β) dx dy

See Chapter 3 for more detail on the application of these operations to images.

2.5.2 Discrete Convolution and Correlation

Let g(i) and h(i) be discrete domain (i.e., i is an integer value) functions which are
zero outside a ! i ! b and c ! i ! d, respectively, where a, b, c and d are integer
values, as illustrated in Figure 2.53. Our objective in this section is to develop
numerical procedures for calculating the convolution and correlation between these
two functions. The discrete correlation is developed graphically in the following,
in order to illustrate the basic numeric approach.

Let us start by observing that the functions g and h have lengths N = b−a+1 and
M = d−c+1, respectively. These functions are illustrated in Figure 2.59 (a) and (b),
respectively. Next, the function h(i) is padded with N − 1 zeros at both its right and
left sides, i.e., h (i) = 0 for cc = c−N+1 ! i ! c−1 and d+1 ! i ! D+N−1 = dd,
yielding the new extended function h̃ (i), shown in Figure 2.59 (c).

Observe that, since c − d < b − a is always verified (in fact, by construction
c < d, implying that c − d is always negative; and a < b, implying that b − a is
always positive), we ensure that c−b < d−a. Thus, the correlation can be organized
as
(
g ◦ h̃
)

(k) for c − b ! k ! d − a, as illustrated in Figure 2.60. The correlation
is obtained by shifting the padded function h̃ (i) according to the above values of k,
which is then multiplied by the function g(i) for a ! i ! b. Finally, the results are
added.

Observe that, consequently, the discrete correlation
(
g ◦ h̃
)

(k) has length L
given as

L = (b − c)−(a − d)+1 = b−a+d−c+1 = (b − a + 1)+(d − c + 1)−1 = M+N−1

© 2009 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
id

ad
e 

de
 S

ao
 P

au
lo

 (U
SP

) (
C

R
U

ES
P)

], 
[R

ob
er

to
 C

es
ar

] a
t 0

9:
34

 0
4 

A
ug

us
t 2

01
6 



!
!

“shapeanalysis” — 2009/2/26 — 15:55 — page 111 — #137 !
!

!
!

!
!

CHAPTER 2. BASIC MATHEMATICAL CONCEPTS 111

Figure 2.59: The two discrete functions g(i) (a) and h(i) (b) to be corre-
lated. The padded function h̃ (i) (c).

Figure 2.60: Graphical development of the discrete correlation (g ◦ h) (k).
Since c− d < b− a we have c− b ! k ! d− a. The correlation
is obtained by shifting the padded function h̃ (i) according to
the above values of k, multiplying it by the function g(i), and
then adding the results.

The discrete correlation (g ◦ h) (k) can now be expressed as

(g ◦ h) (k) =
b∑

i=a

g∗ (i) h̃ (k + i) for c − b ! k ! d − a. (2.26)
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By using a similar development, the discrete convolution (g ∗ h) (k) can be ver-
ified to be

(g ∗ h) (k) =
b∑

i=a

g (i) h̃ (k − i) for c + a ! k ! d + b. (2.27)

In case the adopted programming language does not allow negative indexes, the
strategy presented in the box in Section 2.2.1 can be used. For discrete correlation,
we have the following algorithm:

Algorithm: Discrete Correlation

1. for k ← c − b to d − a
2. do
3. aux← 0;
4. for i = a to b
5. do
6. aux← (g(i − a + 1)) ∗ h(k + i − cc + 1) + aux;
7. corr(1, k − c + b + 1)← aux;

where conj stands for the complex conjugate. For discrete convolution, we have the
following algorithm:

Algorithm: Discrete Convolution

1. for k ← c + a to d + b
2. do
3. aux← 0;
4. for i← a to b
5. do
6. aux← g(i − a + 1) ∗ h(k − i − cc + 1) + aux;
7. conv(1, k − c − a + 1)← aux;

Observe that the above pseudo-codes, which have been prepared in order to
favor intelligibility and ensure strictly positive indexing, can be further optimized.

In case the discrete functions have subsequent elements separated by ∆ instead
of 1, as is the situation assumed in the above developments, the discrete correla-
tion and convolution equations should be rewritten as equations (2.28) and (2.29),
respectively:

(g ◦ h) (k) = ∆
b∑

i=a

g∗ (i) h̃ (k + i) for c − b ! k ! d − a, (2.28)
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CHAPTER 2. BASIC MATHEMATICAL CONCEPTS 113

(g ∗ h) (k) = ∆
b∑

i=a

g (i) h̃ (k − i) for c + a ! k ! d + b. (2.29)

2.5.3 Nonlinear Correlation as a Coincidence Operator
While the correlation is frequently used as a means to compare (or match) two
signals (see Figure 2.58), it presents the serious shortcoming that its result is largely
affected by the signal amplitude. For instance, consider that we want to compare
the two discrete signals g and h below:

g = 0 0 1 1 1 1 0 0 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0
h = 0 0 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
Figure 2.61 presents the above two sequences, shown in (a) and (b), respec-

tively, and the result of the standard correlation between these two signals (c).
Recall from Section 2.5.1 that, in principle, each peak produced by the correla-
tion indicates a possible coincidence (or match) between portions of the signals.
However, three peaks are observed in (c). Indeed, a false intermediate peak has
been obtained because of the interference between the two groups of “1s” and “4s.”
Moreover, the two external peaks indeed corresponding to the matches between
portions of the signals present different amplitudes although they refer to partial
matches of the same length (i.e., 4 values).

Much improved (actually exact) coincidence detection can be obtained by us-
ing the methodology first described in [Felsenstein et al., 1982], which involves
the decomposition of the discrete signals into binary signals, yielding a nonlinear
correlation. First, each signal is decomposed into a series of binary subsignals sV ,
one for each of the M possible nonzero values of the elements in the original signal
(observe that in the above signals M = 2). “1s” in one such subsignal correspond-
ing to the value V indicate that the respective positions contained the value V , as
illustrated below for the above discrete signal g(t):

g = 00111100000044440000000000
g1 = 00111100000000000000000000
g4 = 00000000000011110000000000

Once both signals have been decomposed, each pair of subsignals is correlated
by using the standard linear correlation, yielding sV (t) = gV (t) ◦ hV (t). The final
coincidence u(t) is obtained simply by adding all such correlations, i.e., u (t) =∑M

V=1 sV (t). Figure 2.61 (d) presents the coincidence between the two above signals
g(t) and h(t) obtained by using the above described methodology. It is clear that
now exactly two peaks, each with maximum value of 4, have been obtained as a
precise identification of the position and extension of the matches between the two
discrete signals. In addition to being fully precise, the coincidence operator can be
performed in O

(
N log (N)

)
by using the correlation theorem in Section 2.7.3 and the

fast Fourier transform to calculate the involved correlations. Further improvements
to this technique have been described in [Cheever et al., 1991].
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Figure 2.61: The discrete signals g(t) (a) and h(t) (b). While the result
of the standard correlation between these two signals (c)
provides peaks with different heights for each group of “1s”
and “4s,” as well as false alarms between the two peaks, the
coincidence operator allows a fully precise result (d).

To probe further: Correlation and Convolution

The correlation and convolution operations are usually covered in signal and image
processing textbooks, such as [Brigham, 1988; Gonzalez & Woods, 1993; Morri-
son, 1994; Oppenheim & Schafer, 1975, 1989].

2.6 Probability and Statistics
Probability and statistics play a key role in image and shape analysis because of the
variability of shapes and images as well as the diverse types of noise and artifacts,
which can often be statistically modeled. Concepts and techniques from these two
important areas are also used to treat situations of which we do not have complete
knowledge. For instance, a face recognition system can be trained to recognize a
set of specific faces, but it is not generally informed about all other possible faces.
The current section starts by presenting the key concepts of events and probabilities
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2.7 Fourier Analysis
The Fourier series and transform, the objects of the present section, represent some
of the most important and interesting approaches in applied mathematics, allowing
particularly useful applications in signal analysis, image processing and analysis,
computer vision, differential statistics, dynamic systems, vibration analysis, psy-
chology, acoustics and telecommunications, to name a few. Part of the importance
of the Fourier approach arises from the fact that it allows a representation of a
broad class of functions in terms of a linear combination of sine, cosine or complex
exponential basic functions. Moreover, unlike most alternative representations of
functions in terms of an orthogonal kernel, the Fourier approach exhibits an inher-
ent and special compatibility with the signals typically found in nature, especially
regarding their oscillatory and highly correlated features. As a matter of fact, the
Fourier transform allows the compaction of signals by performing a decorrelation
process similar and almost as effective as the statistically optimal Karhunen-Loève
transform. Besides, the Fourier transform has frequently been related to the human
perceptual system. For instance, our inner ears can be understood as performing
spectral analysis in a way that is directly related to the Fourier series. In addition,
several models of human visual perception have considered the Fourier transform
as an essential component underlying processing and analysis. One of the main
topics covered in this book, namely the numerical approaches to multi-resolution
curvature estimation (Chapter 7), is founded on the useful but less frequently used
properties of the Fourier transform, known as the derivative property. In addition,
much insight about other important transforms, such as the cosine and wavelet
transform, can be gained by treating them in terms of the Fourier transform.

Because of its special relevance to image and shape processing and analysis,
the Fourier approach is treated to a considerable depth in this section. Although we
have addressed most of the information needed for the proper understanding of the
concepts and applications developed in this book, the issues related to the Fourier
transform are particularly broad and can by no means be covered in an exhaustive
manner here. Fortunately, there are several excellent textbooks, to which the reader
is referred, providing clear and comprehensive treatment of more sophisticated re-
lated topics (see the To Probe Further box at the end of this section).

