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❖ The following types of algorithms will be considered:

Graph theory based clustering algorithms.
Competitive learning algorithms.
Valley seeking clustering algorithms.
Cost optimization clustering algorithms based on:

• Branch and bound approach.
• Simulated annealing methodology.
• Deterministic annealing.
• Genetic algorithms.

Density-based clustering algorithms.
Clustering algorithms for high dimensional data sets.

OTHER CLUSTERING ALGORITHMS
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GRAPH THEORY BASED CLUSTERING 
ALGORITHMS

❖ In principle, such algorithms  are capable of detecting clusters of various 
shapes, at least when they are well separated.

   
   In the sequel we discuss algorithms that are based on:

The Minimum Spanning Tree (MST).
Regions of influence.
Directed trees.
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❖ Minimum Spanning Tree (MST) algorithms
    Preliminaries: 
    Let 

G be the complete graph, each node of which corresponds to a point 
of the data set X.
e=(xi,xj) denote an edge of G connecting xi and xj.
we≡d(xi, xj) denote the weight of the edge e.

    Definitions:
Two edges e1 and e2 are k steps away from each other if the minimum 
path that connects a vertex of e1 and a vertex of e2 contains k-1 edges.
A Spanning Tree of G is a connected graph that:

• Contains all the vertices of the graph.
• Has no loops.

The weight of a Spanning Tree is the sum of weights of its edges.
A Minimum Spanning Tree (MST) of G is a spanning tree with 
minimum weight (when all we’s are different from each other, the MST 
is unique).
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❖ Minimum Spanning Tree (MST) algorithms (cont)
     Sketch of the algorithm:

Determine the MST of G.
Remove the edges that are “unusually” large compared with their 
neighboring edges (inconsistent edges).
Identify as clusters the connected components of the MST, after 
the removal of the inconsistent edges.

    Identification of inconsistent edges.
    For a given edge e of the MST of G: 

• Consider all the edges that lie k steps away from it.
• Determine the mean me and the standard deviation σe of their 

weights.
• If we lies more than q (typically q=2) standard deviations σe from 

me, then:
• e is characterized as inconsistent.

• Else
• e is characterized as consistent.

• End  if
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❖ Minimum Spanning Tree (MST) algorithms (cont)
Example 1: 

    For the MST in the figure and for k=2 and q=3 we have:
    For e0: we0=17, me0=2.3, σe0 =0.95. we0 lies 15.5*σe0 away from me0, hence
    it is inconsistent. 
    For e11: we11 =3, me11=2.5, σe11 =2.12. we11 lies 0.24*σe11 away from me11, 

hence  it is consistent.
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❖ Minimum Spanning Tree (MST) algorithms (cont)

Remarks:
• The algorithm depends on the choices of k and q.
• The algorithm is insensitive to the order in which the data points 

are considered.
• No initial conditions are required, no convergence aspects are 

involved.
• The algorithm works well for many cases where the clusters are 

well separated.
• A problem may occur when a “large” edge e has another “large” 

edge as its neighbor. In this case, e is likely not to be 
characterized as inconsistent and the algorithm may fail to unravel 
the underlying clustering structure correctly.
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❖ Algorithms based on Regions of Influence (ROI)

    Definition: The region of influence of two distinct vectors xi, xj∈X is defined 
as:

R(xi, xj)={x: cond(d(x, xi), d(x, xj), d(xi, xj)), xi≠ xj}
    where cond(d(x, xi), d(x, xj), d(xi, xj)) may be defined as:

a)  max{d(x, xi), d(x, xj)}< d(xi, xj),
b)  d2(x, xi) + d2(x, xj) < d2(xi, xj),
c)  (d2(x, xi) + d2(x, xj) < d2(xi, xj) ) OR ( σ min{d(x, xi), d(x, xj)} < d(xi, xj) ),
d) (max{d(x, xi), d(x, xj)} < d(xi, xj) ) OR ( σ min{d(x, xi), d(x, xj)} < d(xi, xj)),

where σ affects the size of the ROI defined by xi, xj and is called relative 
edge consistency.
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❖ Algorithms based on Regions of Influence (cont)
    Algorithm based on ROI

For i=1 to N
• For j=i+1 to N

− Determine the region of influence R(xi,xj)
− If R(xi,xj) ∩ (X-{xi,xj}) = ∅ then

o Add the edge connecting xi,xj.
− End if

• End For
End For
Determine the connected components of the resulted graph and 
identify them as clusters.