After some brief historical remarks, this section introduces the Fourier series,
the continuous Fourier transform, its properties, frequency filtering concepts, and
the discrete Fourier transform. It is observed that the sound understanding of the
continuous Fourier transform, especially its properties, is essential for the proper
application of the discrete Fourier transform to practical problems, which is dis-
cussed in some detail in the final sections of this chapter.

2.7.1 Brief Historical Remarks
The history of Fourier analysis (see, for instance [Davis & Hersh, 1999; Gullberg,
1997]) can be traced back to pioneering approaches by L. D’Alembert (1717–
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1783), L. Euler (1707–1783) and D. Bernoulli (1700–1782) to the solution of the
wave equation, such as that governing a vibrating string, which is a differential
equation of the type

∂2Ψ(x, t) φ
dx2 = α

∂2Ψ(x, t) φ
dt2 ,

where x is position, t time, and α a constant. For the first time, Bernoulli’s approach
represented the initial position of the string in terms of an infinite sum of sine func-
tions with varying frequencies—which represents the main underlying concept in
the Fourier series. However, it was left to Euler to find a convenient formula for
calculating the now-called Fourier coefficients. The interesting study of represent-
ing functions as a series of sines and cosines was resumed much later by Joseph
Fourier (1768–1830), while dealing with the heat equation, a differential equation
of the type

∂2Ψ(x, t) φ
dx2 = α

∂Ψ(x, t) φ
dt

,

as reported in his “Théorie Analytique de la Chaleur.” The main contribution of
Fourier was to prove, although in an inconsistent fashion, that functions defined by
pieces could also be represented in terms of infinite series of sines and cosines, the
now famous Fourier series representation.

2.7.2 The Fourier Series
The Fourier series (or expansion) of a periodic function g(t), with period 2L, when-
ever it exists, is given by

g(t) = a0 +

∞∑

n=1

[
an cos

(nπt
L

)
+ bn sin

(nπt
L

)]
,

where

a0 =
1

2L

L∫

−L

g(t) dt

an =
1
L

L∫

−L

g(t) cos
(nπt

L

)
dt (2.42)

bn =
1
L

L∫

−L

g(t) sin
(nπt

L

)
dt,

where n = 1, 2, . . .
These values are known as Fourier coefficients, and the involved sine and cosine

functions are known as kernel functions. The frequency f of the sine and cosine
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functions in the above equations can be immediately obtained by equating the ar-
gument of those functions, i.e., nπt

L , with 2π f t, since the frequency of the functions
cos (2π f t) or sin (2π f t) is, by definition, f . Therefore

nπt
L
= 2π f t ⇔ f =

n
2L

.

Figure 2.72 illustrates the function cos(2π f t) for f = 1, 2, 3, 4, 5 and 6.

Figure 2.72: Several instances of the function cos(2π f t) respectively de-
fined by f = 1, 2, 3, 4, 5 and 6.

Observe that the kernel function for a specific value of n has period T = 1
f =

2L
n ,

implying that any of the kernel functions are periodic of period 2L. Since both the
function gi and the kernel functions have the same period 2L, the products between
these functions in equation (2.42) are also periodic of period 2L (the product of two
periodical functions is a periodic function with the same period), and the integrals
in equation (2.42) can be calculated not only between −L and L, but along any
interval with extent 2L along the time domain, as illustrated below:

an =
1
L

L∫

−L

g(t) cos
(nπt

L

)
dt =

1
L

2L∫

0

g(t) cos
(nπt

L

)
dt =

1
L

L+2∫

−L+2

g(t) cos
(nπt

L

)
dt.

It is clear from the above developments that the Fourier series of a function g(t)
represents a means for expressing this function as a linear combination of sine and
cosine functions of distinct frequencies. It should be observed that, as implied by
equation (2.42), the term a0 corresponds to the average (or “direct current”—DC)
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value of the original function along the period 2L. Although in principle limited
to periodic functions, it should be observed that any function defined over a finite
domain can be expanded as a periodic function, as illustrated in the box entitled
Fourier Series. The reader is referred to specialized literature (e.g., [Tolstov, 1976])
for the convergence conditions of the Fourier series.

An informal way to understand the Fourier series is as a “cookie recipe.” If the
function is understood as the “cookie,” the Fourier coefficients can be understood as
the amount of each ingredient (i.e., the amplitude of each sine and cosine functions
of several frequencies) that have to be added in order to produce the cookie (i.e.,
the function). Table 2.7 summarizes this analogy.

Cookie Recipe Fourier Series
The cookie. The function.
Ingredients (i.e., flour, sugar,
chocolate, etc.).

The kernel functions (i.e., sines and
cosines with several frequencies).

The amount of each ingredient.
The amplitude of each kernel function,
specified by the respective Fourier
coefficients.

The cookie is obtained by
adding together the specific
amounts of ingredients.

The function is obtained as the addi-
tion of the kernel functions weighted
by the Fourier coefficients (i.e., a lin-
ear combination).

Table 2.7: The analogy between a cookie recipe and the Fourier series.

Consider the following example:

Example: Fourier Series

Calculate the Fourier series of the rectangular function g(t) given by

g(t) =




1 if −a ! t < a,

0 otherwise.
(2.43)

Solution:

Since this function is not periodic, the first step consists in transforming it into
a periodic function h(t). A suitable period is 2L = 4a, i.e., L = 2a, which yields
h(t) = g(t) for −2a ! t < 2a and h(t) = h(t + 4ak), k = . . . ,−2,−1, 0, 1, 2, . . .
Figure 2.73 illustrates this situation with respect to a = 1.
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Figure 2.73: The non-periodic original function g(t) and its periodic ver-
sion h(t), for a = 1.

Now the Fourier coefficients can be calculated as

a0 =
1

2L

L∫

−L

h(t) dt =
1
4a

2a∫

−2a

h(t) dt =
1
4a

a∫

−a

1 dt =
1
2

,

an =
1
L

L∫

−L

h(t) cos
(nπt

L

)
dt =

1
2a

2a∫

−2a

h(t) cos
(nπt

2a

)
dt =

1
2a

a∫

−a

cos
(nπt

2a

)
dt =

=
1
2a

[
2a
nπ

sin
(nπt

2a

)]a

−a

a=1
=

1
nπ

[
sin
(nπ

2

)
− sin

(
−nπ

2

)]
=

=
1

nπ

[
sin
(nπ

2

)
+ sin

(nπ
2

)]
=

2
nπ

sin
(nπ

2

)
= sinc

(n
2

)
,

bn =
1
L

L∫

−L

h(t) sin
(nπt

L

)
dt =

1
2a

2a∫

−2a

h(t) sin
(nπt

2a

)
dt =

1
2a

a∫

−a

sin
(nπt

2a

)
dt =

= − 1
2a

[
2a
nπ

cos
(nπt

2a

)]a

−a

a=1
= − 1

nπ

[
cos
(nπ

2

)
− cos

(
−nπ

2

)]
=

= − 1
nπ

[
cos
(nπ

2

)
− cos

(nπ
2

)]
= 0,

where sinc(x) = sin(πx)/(πx). It is interesting to observe that an is zero for n =
2, 4, 6, . . ., and that the obtained coefficients are independent of the parameter a
which, however, reappears in the function reconstruction

h(t) =
1
2
+

∞∑

n=1

[
sinc
(n
2

)
cos
(nπt

2a

)]
(2.44)
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Figure 2.74: Reconstruction of the rectangular function by including an
increasing number of components.

It is important to bear in mind that the above coefficients and series representation
is specific to the periodical function h(t), and not to g(t), which can nevertheless
be extracted from any of the periods of h(t). At continuous points, the Fourier
series tends to the function h(t) as more and more terms are included—as a matter
of fact, the exact convergence is only typically obtained for an infinite number of
terms. At each discontinuity point P of g(t), the Fourier series tends to the mean
value of the respective left and right limit values, but also implies an oscillation
of the series expansion around P, which is known as Gibbs phenomenon (see, for
instance, [Kreyszig, 1993]). Figure 2.74 presents four series approximations to the
above rectangular function considering increasing numbers of terms and a = 1.

The Fourier series can be represented in a more compact fashion by using the
complex exponential as a kernel function. Given a function g(t), the respective
complex Fourier coefficients are given by equation (2.46), which allows the original
function to be recovered by using equation (2.45).

g(t) =
∞∑

n=−∞

[
cn exp

{
jnπt

L

}]
(2.45)

cn =
1

2L

L∫

−L

g(t) exp
{
− jnπt

L

}
dt (2.46)

where n = . . . ,−2,−1, 0, 1, 2, . . .
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As observed for the real Fourier series, the integration in equation (2.46) can be
performed over any full period 2L of g(t). For instance:

cn =
1

2L

2L∫

0

g(t) exp
{
− jnπt

L

}
dt (2.47)

Consider the following example:

Example: Complex Fourier Series

Calculate the complex Fourier series of the function g(t) in equation (2.43).

Solution:
First, the function g(t) has to be made periodic, for instance by imposing period

2L = 4a, as before, yielding h(t). The complex coefficients can be calculated by
using equation (2.46):

cn =
1

2L

L∫

−L

h(t) exp
(
− jnπt

L

)
dt =

1
4a

2a∫

−2a

h(t) exp
(
− jnπt

2a

)
dt =

=
1

4a

a∫

−a

exp
(
− jnπt

2a

)
dt =

1
4a

[
− 2a

jnπ
exp
(
− jnπt

2a

)]a

−a

a=1
=

= − 1
j2nπ

[
exp
(
− jnπ

2

)
− exp

(
jnπ
2

)]
=

= − 1
j2nπ

[
cos
(nπ

2

)
− j sin

(nπ
2

)
− cos

(nπ
2

)
− j sin

(nπ
2

)]
=

=
1

nπ
sin
(nπ

2

)
=

1
2

sinc
(n
2

)

It should be observed that these coefficients are zero for n = ±2,±4, . . ., and
that c0 = 0.5.