   In words:
The edge between xi and xj is added to the graph if no other vector in 
X lies in R(xi,xj).
Since for xi and xj close to each other it is likely that R(xi,xj) contains no 
other vectors in X, it is expected that close to each other points will be 
assigned to the same cluster.
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❖ Algorithms based on Regions of Influence (cont)
Remarks:

• The algorithm is insensitive to the order in which the pairs are 
considered.

• In the choices of cond in (c) and (d), σ must be chosen a priori.
• For the resulting graphs: 

− if the choice (a) is used for cond, they are called relative 
neighborhood graphs (RNGs)

− if the choice (b) is used for cond , they are called Gabriel graphs 
(GGs)

• Several results  show that better clusterings are produced when (c) 
and (d) conditions are used in the place of cond, instead of (a) and 
(b).
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❖ Algorithms based on Directed Trees

    Definitions:
A directed graph is a graph whose edges are directed.

A set of edges ei1,…,eiq constitute a directed path from a vertex A to a 
vertex B, if, 

• A is the initial vertex of ei1 
• B is the final vertex of eiq 
• The destination vertex of the edge eij, j = 1,…,q-1, is the departure 

vertex of the edge eij+1.
• (In figure (a) the sequence e1, e2, e3 constitute a directed path 

connecting the vertices A and B).
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❖ Algorithms based on Directed Trees (cont)

A directed tree is a directed graph with a specific node A, known as root, 
such that,

• Every node B≠A of the tree is the initial node of exactly one edge.
• No edge departs from A.
• No circles are encountered (see figure (b)).

The neighborhood of a point xi∈X is defined as
ρi(θ)={xj∈X: d(xi,xj) ≤ θ, x j≠ xi}

where θ determines the size of the neighborhood.

Also let
• ni=|ρi(θ)| be the number of points of X lying within ρi(θ)
• gij=(nj-ni)/d(xi,xj)

      Main philosophy of the algorithm
      Identify the directed trees in a graph whose vertices are points of X, so  

  that each directed tree corresponds to a cluster.
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❖ Algorithms based on Directed Trees (cont
    Clustering Algorithm based on Directed Trees

Set θ to a specific value.
Determine ni, i=1,…,N.
Compute gij, i,j=1,…,N, i≠j.
For i=1 to N

• If ni=0 then
− xi is the root of a new directed tree.

• Else
− Determine xr such that gir=maxxj∈ρi(θ)gij
− If gir<0 then

o xi is the root of a new directed tree.
− Else if gir>0 then

o xr is the parent of xi (there exists a directed edge from xi to 
xr).
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❖ Algorithms based on Directed Trees (cont)
    Clustering Algorithm based on Directed Trees (cont)

− Else if gir=0 then
o Define Ti={xj: xj∈ρi(θ), gij=0}.
o Eliminate all the elements xj∈Ti, for which there exists a 

directed path from xj to xi.
o If the resulting Ti is empty then
     * xi is the root of a new directed tree
o Else
      * The parent  of xi is xq such that d(xi, xq)=minxs∈Tid(xi, xs).
o End if

− End if
• End if

End for
Identify as clusters the directed trees formed above.
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❖ Algorithms based on Directed Trees (cont)
Remarks:

• The root xi of a directed tree is the point in ρi(θ) with the most 
dense neighborhood.

• The branch that handles the case gir = 0 ensures that no circles 
occur.

• The algorithm is sensitive to the order of consideration of the data 
points.

• For proper choice of θ and large N, this scheme behaves as a 
mode-seeking algorithm (see a later section).

Example 2: In the figure below, the size of the edge of the grid is 1   
                  and θ=1.1. The above algorithm gives the directed trees 
                  shown in the figure.



15

COMPETITIVE LEARNING ALGORITHMS
❖ The main idea

Employ a set of representatives wj (in the sequel we consider only point 
representatives).
Move them to regions of the vector space that are “dense” in vectors of 
X.

❖ Comments
In general, representatives are updated each time a new vector x∈X is 
presented to the algorithm (pattern mode algorithms).
These algorithms do not necessarily stem from the optimization of a 
cost function.

❖ The strategy
For a given vector x

• All representatives compete to each other
• The winner (representative that lies closest to x) moves towards x.
• The losers (the rest of the representatives) either remain unchanged 

or move towards x but at a much slower rate.