The function h(t) can then be represented as

h(t) =
1
2

∞∑

n=−∞

[
sinc
(n
2

)
exp
{

jnπt
2a

}]

which is equivalent to that in equation (2.44).
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2.7.3 The Continuous One-Dimensional Fourier Transform
Let g(t) be a complex and not necessarily periodic function. In case its Fourier
transform exists, it is given by

G( f ) = * {g(t)} =
∞∫

−∞

g(t) exp
{−j2π f t

}
dt, (2.48)

where the variables t and f are usually called time and frequency, respectively. The
inverse Fourier transform of G( f ), which returns g(t), is given by

g(t) = *−1 {G( f )} =
∞∫

−∞

G( f ) exp
{
j2π f t

}
d f . (2.49)

The original function and its inverse are usually represented as the Fourier pair:

g(t)↔ G( f ).

Observe that both g(t) and G( f ) are, in general, complex. The function G( f ) is
usually expressed in one of the two following representations (i) real and imaginary
parts, i.e., Re{G( f )} and Im{G( f )}, and (ii) magnitude (or modulus) and phase,
given by

|G( f )| =
√[

Re {G( f )}]2 + [Im {G( f )}]2

and

Φ {G( f )} = arctan
{

Im {G( f )}
Re {G( f )}

}
.

In addition, observe that if g(t) ↔ G( f ), then g(−t) ↔ G(− f ) and, in case g(t)
is real we also have g(−t)↔ G∗( f ).

Since the existence of the Fourier transform is verified in practice for most
functions, this topic is not covered here and the reader is referred to the literature
(e.g., [Brigham, 1988]) for theoretical conditions for its existence. It is important to
observe that there are several alternative definitions for the Fourier transform and
its inverse [Brigham, 1988] to be found in the literature, all of which should be
compatible with the Laplace transform and the energy conservation principle, i.e.,
Parseval’s theorem.

There is an interesting analogy between the Fourier transform and the Fourier
series in the sense that equation (2.48) can be understood as producing the con-
tinuous Fourier coefficients G( f ), which can then be used to represent the func-
tion through the inverse Fourier transform in equation (2.49). This similarity be-
comes evident when equations (2.45) and (2.46) are compared to equations (2.48)
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and (2.49), respectively, except for the change of the sum symbol in equation (2.45)
into integral in equation (2.49). In other words, the Fourier transform and its in-
verse can be thought of as playing the role of analysis and synthesis of the original
signal, respectively. The difference between the Fourier series and transform is that
in the latter the “Fourier coefficients” G( f ) merge to form the continuous Fourier
transform of the original function instead of a series of discrete values as is the case
with the Fourier series. Indeed, it can be shown (e.g., [Brigham, 1988]) that the
Fourier transform can be understood as a limit situation of the Fourier series where
the spacing between the Fourier coefficients tends to zero. It is precisely this fact
that allows the Fourier transform to be defined for non-periodical functions (i.e.,
functions with infinite period).

Being directly related to the Fourier series, the Fourier transform can also be
understood in terms of the “cookie recipe” analogy introduced in Section 2.7.2.
That is to say, the continuous Fourier coefficients G( f ) provide the amount of each
ingredient (again the complex exponential kernel functions) that must be linearly
combined, through equation (2.49) in order to prepare the “cookie,” i.e., the original
signal. The spectral composition of the signal is usually represented in terms of the
power spectrum Pg{ f } of the original signal g(t), which is defined as:

Pg | f | = |G( f )|2 = G( f )∗G( f ).

An important property of the power spectrum is that it does not change as the
original function is shifted along its domain, which is explored by the so-called
Fourier descriptors for shape analysis (see Section 6.5).

Consider the following example:

Example: Fourier Transform I: Periodic Functions

Calculate the Fourier transform and power spectrum of the function

g(t) = exp {−t} , 0 ! t < ∞.

First, we apply equation (2.48):

* {g(t)} =
∞∫

0

exp {−t} exp
{−j2π f t

}
dt =

∞∫

0

exp
{−t
(
j2π f + 1

)}
dt =

= − 1
1 + j2π f

[
exp
{−t
(
j2π f + 1

)}]
∣∣∣∣∣∣

∞

0
=

= −
(

1
1 + j2π f

)
[0 − 1] =

1
1 + j2π f

(
1 − j2π f
1 − j2π f

)
=

1 − j2π f
1 + (2π f )2 = G ( f ) .
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Thus, the Fourier transform G( f ) of g(t) is a complex function with the follow-
ing real and imaginary parts, shown in Figure 2.75:

Figure 2.75: The real and imaginary parts of G( f ).

Re {G( f )} = 1
1 + (2π f )2 and Im {G( f )} = −2π f

1 + (2π f )2 .

Alternatively, in the magnitude and phase representation, we have

|G( f )| =
√√√ 1 + 4π2 f 2

[
1 + (2π f )2

]2 and Φ {G( f )} = arctan {−2π f } .

The power spectrum can be calculated as

Pg{ f } = G( f )∗G( f ) =
1 − j2π f

1 + (2π f )2
1 + j2π f

1 + (2π f )2 =
1 + (2π f )2

(
1 + (2π f )2

)2 = |G( f )|2

and is illustrated in Figure 2.76.

Although the Fourier transform of a complex function is usually (as in the above
example) a complex function, it can also be a purely real (or imaginary) function.
On the other hand, observe that the power spectrum is always a real function of the
frequency. Consider the following example

Example: Fourier Transform II: Aperiodic Functions

Calculate the Fourier transform of the function

g(t) =




1 if −a ! t < a

0 otherwise.
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Figure 2.76: The power spectrum of the function g(t).

Applying equation (2.48)

* {g(t)} =
∞∫

−∞

g(t) exp
{−j2π f t

}
dt =

a∫

−a

1. exp
{−j2π f t

}
dt =

[ −1
j2π f

exp
{−j2π f t

}
]∣∣∣∣∣∣

a

−a
=

=

( −1
j2π f

)
[
exp
{−j2πa f

} − exp
{
j2πa f

}]
=

=

( −1
j2π f

)
[
cos (2πa f ) − j sin (2πa f ) − cos (2πa f ) − j sin (2πa f )

]
=

=
sin (2πa f )
π f

= 2a
sin (2πa f )

2πa f
= 2a sinc (2a f ) ,

which is the purely real function shown in Figure 2.77, together with its respective
power spectrum, considering a = 1.

The Dirac delta function is particularly useful in Fourier analysis. Its transform
can easily be calculated as:

* {δ(t)} =
∞∫

−∞

δ(t) exp
{−j2π f t

}
dt =

∞∫

−∞

δ(t) exp
{−j2π f .0

}
dt =

∞∫

−∞

δ(t) dt = 1.

Since the respective inverse can be verified to exist, we have:

δ(t)↔ 1.
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Figure 2.77: The purely real Fourier transform of the function g(t) (a) and
its respective power spectrum (b) for a = 1. Observe the
different scales for the x-axis.

Another especially relevant function in Fourier analysis is the Gaussian, which
defines the following Fourier pair:

gσ(t) =
1

σ
√

2π
exp
{
−1

2

( t
σ

)2}
↔ G( f ) = exp


−

1
2

(
t
σ f

)2
 , (2.50)

where σ f =
1

2πσ . Therefore, the Fourier transform of a normalized Gaussian func-
tion is a non-normalized Gaussian function.

The Fourier transform exhibits a series of extremely useful and practical proper-
ties in signal processing and analysis, which are also essential for properly applying
the discrete Fourier transform. The most important of such properties are presented
and exemplified in the following sections.

Symmetry

Let
g(t)↔ G( f ).

Then
G(t)↔ g(− f ).

This property provides an interesting possibility for obtaining new transforms
directly from previously known transforms, as illustrated in the following example.
We have already seen that g(t) = δ(t) ↔ G( f ) = 1. By using the above property,
we have that

G(t) = 1 ↔ g(− f ) = δ(− f ) = δ( f ),

implying the new Fourier pair 1↔ δ( f ).
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Time Shifting

Let
g(t)↔ G( f ).

Then
g(t − t0)↔ G( f ) exp

{−j2π f t0
}
.

Thus, the effect of shifting a function in the time domain implies that the re-
spective Fourier transform is modulated by the complex exponential with frequency
equal to the time shift value. Observe that:

∣∣∣G( f ) exp
{−j2π f t0

}∣∣∣2 = |G( f )|2
∣∣∣exp
{−j2π f t0

}∣∣∣2 = |G( f )|2 ,

i.e., the power spectrum is not modified by time shiftings of the original function.

Example 1: Given δ(t) ↔ 1, calculate the Fourier transform of δ(t − t0). This
is immediately provided by the above time shifting property as δ(t − t0) ↔
exp
{−j2π f t0

}
.

Example 2: Given g(t) = exp {− |t|} ↔ 2
1+(2π f )2 = G( f ), calculate the Fourier

transform of h(t) = g(t − 2) = exp {− |t − 2|}. Again, by applying the time
shifting property we obtain

exp {− |t − 2|} ↔ 2 exp
{−4πj f

}

1 + (2π f )2 ,

that is graphically shown in Figure 2.78.

Time Scaling

Let
g(t)↔ G( f ).

Then
g(at)↔ 1

|a|G
(

f
a

)
.

Therefore, a compression (extension) of the function along the time domain im-
plies an extension (compression) of the respective Fourier transform. This property
is particularly interesting from the point-of-view of multiscale analysis (especially
wavelets), since it relates the Fourier transform of scaled versions of a signal.