16

Generalized Competitive Learning Scheme (GCLS)
t=0
m=minit (initial number of iterations)
(A) Initialize any other necessary parameters (depending on the specific 
scheme).
Repeat

• t=t+1
• Present a new randomly selected x∈X to the algorithm.
• (B) Determine the winning representative wj.
• (C) If ((x is not “similar” to wj) OR (other condition)) AND (m<mmax) (maximum 

allowable number of clusters) then
− m=m+1
− wm=x

• Else
− (D) Parameter updating

• End
(E) Until (convergence occurred) OR (t > tmax) (max allowable no of iterations)
Assign each x∈X to the cluster whose representative wj lies closest to x.
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Remarks:
• h(x,wi) is an appropriately defined function (see below).
• η and η´ are the learning rates controlling the updating of the 

winner and the losers, respectively (η´ may differ from looser to 
looser).

• A threshold of similarity Θ (carefully chosen) controls the similarity 
between x and a representative wj. 
− If d(x, wj) > Θ, for some distance measure, x and wj are 

considered as dissimilar.
• The termination criterion is ||W(t)-W(t-1)|| < ε, where W=[w1

T,…,wm
T]T.

• With appropriate choices of (A), (B), (C) and (D), most competitive 
learning algorithms may be viewed as special cases of GCLS.
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❖ Basic Competitive Learning Algorithm
     Here the number of representatives m is constant. 

The algorithm
t=0
Repeat

• t=t+1
• Present a new randomly selected x∈X to the algorithm.
• (B) Determine the winning representative wj on x as the one for which

d(x,wj)=mink=1,…,md(x,wk) (*).
• (D) Parameter updating

• End
(E) Until (convergence occurred) OR (t>tmax) (max allowable no of iterations)
Assign each x∈X to the cluster whose representative wj lies closest to x.

------------------
(*) d(.) may be the Euclidean distance or other distances (e.g., Itakura-Saito distortion). 

In addition similarity measures may be used (in this case min is replaced by max).
 (**) η is the learning rate and takes values in [0, 1].
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❖ Basic Competitive Learning Algorithm (cont)
Remarks:

• In this scheme losers remain unchanged. The winner, after the 
updating, lies in the line segment formed by wj(t-1) and x.

• A priori knowledge of the number of clusters is required.
• If a representative is initialized far away from the regions where the 

points of X lie, it will never win.
Possible solution: Initialize all representatives using vectors of X.

• Versions of the algorithm with variable learning rate have also been 
studied.
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❖ Leaky Learning Algorithm
    The same with the Basic Competitive Learning Algorithm except part (D), 

the updating equation of the representatives, which becomes

     where ηw and ηl are the learning rates in [0, 1] and ηw>>ηl.

Remarks:
• All representatives move towards x but the losers move at a much 

slower rate than the winner does.
• The algorithm does not suffer from the problem of poor initialization 

of the representatives (why?).
• An algorithm in the same spirit is the “neural-gas” algorithm, where 

ηl varies from loser to loser and decays as the corresponding 
representatives lie away from x. This algorithm results from the 
optimization of a cost function.
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❖ Conscientious Competitive Learning Algorithms
    Main Idea: Discourage a representative from winning if it has won many 

times in the past. Do this by assigning a “conscience” to each 
representative.

    A simple implementation
Equip each representative wj, j=1,…,m, with a counter fj that counts the 
times that wj wins.
At part (A) (initialization stage) of GCLS set fj=1, j=1,…,m.
Define the distance d*(x,wj) as

d*(x,wj)= d (x,wj) fj.
(the distance is penalized to discourage representatives that have won many 

times)
Part (B) becomes

• The representative wj is the winner on x if
d*(x,wj)=mink=1,…,md*(x,wk) 

• fj(t)=fj (t-1)+1 
Parts (C) and (D) are the same as in the Basic Competitive Learning 
Algorithm
Also m=minit=mmax
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❖ Self-Organizing Maps
Here interrelation between representatives is assumed.
For each representative wj a neighborhood of representatives Qj(t) is 
defined, centered at wj.
As t (number of iterations) increases, Qj(t) shrinks and concentrates 
around wj.
 The neighborhood is defined with respect to the indices j and it is 
independent of the distances between representatives in the vector 
space. Assuming that in 

fig. (c) the 
neighborhood of wj 
constitutes of wj-1 
and wj+1, w2 and w4 
are the neighbors 
of w3 although w6 
and w7 are closer 
in terms of the 
geometrical 
distance to w3)
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❖ Self Organizing Maps (cont.)
If wj wins on the current input x all the representatives in Qj(t) are 
updated (Self Organizing Map (SOM) scheme).
SOM (in its simplest version) may be viewed as a special case of GCLS if

• Parts (A), (B) and (C) are defined as in the basic competitive learning 
scheme.