Example: Given g(t) = exp {− |t|} ↔ 2
1+(2π f )2 = G( f ), calculate the Fourier trans-

form of h(t) = g(3t) = exp {− |3t|}. By applying the above property:

exp {− |3t|}↔ 2
3

1

1 +
(

2
3π f
)2 ,
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Figure 2.78: The function g(t) = exp {− |t|} (a) and its respective
Fourier transform (b). A time shifted version of the
function g(t) = exp {− |t|} (c) and the real part of its
respective Fourier transform (d).

Figure 2.79: The scaled version of the function g(t) = exp {− |t|} (a)
and its respective Fourier transform (b). Compare
with Figure 2.78. The compression in the time domain
implies an expansion in the frequency domain.
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which is illustrated in Figure 2.79. It is clear from the above example that the
effect of compressing a function in the time domain implies that its respective
Fourier transform expands in the frequency domain, and viceversa.

Frequency Shifting

Let
g(t)↔ G( f ).

Then
g(t) exp

{
j2π f0t

}↔ G ( f − f0) .

This property can be understood similarly to the time shifting property pre-
sented above.

Frequency Scaling

Let
g(t)↔ G( f ).

Then
1
|a|g
( t
a

)
↔ G(a f ).

This property can be understood similarly to the time scaling property presented
above.

Linearity

The Fourier transform is linear, i.e.,

* {ag(t) + bh(t)} = a* {g(t)} + b* {h(t)} .

This important property of the Fourier transform is very useful in practice. It
can also be used to calculate new Fourier transforms. For instance, it allows the
Fourier transform of the sine and cosine transform to be easily calculated as fol-
lows.

Since

sin (2π f0t) =
exp
{
j2π f0t

} − exp
{−j2π f0t

}

2j
,
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we have

* {sin (2π f0t)} = *
{

exp
{
j2π f0t

} − exp
{−j2π f0t

}

2j

}
=

=
1
2j
* {exp

{
j2π f0t

}} − 1
2j
* {exp

{−j2π f0t
}}

=
1
2j

(δ( f − f0) − δ( f + f0)) .

Since the inverse can be verified to exist, we have the Fourier pair

sin (2π f0t) ↔ j
2
δ( f + f0) − j

2
δ( f − f0).

In a similar fashion

* {cos (2π f0t)} = *
{

exp
{
j2π f0t

}
+ exp

{−j2π f0t
}

2

}
=

=
1
2
* {exp

{
j2π f0t

}}
+

1
2
* {exp

{−j2π f0t
}}

=

(
1
2
δ ( f − f0) +

1
2
δ ( f + f0)

)

and, therefore cos (2π f0t)↔ 1
2δ( f + f0) + 1

2δ( f − f0).

The Convolution Theorem

This important property of the Fourier transform is expressed as follows.
Let

g(t)↔ G( f ) and h(t)↔ H( f ).

Then

(g ∗ h) (t)↔ G( f ) H( f )

and

g(t) h(t)↔ (G ∗ H) ( f ),

where g(t) and h(t) are generic complex functions. See Sections 2.7.4 and 7.2 for
applications of this theorem.
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The Correlation Theorem

Let g(t) and h(t) be real functions defining the Fourier pairs g(t)↔ G( f ) and h(t)↔
H( f ). Then (g ◦ h) (t)↔ G∗( f ) H( f ).

The Derivative Property

Let the generic Fourier pair g(t) ↔ G( f ) and a be any non-negative real value.
Then

dag(t)
dta ↔ Da( f ) G( f ), (2.51)

where Da( f ) =
(
j2π f
)a. This interesting property, which is used extensively in the

present book (see Section 7.2), allows not only the calculation of many derivatives
in terms of the respective Fourier transforms, but also the definition of fractionary
derivatives such as d0.5g(t)

dt0.5 and dπg(t)
dtπ . This property can also be used to calculate

integrals, which is done by using a < 0.

Example: Given g(t) = cos (2π f0t)↔ 1
2 (δ ( f + f0) + δ ( f − f0)) = G( f ), calculate

the first derivative of g(t). By applying the above property:

g′(t)↔
(
j2π f
)

2
(δ ( f + f0) + δ ( f − f0))

=

(
j2π
)

2
( f δ ( f + f0) + f δ ( f − f0))

=

(
j2π
)

2
( f0δ ( f + f0) − f0δ ( f − f0))

=
(
j2π f0

) j
2

(−δ ( f + f0) + δ ( f − f0))

↔ −2π f0 sin (2π f0t) .

Parseval’s Theorem

Let
g(t)↔ G( f ).

Then ∞∫

−∞

|g(t)|2 dt =
∞∫

−∞

|G( f )|2 d f .

This property indicates that the Fourier transform preserves the “energy” of the
function. As a matter of fact, this is an ultimate consequence that the norm of a
signal is preserved by an orthonormal transformation.

© 2009 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
id

ad
e 

de
 S

ao
 P

au
lo

 (U
SP

) (
C

R
U

ES
P)

], 
[R

ob
er

to
 C

es
ar

] a
t 0

9:
34

 0
4 

A
ug

us
t 2

01
6 



!
!

“shapeanalysis” — 2009/2/26 — 15:55 — page 156 — #182 !
!

!
!

!
!

156 SHAPE ANALYSIS AND CLASSIFICATION

Parity-Related Properties

The Fourier transform of a function is determined by the parity and nature of the
function g(t) to be transformed (i.e., real, imaginary, or complex). Some of the
most useful of such properties are summarized in Table 2.8.

g(t) G( f )
Real and even Real and even
Real and odd Imaginary and odd
Imaginary and even Imaginary and even
Imaginary and odd Real and odd

Table 2.8: Some of the parity properties of the Fourier transform.

Discrete and Periodical Functions

First, consider the sampling function Ψ∆t(t) defined as the sum of equally spaced
(by ∆t) Dirac deltas, i.e., Ψ∆t(t) =

∑∞
n=−∞ δ (t − n∆t), which defines the Fourier

pair

Ψ∆t(t) =
∞∑

n=−∞
δ (t − n∆t)↔ 1

∆t
Ψ1/∆t( f ) =

1
∆t

∞∑

n=−∞
δ

(
f − n

1
∆t

)
,

which is illustrated in Figure 2.80.

Figure 2.80: The sampling function (a) and its respective Fourier trans-
form (b), which is also a sampling function, but with different
features.

Now, let g(t) be a non-periodic function entirely contained in a finite interval
r ! t < s along its domain, such as

g(t) =




1 if −a ! t ! a,

0 otherwise,

© 2009 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
id

ad
e 

de
 S

ao
 P

au
lo

 (U
SP

) (
C

R
U

ES
P)

], 
[R

ob
er

to
 C

es
ar

] a
t 0

9:
34

 0
4 

A
ug

us
t 2

01
6 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9780849379406.ch2&iName=master.img-098.png&w=263&h=90


!
!

“shapeanalysis” — 2009/2/26 — 15:55 — page 157 — #183 !
!

!
!

!
!

CHAPTER 2. BASIC MATHEMATICAL CONCEPTS 157

where r < −a and a < s. Let also G( f ) be the respective Fourier transform of
g(t), in this case G( f ) = 2a sinc (2a f ). A periodic version h(t) of the function g(t),
with period 2L > 2a can be obtained by convolving g(t) with the sampling func-
tion Ψ2L(t) = 2L

∑∞
n=−∞ δ (t − 2nL), i.e., h(t) = g(t) ∗ [2LΨ2L(t)]. The coefficient

2L adopted for the sampling function avoids the otherwise implied scaling of the
Fourier transform by a factor of 1

2L . The functions g(t) and h(t) are illustrated in
Figure 2.81 (a) and (c), respectively, considering a = 1 and L = 2. Since g(t) is

Figure 2.81: The function g(t) (a) and its Fourier transform G( f ) (b). The
periodical version h(t) = g(t) ∗ Ψ2L(t) of g(t), for a = 1 and
L = 2 (c), and its respective Fourier transform H( f ) (d).

contained in a limited interval along its domain and 2L > 2a, this process corre-
sponds to copying g(t) at the values of t that are multiples of the period 2L. By the
convolution theorem, the Fourier transform of h(t) is given by the product between
G( f ) and the Fourier transform of the sampling function, i.e.,

H( f ) = G( f )
[
Ψ1/2L( f )

]
=

∞∑

i=−∞
G
(

f − i
1

2L

)
δ

(
f − i

1
2L

)
.

The periodical function h(t) and its respective Fourier transform H( f ) are shown
in Figures 2.81 (b) and (d), respectively, considering a = 1 and L = 2.

A completely similar effect is observed by sampling the function g(t), implying
the respective Fourier transform to be periodical. The above results are summarized
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below:

g(t) G( f )
Periodical Discrete
Discrete Periodical

It should be observed that the Fourier transform can also be applied to periodical
functions, producing as a result a necessarily discrete Fourier transform, i.e., a
collection of Dirac deltas along the frequency domain. As a matter of fact, the
Fourier transform of a periodical function h(t) can be verified to produce a Fourier
transform that is identical to the Fourier series of h(t) [Brigham, 1988]. In other
words, for periodical functions the Fourier series becomes equal to the Fourier
transform, and the resulting transform or series is always quantized (or discrete)
in the frequency space. In this sense, the Fourier series can be thought of as a
particular case of the Fourier transform when the input function is periodical.

2.7.4 Frequency Filtering
One of the many important practical applications of the Fourier transform is as a
means for implementing filters. To frequency filter a specific function or signal is
henceforth understood as modifying its Fourier coefficients in a specific fashion. In
this section, we consider the following three main types of filters: low-pass, high-
pass and band-pass. The implementation of such filters in the frequency domain,
however, is common to all these types and is achieved by multiplying the Fourier
transform of the analyzed signal with a filtering function, and taking as result the
inverse Fourier transform. That is to say, if h(t) is the function to be filtered, with
respective continuous Fourier transform H( f ), and V( f ) is the filtering function,
the filtered version of h(t), henceforth represented as q(t), can be obtained as

q(t) = *−1 {H( f ) V( f )} . (2.52)

By considering the convolution theorem, such a filtering process can be verified
to correspond to convolving, in the time domain, the function h(t) with the inverse
Fourier transform v(t) of the filtering function V(F). It is observed that there are, at
least in principle, no restrictions to the type of filtering function (e.g., continuous,
strictly positive, differentiable, etc.). Let us now consider each of the three types of
filters individually.

As we understand from its name, a low-pass filter acts by attenuating the magni-
tude of the high frequency components in the signal, while the low frequency com-
ponents are allowed to pass. Therefore, the respective filter function is expected to
decrease for high values of frequency magnitude. It is important to note that such
effect is relative, i.e., what matters is to attenuate the high frequency components
relative to the low frequency components, even if all components are attenuated or
magnified as a consequence. Figure 2.82 presents two possible low-pass filtering
functions.
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Figure 2.82: Two possible low-pass filtering functions.

Observe that the low-pass filter in Figure 2.82 (a) attenuates all frequencies,
but the attenuation is smaller for the lower frequencies. Low-pass filtering tends to
produce functions that are smoother and more intensely correlated than the original
function h(t) (see Section 2.6.5).

A typical low-pass filtering function is the zero-mean Gaussian (see
Section 2.1.4). It is interesting to relate the Gaussian filtering function to its in-
verse Fourier transform, since this allows us to understand the filtering effect in
terms of the standard deviation σ of the Gaussian respectively defined in the time
domain (the higher this value, the more intense the low-pass filtering effect). Re-
call from Section 2.7.3 and equation (2.50) that the Gaussian in the frequency do-
main has as parameter σ f = 1/ (2πσ). The henceforth adopted Gaussian filter-
ing function V( f ) and its respective inverse Fourier transform (which is a Gaus-
sian in the strict sense), are given in terms of the following Fourier transform
pair:

gσ(t) =
1

σ
√

2π
exp
{
−1

2

( t
σ

)2}
↔ V( f ) = exp

{
−2 (πσ f )2

}
.

Observe that the above Gaussian filter function V( f ) always varies between 0
and 1. Figure 2.83 illustrates the process of Gaussian low-pass filtering.

The Fourier transform H( f ) (b) of the function h(t) to be filtered (a) is multi-
plied by the filtering function V( f ) (c), which in this case is the Gaussian V( f ) =
exp
{
−2 (πσ f )2

}
with σ = 0.1, and the filtered function (d) is obtained by taking the

inverse Fourier transform of H( f ) V( f ). The effect of this filtering process over the
original function, a cosine function corrupted by additive uniform noise, is clear
in the sense that the higher frequency components of h(t), i.e., the sharp oscilla-
tions along the cosine function, have been substantially attenuated, although at the
expense of a substantial change in the amplitude of h(t). An additional discus-
sion about Gaussian filtering, in the context of contour processing, is presented in
Section 7.2.3.
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Figure 2.83: The function h(t) to be low-pass filtered (a), its respective
Fourier transform (b), the filtering function (in Fourier do-
main) (c), the filtered function q(t) (d), and its respective
Fourier transform (e).

The second class of filters, known as high-pass filters, act conversely to the low-
pass filters, i.e., by attenuating the magnitude of the low frequency components of
the signal, while the higher frequency components are allowed to pass. Such an
attenuation should again be understood in relative terms. An example of high-pass
filter is the complemented Gaussian V( f ), defined as

gσ(t) = δ(t) − 1
σ
√

2π
exp
{
−1

2

( t
σ

)2}
↔ V( f ) = 1 − exp

{
−2 (πσ f )2

}
.

It is interesting to observe that the complemented Gaussian filter function al-
ways varies between 0 and 1. This function is illustrated in Figure 2.84 for σ =
0.25.

Figure 2.84: The complemented Gaussian function for σ = 0.25.
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As illustrated in Figure 2.85, a high-pass filter tends to accentuate the most
abrupt variations in the function being filtered, i.e., the regions where the deriva-
tive magnitude is high (in image processing and analysis, such abrupt variations
are related to the image contrast). In other words, high-pass filtering reduces the

Figure 2.85: The function h(t) to be high-pass filtered (a), its respective
Fourier transform (b), the filtering function (c), the filtered
function (d), and its respective Fourier transform (e).

correlation and redundancy degree in the original signal.
A particularly interesting type of high-pass filter in the context of the present

book is related to the derivative property of the Fourier transform (see Section 2.7.3).
We have already seen that, in order to obtain the first derivative of a function h(t), all
that we need to do is to multiply its Fourier transform by the purely imaginary func-
tion D1( f ) =

(
j2πσ f

)
and take the inverse transform. As shown in Figure 2.86, this

filter function presents the general shape of a high-pass filter, attenuating the low-
frequency components relative to the higher frequency components. Figure 2.87
illustrates the use of this function in order to differentiate a function h(t). Since
the differentiation can substantially enhance high frequency noise, such an oper-
ation is usually performed by using as filter function the product of the function
D1( f ) =

(
j2πσ f

)
by a Gaussian function.

The filters under the category known as band-pass act by relatively accentuat-
ing the frequency components along a specific portion of the frequency domain.
Therefore, a low-pass filter can be understood as a particular case of a band-pass
filter centered at zero frequency. Gaussian functions with non-zero means in the fre-
quency domain provide a good example of band-pass filter functions. Figure 2.88
illustrates the filtering of the function h(t) = cos (2π f1t) + cos (2π f2t), f2 = 4 f1,
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Figure 2.86: The first derivative filter function, which is a purely imagi-
nary function.

Figure 2.87: The function h(t) to be high-pass filtered by the first deriva-
tive filter (a), its respective Fourier transform (b), the filtering
function (c), and the filtered function (d) and its respective
Fourier transform (e). Observe that V( f ) is a pure imaginary
function.

by using as two band-pass Gaussian filtering functions centered respectively at − f2
and f2, as shown in Figure 2.88 (c). Since the filter removes almost completely the
lower frequency component (i.e., cos (2π f1t)), the resulting filtered function con-
sists almost exclusively of cos (2π f2t). It should be observed that, in this specific
example, a similar effect could have been obtained by using a zero-mean comple-
mented Gaussian narrow enough to attenuate the low frequencies.

Although filters are usually applied with a specific objective, such as smoothing
a function, situations arise where some undesirable filtering has already taken place
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Figure 2.88: The function h(t) to be band-pass filtered (a), its respective
Fourier transform (b), the filter function (c), and the filtered
function (d) and its respective Fourier transform (e).

and we want to recover the original function. Such a problem, which is relatively
common in image processing and analysis, is called deconvolution (this follows
from the fact that the filtering process can be alternatively understood as a convo-
lution in the time space). If the original function h(t) was filtered by a function
V( f ), yielding q(t), we may attempt to recover the original function by dividing the
Fourier transform Q( f ) of the filtered function by the filter function V( f ) and tak-
ing the inverse Fourier transform as the result. Thus, the sought recovered function
would be obtained as h(t) = *−1 {Q( f )/V( f )}. However, this process is not possible
whenever V( f ) assumes zero value. In practice, the situation is complicated by the
presence of noise in the signal and numeric calculation. Consequently, effective de-
convolution involves more sophisticated procedures such as Wiener filtering (see,
for instance, [Castleman, 1996]).

2.7.5 The Discrete One-Dimensional Fourier Transform
In order to be numerically processed by digital computers, and to be compatible
with the discrete signals produced by digital measuring systems, the Fourier trans-
form has to be reformulated into a suitable discrete version, henceforth called dis-
crete Fourier transform—DFT.

First, the function gi to be Fourier transformed is assumed to be a uniformly
sampled (spaced by ∆t) series of measures along time, which can be modelled in
terms of multiplication of the original, continuous function g̃(t) with the sampling
function Ψ∆t(t) =

∑∞
i=−∞ δ (t − i∆t). Second, by being the result of some measuring

process (such as the recording of a sound signal) the function gi is assumed to have
finite duration along the time domain, let us say from time a = ia∆t to b = ib∆t.
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The function gi is henceforth represented as:

gi = g̃ (i∆t) .

Observe that the discrete function gi can be conveniently represented in terms
of the vector "g =

(
gia , gia+1, . . . , gi−1, gi, gi+1, . . . , gib−1, gib

)
. Figure 2.89 illustrates

the generic appearance (i.e., sampled) of the function gi.

Figure 2.89: Example of a sampled function gi to be Fourier transformed.

As seen in the previous section, the fact that the function gi is discrete implies
that the DFT output H( f ) is always periodical of period 1

∆t . This important property
is illustrated in Figure 2.90, which also takes into account the fact that the resulting
Fourier transform is discrete (see below).

Figure 2.90: The DFT output function H( f ) is always discrete and peri-
odic of period 1/∆t.

Figure 2.90 also allows us to immediately derive an important result in signal
processing, known as the sampling theorem, which relates the maximum frequency
of a sampled signal gi that can be represented in terms of the adopted sampling
step ∆t. Since the function H( f ) is periodic of period 1

∆t , and the period centered
at zero frequency extends from − fmax to fmax, we have that fmax =

1
2∆t , which is
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known as the Nyquist rate. Therefore, any higher frequency contained in the origi-
nal continuous signal g̃(t) will not be properly represented in the Fourier transform
of the respective sampled signal gi. Indeed, such too high frequencies will imply
an overlapping of each of the borders of the basic period, identified by asterisks
in Figure 2.90, a phenomenon known as aliasing. The best strategy to reduce this
unwanted effect is to use a smaller value for ∆t.

To be represented in a digital computer (e.g., as a vector), the Fourier transform
output function H( f ) has to be sampled in the frequency space (the samples are
assumed to be uniformly spaced by ∆ f ), i.e., multiplied by the sampling function
Ψ∆ f (t) =

∑∞
i=−∞ δ (t − i∆ f ), implying the periodical extension h(t) (see the previous

section) of gi. Consequently, the DFT input h(t) is always a periodical extension of
gi with period 1

∆ f . This fact is illustrated in Figure 2.91.

Figure 2.91: The DFT input function hi is always discrete and periodic of
period 1/∆ f .

As seen in the previous section, the fact that the input function is periodical
implies that the DFT represents a numerical approximation of the Fourier series of
h(t). These important facts are summarized below:

Discrete input function gi implies the DFT output
H( f ) to be periodical of period 1

∆t .
Discrete DFT output G( f ) implies the input function
gi to become a periodical function h(t) with period 1

∆ f .
The DFT input (and also the output) function can be
represented as a vector.
The DFT corresponds to a numerical approximation
of the Fourier series.

Since each period of h(t) has length 1
∆ f = b − a = 2L and the samples are

equally spaced by ∆t, and by assuming that the period 2L is an integer multiple of
∆t, the number N of sampling points representing the input function gi along one
period is given by:

N =
1/∆ f
∆t
=

1
∆t∆ f

.
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Observe that we have N = 1
∆t∆ f instead of N = 1

∆t∆ f+1 because we want to
avoid repetition at the extremity of the period, i.e., the function is sampled along
the interval [a, b). The number M of sampling points in any period of the output
function H( f ) is similarly given by

M =
1/∆t
∆ f
=

1
∆t∆ f

.

By considering N = M, i.e., the number of sampling points representing the
input and output DFT functions are the same (which implies vectors of equal sizes
in the DFT), we have

N = M =
1
∆t∆ f

. (2.53)

Since the input function is always periodical, the DFT can be numerically ap-
proximated in terms of the Fourier series, which can be calculated by considering
any full period of the input function h(t). In order to be numerically processed, the
Fourier series given by equation (2.47) can be rewritten as follows. First, the in-
tegral is replaced by the sum symbol and the continuous functions are replaced by
the above sampled input and output functions. In addition, this sum is multiplied
by ∆t because of the numerical integration and the relationship n = 2L f is taken
into account, yielding

Gk = G (k∆ f )

= cn=2L f =
1

2L

2L∫

0

h(t) exp
{
− jπnt

L

}

= ∆t
1

2L

N−1∑

i=0

h (i∆t) exp
{
− jπ (2L f ) (i∆t)

L

}

= ∆t
1

2L

N−1∑

i=0

h (i∆t) exp
{−j2π (k∆ f ) (i∆t)

}
.

Observe that we have considered the time interval [0, 2L), in order to avoid
redundancies. By considering the input function as having period 2L = 1

∆ f , we
obtain

Hk = H (k∆ f ) = ∆t∆ f
N−1∑

i=0

h (i∆t) exp
{−j2π (k∆ f ) (i∆t)

}
.

Now, from equation (2.53) we have ∆t∆ f = 1
N , which implies that

Hk = H (k∆ f ) =
1
N

N−1∑

i=0

h (i∆t) exp
{
− j2πik

N

}
. (2.54)
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This equation, which is commonly known as the discrete Fourier transform
equation, allows us to numerically estimate the Fourier series of the periodical func-
tion h(t). It is easily verified that the computational execution of equation (2.54)
for each specific value of k demands N basic steps, being therefore an algorithm of
complexity order O(N). Since the complete Fourier series involves N calculations
of this equation (i.e., k = 0, 1, . . . ,N − 1), the overall number of basic operations in
the DFT algorithm is of O(N2).

2.7.6 Matrix Formulation of the DFT

Equation (2.54) can be compactly represented in matrix form, which is developed
in the following. By defining the abbreviations:

wk,i = exp
{
− j2πik

N

}
, hi = h (i∆t) , and Hk = H (k∆ f ) ,

equation (2.54) can be rewritten as:

Hk =
1
N

N−1∑

i=0

wk,i hi. (2.55)

Before proceeding with the derivation of the matrix form of the DFT, it is in-
teresting to have a closer look at the discretized kernel function wk,i = exp

{
− j2πik

N

}

(see Figure 2.92). Let us introduce wki = wk,i and observe that wk,i = wi,k; for in-
stance w4 = w1,4 = w4,1 = w2,2. From Section 2.1, it is easy to see that the complex
exponential kernel function wi,k in the above equation can be understood as the se-
quence of complex points uniformly distributed along the unit circle in the Argand
plane. For instance, for N = 8, i = 1 and k = 0, 1, . . . ,N − 1, we have the result
shown in Figure 2.92.

Figure 2.92: The sampled Fourier kernel function wk,i = exp
{
− j2πik

N

}
for

N = 8 and i = 1.
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It is clear from such a construction and graphical representation that wki = wk,i
is periodic of period N, i.e., wki = wki+pN , p = . . . ,−2,−1, 0, 1, 2, . . . It is also inter-
esting to observe that larger values of k imply larger angular spacings between the
sampled kernel values and larger frequencies for the sampled complex exponential
function. The reader can easily verify that for k > N

2 the sampled complex values
wk,i rotate in the reverse sense (i.e., counterclockwise). For instance, for k = 7 we
have w7,1 = w7; w7,2 = w14 = w6; w7,3 = w21 = w5; and so on. Ultimately, this is
the reason why high speed wheels in western movies seem to rotate backwards (see
also the sampling theorem in Section 2.7.5).

But now it is time to return to the matrix representation of the DFT. It follows
directly from the definition of the product between matrices (equation (2.11)) that
equation (2.55) can be effectively represented as the product between the N × N
matrix WN =

[
wi,k
]

and the N × 1 vector "h = [hi], i = 0, 1, . . . ,N − 1, resulting the
N×1 vector "H = [Hi], i.e.,

"H =
1
N

WN "h. (2.56)

Hence we have obtained an elegant representation of the DFT in terms of a
simple matrix multiplication. In addition to providing such a compact representa-
tion, this formulation makes it clear that the DFT is indeed a linear transformation.
Since such transformations are completely characterized by the nature of the trans-
formation matrix, it is important to have a closer look at the matrix WN and its
properties. To begin with, we observe that this matrix is symmetric, but not Hermi-
tian (see Section 2.2.5). Next, it is easy to verify that

WN
(
W∗N
)T = NI,

which means that the matrix WN is almost unitary (Section 2.2.5). As a conse-
quence, we can write

"H =
1
N

WN "h⇒
(
W∗N
)T "H =

1
N
(
W∗N
)T WN "h⇒

(
W∗N
)T "H =

1
N

(NI)"h⇒ "h = (W∗N
)T "H.

But, as the matrix WN is symmetric, so is its conjugate, and we can write

"h =
(
W∗N
)T "H ⇒ "h = W∗N "H.

This equation, which provides a means for recovering the input vector "h from
the DFT output "H, corresponds to the inverse discrete Fourier transform, hence-
forth abbreviated as IDFT, which clearly is also a linear transformation.

Consider the following example:
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Example: DFT

Calculate the DFT of the sampled (∆t = 1) and periodic function h(t) defined as

h(t) = δ(t − 1) and h(t) = h(t + 4).

As always, it is interesting to start by visualizing the involved function, which
is shown in Figure 2.93.

Figure 2.93: Sampled function to be Fourier transformed.

It is clear that h(t) is periodic of period 4. We need to consider only the period
defined from 0 to N − 1, yielding "h = (0, 1, 0, 0)T. Now, the DFT can be calculated
by using equation (2.55) as

"H =
1
N

WN"h =
1
N




w0,0 w0,1 w0,2 w0,3

w1,0 w1,1 w1,2 w1,3

w2,0 w2,1 w2,2 w2,3

w3,0 w3,1 w3,2 w3,3







0
1
0
0




=
1
N




w0 w0 w0 w0

w0 w1 w2 w3

w0 w2 w4 w6

w0 w3 w6 w9







0
1
0
0




.

The above matrix can be straightforwardly obtained by considering the graph-
ical representation of the sampled complex exponential function for N = 4 shown
in Figure 2.94.

Therefore

"H =
1
4




1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j







0
1
0
0



=

1
4




1
−j
−1
j



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Figure 2.94: The graphical representation of the 4 × 4 Fourier matrix
elements.

and the original signal can be immediately recovered as

"h = W∗N "H =
1
4




1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j







1
−j
−1
j



=




0
1
0
0




2.7.7 Applying the DFT
In the previous developments we assumed that the function g̃(t) had already been
obtained from gi by the use of a sampling and time-limiting processes. It is now
time to have a closer look at how such sampled and time-limited signals can be
extracted in practical situations. This problem is particularly relevant to fully un-
derstanding several situations in image processing and analysis, such as in the pro-
cess of acquiring digital images by using a camera or a scanner. The basic steps
involved in obtaining gi from g̃(t) are illustrated in Figure 2.95.

The above diagram also makes it clear that the acquisition process presents as
parameters the total number N of observations and the time interval ∆t between
successive observations, as well as the initial and final times, a and b, respectively,
with b − a = 2L. Let us clarify this process by considering a practical example.
Suppose we want to analyze the sound of a flute which is being played continu-
ously at a specific pitch and intensity. We can use a microphone connected to an
A/D converter interfaced to a digital computer in order to obtain the sampled and
time-limited signal gi. We start recording the signal at time a and stop at time b.
Once the original continuous signal has been time limited and sampled, it is ready
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Figure 2.95: A continuous signal g̃(t) has to be time-limited and previ-
ously sampled, yielding the approximated signal gi, before
being processed by the DFT. The signal gi has N sample
points, spaced by ∆t, extending from time a to b, with respec-
tive extension b − a = 2L.

to be processed by the DFT. By choosing different values for these parameters, we
can obtain different representations of the continuous signals g̃(t) and, as discussed
next, to have drastic effects over the quality of the obtained results. For instance,
the choice of an improper value of ∆t (e.g., too large) may not allow the proper
representation of the involved high frequencies. In addition, observe that by con-
sidering equation (2.53), the frequency interval (and resolution) is automatically
determined for each specific value of N and ∆t as ∆ f = 1

N∆t =
1

b−a =
1

2L .
Let us consider the acquisition process more carefully in terms of the hypothet-

ical function g̃(t) = cos (2πt) + cos
(
4
√

2πt
)
, which is not completely unlike the

signal that would be produced by a wood flute1. This signal clearly involves two
frequencies, i.e., f1 = 1 Hz and f2 = 2

√
2 Hz. Figure 2.96 shows this continuous

signal together with its respective Fourier transform, given by

G̃( f ) = 0.5
[
δ ( f + f1) + δ ( f − f1) + δ ( f + f2) + δ ( f − f2)

]
.

The fact that the observed signal has to be limited along time can be modelled
by multiplying g̃(t) by a windowing function φ(t) such as the rectangular function
(see Section 2.1.4):

φ(t) = r(t) =




1 if −a ! t < a,

0 otherwise,

whose Fourier transform was calculated in Section 2.7.3. Observe that although
we have adopted a = b for simplicity’s sake, the more generic situation involving
a ! b can be easily developed by the reader. Figure 2.97 presents the signal g̃(t)
after being windowed by the above function, considering a = 2 seconds, as well

1The Fourier representation of sounds such as those produced by a flute is known to involve fre-
quencies that are multiples of the smallest frequency (the so-called fundamental). However, this law
of multiples can become distorted as a consequence of non-linearities involved in sound production.
In addition, the Fourier coefficients respective to the multiple frequencies, unlike in our hypothetical
example, tend to decrease with the frequency.
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Figure 2.96: A hypothetic continuous signal g̃(t) produced by a wood flute
being played continuously at a specific pitch and intensity (a)
and its respective Fourier transform G̃( f ) (b).

as its respective Fourier transform, which is obtained by convolving the Fourier
transforms of g̃(t) and φ(t), i.e., G̃( f ) ∗ Φ( f ).

Figure 2.97: The windowed version of g̃(t) and its respective Fourier
transform given by G̃( f ) ∗ Φ( f ).

It is clear from the oscillating nature of the Fourier transform of the rectangular
function, i.e., G̃( f ), that the windowing of the signal g̃(t) implies a ripple effect onto
its respective Fourier transform. This unwanted effect can be minimized by using
larger values of a or by using a smoother windowing function such as the Gaussian.
As a matter of fact, observe that when a tends to infinity, its Fourier transforms tend
to the Dirac delta function, and no ripple effect is implied.

Now that we have obtained a time-limited version g̃(t) φ(t) of the possibly infi-
nite original signal g̃(t), it has to be uniformly sampled before it can be represented
as a vector suitable to be used in the DFT equation (2.55). As discussed in Sec-
tion 2.7.5, such a sampling can be obtained by multiplying the function g̃(t) φ(t) by
the sampling function Ψ∆t(t) =

∑∞
i=−∞ δ (t − i∆t), i.e., the acquired signal finally

can be represented as g(t) = g̃(t) φ(t)Ψ∆t(t).
Figure 2.98 illustrates the sampled version of g̃(t) φ(t), assuming ∆t = 0.05

second, as well as its respective Fourier transform G(t) = G̃(t)∗Φ( f )∗
(

1
∆t

)
Ψ1/∆t( f ).

Since the convolution is commutative, the order of the sampling and time-limiting
operations become irrelevant.
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Figure 2.98: The sampled function g(t) = g̃(t) φ(t)Ψ∆t(t), assuming ∆t =
0.05 second, and its respective Fourier transform G( f ).

It is clear that the number N of samples not cancelled by the windowing func-
tion can be calculated as

N = floor
{

2a
∆t

}
.

In the above case, since ∆t = 0.05 and a = 2, we have N = 2a
∆t =

4
0.05 = 80

sampling points. We also have from equation (2.53) that ∆ f = 1
N∆t = 0.25, and

from the sampling theorem that fmax =
1

2∆t = 10 Hz. As discussed in Section 2.7.5,
the sampling process implies the Fourier transform of gi to be periodical with period
1
∆t = 20 Hz. It can be verified that the Fourier transform G( f ) provides a good
approximation for the original Fourier transform G̃( f ), except for the ripple effect
caused by the windowing operation.

The DFT of gi can now be determined by applying equation (2.54), i.e.,

G (k∆ f ) =
1
N

N−1∑

i=0

g (i∆t) exp
{
− j2πik

N

}
.

A complete period (starting at zero frequency) of the respective DFT output
H(k∆ f ) is shown in Figure 2.99.

A more careful analysis of the Dirac delta approximations obtained in Fig-
ure 2.99 indicates that the lower frequency peaks (marked with asterisks), with
respect to f1 = 1 Hz, have been better represented (there is less ripple around it
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Figure 2.99: The DFT output function H(k∆ f ). The pair of lower fre-
quency peaks for f1 = 1 Hz are indicated by asterisks.

and the amplitude is exactly as expected, i.e., 0.5) than the deltas for f2 = 2
√

2 Hz.
This is because f1 is an integer multiple of ∆ f = 1

N∆t = 0.25 Hz, while f2 is not.
Indeed, a complete cancellation of the ripple effect is observed in such a multiple
situation, because the zero crossings of G̃( f ) can be verified to coincide with the
sampling points. However, this welcomed effect cannot usually be guaranteed in
practical situations, and the unwanted rippling effect has to be somehow alleviated,
for instance by using a smoother window function. Figure 2.100 illustrates this pos-
sibility considering as windowing function φ(t) = exp

{
−t2
}

r(t), i.e., the product of
a Gaussian with the rectangular function (a truncated Gaussian function).

Figure 2.100: DFT obtained by windowing g̃(t) with the truncated Gaus-
sian function φ(t) = exp

{
−t2
}

r(t).

The ripple attenuation is readily verified, though at the expense of a decrease
in the amplitude of the coefficients related to f2 = 2

√
2 Hz. The reader is referred

to the literature (e.g., [Ingle & Proakis, 1997; Kamen & Heck, 1997; Papoulis,
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1984]) for a more detailed discussion about several windowing functions and their
respective properties.

Another important practical aspect related to the DFT application concerns the
fact that in most DFT algorithms (and especially many FFT algorithms—see Sec-
tion 2.7.8) the function gi is assumed to initiate at time zero, i.e., the origin of
the time axis, and extend up to N − 1, so that gi can be represented as the vector
"h | hi = g (i∆t), i = 0, 1, . . . ,N − 1. If this is indeed the case, the DFT execution is
immediate, being only needed to use the number of samples N. However, special
attention is required when dealing with functions extending into the negative por-
tion of the time domain, such as that considered in the above examples. It should
be borne in mind that the time zero while acquiring the signal is a relative refer-
ence that is important and must be taken into account, otherwise the time shifting
effect described in Section 2.7.3 will imply a modulation of the respective Fourier
transform.

Let us now consider the situation where the signal extends into the negative
portion of its domain in more detail. Basically, what is needed is to move the left
portion of gi, i.e., that in the negative portion of the time axis (excluding the zero),
to the right-hand side of the function (see Figure 2.101). If gi = g (i∆t) starts at

Figure 2.101: Most DFT (and FFT) algorithms require the input function
h(t) to be defined from 0 to N − 1. In case the function gi,
from which hi is obtained, extends into the negative time do-
main (a), it needs to be conveniently reorganized (b) and (c).
The vector "h to be used as input to the DFT can then be
obtained by taking the sampled points in the non-negative
region of the time axis.

ia and terminates at ib, i.e., i = ia, . . . ,−1, 0, 1, . . . , ib (observe that ia < 0), the
above mentioned translation operation can be implemented by using the following
algorithm:

© 2009 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
id

ad
e 

de
 S

ao
 P

au
lo

 (U
SP

) (
C

R
U

ES
P)

], 
[R

ob
er

to
 C

es
ar

] a
t 0

9:
34

 0
4 

A
ug

us
t 2

01
6 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9780849379406.ch2&iName=master.img-119.jpg&w=263&h=165


!
!

“shapeanalysis” — 2009/2/26 — 15:55 — page 176 — #202 !
!

!
!

!
!

176 SHAPE ANALYSIS AND CLASSIFICATION

1. N ← ib − ia + 1;
2. for k ← ia to -1
3. do
4. g(k+N)∆t = gk∆t;

Once this extended version of gi is obtained, all that remains to be done is to
copy it into the DFT input vector "h | hi = g (i∆t), i = 0, 1, . . . ,N − 1, which, as
discussed in this section, will be considered as being periodical of period N. This
process is illustrated in Figure 2.101.

Figure 2.102 presents the DFT input function h(i) (a) and its respective Fourier
transform (b) as typically produced by DFT algorithms.

(a)

(b)

(c)
Figure 2.102: The input (a) and output (b) functions for a typical DFT

algorithm. The obtained output can be represented with the
zero frequency at its middle (c).

It is clear that the leftmost point in the DFT output is at zero frequency. In
case we want to have the zero frequency in the middle of function, a transposition
process similar to the above described has to be applied, yielding the reorganized
signal Zk. A possible strategy for doing so is presented in terms of the following
algorithm:
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1. n← ((N−1)/2);
2. for k ← 0 to N − n − 1
3. do
4. Zk+n ← Hk;
5. for k ← N − n to N − 1
6. do
7. Zk+n−N ← Hk;

Let us conclude this section by characterizing two alternative practical situa-
tions typically met while applying the DFT, which are presented in the following:

Alternative 1: Imposed frequency sampling interval.

1
Estimate the maximum frequency fmax to be found in
the continuous signal g̃(t). In case this is not possible,
assume the highest possible value for fmax.

2 Calculate ∆t = 1
2 fmax

.

3 Define a suitable frequency sampling interval ∆ f . The
frequency resolution is then ∆ f

2 .

4 Determine the number of samples (i.e., the dimension of
the DFT input vector) as N = 1

∆t∆ f .
Alternative 2: Imposed number of samples.

1
Estimate the maximum frequency fmax to be found in
the continuous signal g̃(t). In case this is not possible,
assume the highest possible value for fmax.

2 Calculate ∆t = 1
2 fmax

.

3 Define a suitable value for N. The higher this value, the
slower the DFT.

4 Determine the frequency sampling interval as ∆ f = 1
N ∆t .

The choice between these two alternatives will depend on practical constraints.
First, it should be observed that the DFT parameters ∆t, ∆ f and N are linked by
equation (2.53), i.e., N = 1

∆t∆ f . Thus, having chosen two of these parameters, the
third is automatically defined. Ideally, we would wish to have both ∆ f and ∆t as
small as possible, in order to allow maximum frequency resolution and the largest
maximum representable frequency. However, the problem is that both these facts
imply higher values for N, and thus the DFT becomes slower. The first alternative,
by defining N as a consequence of the choice of ∆ f , is therefore suitable for situ-
ations where there is not too much concern about the execution time. The second
alternative should be used otherwise.

Before proceeding to the next section, it is important to note that, although
in this section all the Fourier transforms were purely real (because the considered
time signals were all real and even), this is by no means the general case. In other
words, the DFT results generally involve both real and imaginary parts. In addition,
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although we were limited to purely real input functions, it is also possible to use
complex functions. The above presented developments, however, are immediately
applicable to such situations.

2.7.8 The Fast Fourier Transform
The fast Fourier transform, hence FFT, should be understood simply as a numeric
method for computing the DFT in a fast manner, its result being identical except
for round-off noise (i.e., the noise produced by the limited precision in represent-
ing numbers and performing operations in digital computers). The effectiveness
of this technique—indeed of this class of techniques, since there are many FFT
algorithms—cannot be overlooked, making a real difference in practice, especially
when the number of samples representing the signals is relatively large. Since the
time savings allowed by the FFT is considerable, the matrix calculation of the DFT
in equation (2.56) is rarely used in practice.

The main advantage of the FFT methods arises from the fact that they remove
many of the redundancies in the DFT matrix calculation (see [Brigham, 1988], for
instance). As a matter of fact, the number of basic operations (i.e., additions and
multiplications) involved in the FFT algorithm is of order O(N log N), while (as
seen in Section 2.7.5), the standard DFT implies O(N2).

Several FFT algorithms, including the classical Cooley and Tukey’s approach,
require the value of N to be an integer power of two, such as 32, 64, 128 and so
on. In such cases, the method is said to be of radix 2. It is also possible to have
alternative radixes, such as 4, 5, 6 and so on [Brigham, 1988]. In the general case,
N must be an integer power of the radix. In practice, this requirement of having
N = (radix)k , k = 0, 1, 2, . . . can be easily met by using the smallest value of k
such as the vector size is smaller than 2k and filling up the unused positions in the
DFT input vector "h with zeros. However, observe that this procedure may cause
a discontinuity and, consequently, introduce oscillations in the recovered signal
because of the Gibbs effect. A method to alleviate this problem consists in filling
up the first half of the unused portion of the vector with the same value as the
last in the original function, and the second half as the first value in the original
function (recall that the DFT implies that the function represented by this vector is
periodical).

The simplicity and small number of numerical operations implied by the FFT,
involving mostly complex products, has motivated the whole family of new devices
known as digital signal processors, namely circuits or integrated circuits capable
of processing the FFT very quickly by using dedicated hardware components (such
as multipliers). Such a tendency has allowed the FFT to be processed at very high
speeds allowing real-time applications for most situations.

In spite of the FFT importance and usefulness, we do not present an algorithm
for its calculation in the present book for the following three reasons: (a) the proper
explanation of FFT algorithms is relatively extensive; (b) there are excellent books
covering the FFT (for instance, see [Brigham, 1988]); and (c) nowadays, it is un-
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likely that the reader will have to implement the FFT, since it is broadly available
in mathematical environments (e.g., MATLAB®, Scilab®, Maple® and so on) and
also as ready-to-use libraries and objects to be used in programming languages and
environments.

2.7.9 Discrete Convolution Performed in the Frequency Domain

One of the most frequent applications of the discrete Fourier transform is as a means
of performing fast convolution or correlation between two sampled functions or
signals. Such operations are typically applied to compare two signals (correlation)
or to filter a signal (see Section 2.7.4). While Section 2.5.2 has presented equations
and algorithms for performing convolution and correlation between two discrete
signals, the calculation of such operations in the time domain can be too slow,
especially when the signals involve many samples. The computational advantage
of performing convolution in the frequency domain by using the FFT is still more
substantial for higher dimensional signals, such as images.

We have already seen in Section 2.7.7 how to perform the DFT over discrete
signals. In addition to the procedures presented, the calculation of the convolution
(or correlation) by using the FFT (or DFT) demands particular attention to the fact
that the DFT input signal is necessarily periodical. Therefore, the convolution in the
frequency domain implies the input signal to be treated as if it were a closed loop or
ring. As an example, consider that we want to low-pass filter a discrete signal hi by
using a Gaussian as the filter function. As we have already seen, this corresponds to
convolving the signal with the inverse Fourier transform of the Gaussian, which is
also a Gaussian whose discrete and time-limited version is henceforth represented
as gi. The convolution procedure involves multiplying the signal hi by time shifted
versions of the function gi—recall that since the Gaussian is even we have g−i = gi.
Because in the DFT the signals are always periodical, when such time-displaced
Gaussian functions are near the period extremities, they tend to wrap over to the
other side of the signal, which is known as circular convolution. In such a way,
the signal extremities interact with one another. While this is sometimes exactly
what is required from the convolution (such as in the case of closed contours in
Section 5.2.1), the circular convolution implemented by the DFT will not generally
produce the same results as those obtained in the time domain by using the algo-
rithms described in Section 2.5.2. Fortunately, the noncircular convolution can be
easily calculated by the DFT simply by padding the functions with N zeros between
each subsequent period of the signals being convolved (for additional information,
see [Castleman, 1996]). The same approach can be applied to obtain noncircular
correlation.

An interesting and relevant situation where the DFT is used to calculate the
(generally noncircular) correlation occurs in statistics. We have seen in Section 2.6.5
that the cross-correlation and autocorrelation of stochastic signals can provide im-
portant information about the respective signals (or processes). Indeed, observe
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that the cross- and autocorrelation can be performed in the Fourier domain by us-
ing the correlation theorem (Section 2.7.3). As a matter of fact, the autocorrelation
of a signal can be obtained as the inverse Fourier transform of its power spectrum.
This possibility is illustrated for the case of images in Section 2.6.5. Additional
information about the use of the Fourier transform in statistics can be obtained in
[Papoulis, 1962; Therrien, 1992].

To probe further: Fourier Analysis

The importance of Fourier analysis as a theoretical and applied tool has been fully
substantiated by an ever growing number of related references. Nice coverages
of Fourier series, including many examples, can be found in [Tolstov, 1976] and
[Kreyszig, 1993]. Interesting introductions to the Fourier transform, including
applications, are provided by [James, 1995] and [Sneddon, 1995], and [Spiegel,
1995] includes several exercises (many of which are solved) on Fourier analy-
sis. Good references on Fourier analysis from the perspective of signal processing
include [Lynn, 1984; Oppenheim & Schafer, 1975; Papoulis, 1984] and [Burrus
et al., 1994] provides many computer-based exercises on signal processing, includ-
ing discrete Fourier transforms and fast Fourier transforms. Additional hands-on
approaches to digital signal processing include [Ingle & Proakis, 1997; Kamen &
Heck, 1997]. The classical reference on the fast Fourier transform is [Brigham,
1988]. A good reference on Fourier analysis from the perspective of linear sys-
tems can be found in [Frederick & Carlson, 1971], and [Körner, 1996] includes
a series of more advanced topics on Fourier analysis. References on the applica-
tion of Fourier analysis to imaging and computer vision include [Castleman, 1996;
Gonzalez & Woods, 1993; Schalkoff, 1989].

2.8 Graphs and Complex Networks

Graphs1 are discrete data structures involving nodes (or vertices) and links (or
edges), so that emphasis is placed on the connectivity. Despite their intrinsic sim-
plicity, graphs are particularly general in the sense that most other discrete data
structures can be derived from them. For instance, lists, queues, trees, lattices,
among many other structures, are but particular instances of graphs. As such,
graphs are the natural choice for representing and modeling most (or even all)
systems which involve components and relationships between these components.
Figure 2.103 shows a simple graph composed of 8 nodes and 10 edges.

Examples of representations of real-world systems in terms of graphs include

1Though graphs and networks are understood as different structure in graph theory, with networks
being normally associated to flows, for historic reasons these two terms have been used indistinctively
in the area of complex networks. In this book graphs and networks are treated as synonyms.
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