• In part (D), if wj wins on x, the updating equation becomes:

      where η(t) is a variable learning rate satisfying certain conditions. 

After convergence, neighboring representatives also lie “close” in terms 
of their distance in the vector space (topographical ordering) (see fig. 
(d)).
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❖ Supervised Learning Vector Quantization (VQ)
    In this case 

each cluster is treated as a class (m compact classes are assumed)
the available vectors have known class labels.

    The goal:
    Use a set of  m representatives and place them in such a way so that each 

class is “optimally” represented.

    The simplest version of VQ (LVQ1) may be obtained from GCLS as follows:
Parts (A), (B) and (C) are the same with the basic competitive learning 
scheme.
In part (D) the updating for wj’ s is carried out as follows
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❖ Supervised Learning Vector Quantization (cont.)
    In words:

 wj is moved:
• Toward x if wj wins and x belongs to the j-th class.
• Away from x if wj wins and x does not belong to the j-th class.

All other representatives remain unaltered.
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VALLEY-SEEKING CLUSTERING ALGORITHMS
❖ Let p(x) be the density function describing the distribution of the vectors in 

X.
    Clusters may be viewed as peaks of p(x) (clusters) separated by valleys.
    Thus one may

Identify these valleys and
Try to move the borders of the clusters in these valleys.

     A simple method in this spirit.
     Preliminaries

Let the distance d(x,y) be defined as
d(x,y)=(y-x)TA(y-x),

where A is a positive definite matrix
Let the local region of x, V(x), be defined as

V(x)={y∈X-{x}: d(x,y)≤a},
where a is a user-defined parameter

kj
i be the number of vectors of the j cluster that belong to V(xi)-{xi}.

ci∈{1,…,m} denote the cluster to which xi belongs.
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❖ Valley-Seeking Clustering Algorithms (cont.)
    Valley-Seeking algorithm

Fix a.
Fix the number of clusters m.
Define an initial clustering X.
Repeat

• For i=1 to N
– Find j: kj

i=maxq=1,…,mkq
i

− Set ci=j
• End For
• For i=1 to N

− Assign xi to cluster Cci.
• End For

Until no reclustering of vectors occurs.
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❖ Valley-Seeking Clustering Algorithms (cont.)
    The algorithm 

Moves a window d(x,y) ≤ a at x and counts the points from different 
clusters in it.
Assigns x to the cluster with the larger number of points in the window 
(the cluster that corresponds to the highest local pdf).

    In other words
The boundary is moved away from the “winning” cluster (close 
similarity with Parzen windows).

Remarks:
• The algorithm is sensitive to a. It is suggested to perform several 

runs, for different values of a.
• The algorithm is of a mode-seeking nature (if more than enough 

clusters are initially appointed, some of them will be empty).
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❖ Valley-Seeking Clustering Algorithms (cont.)
Example 3: Let X={x1,…,x10} and a=1.1415. X contains two clusters 
C1={x1,…,x5}, C2={x6,…,x10}.
(a)  Initially two clusters are considered separated by b1. After the 

convergence of the algorithm, C1 and C2 are identified (equivalently 
b1 is moved between x4 and x6).

(b) Initially two clusters are considered separated by b1, b2 and b3. 
After the convergence of the algorithm, C1 and C2 are identified 
(equivalently b1 and b2 are moved to the area where b3 lies).

(c) Initially three clusters are considered separated by b1, b2, b3, b4. 
After the convergence of the algorithm, only two clusters are 
identified, C1 and C2 (equivalently b1, b2, b3 and b4 are moved 
between x4 and x6).
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CLUSTERING VIA COST OPTIMIZATION (REV.)

❖ Branch and Bound Clustering Algorithms
They compute the globally optimal solution to combinatorial problems.
They avoid exhaustive search via the employment of a monotonic 
criterion J.

Monotonic criterion J: if k vectors of X have been assigned to clusters, the 
assignment of an extra vector to a cluster does not decrease the value of J.

     Consider the following 3-vectors, 2-class case
     121: 1st, 3rd vectors belong to class 1

   2nd vector belongs  to class 2.
   (leaf of the tree)

     12x: 1st vector belongs to class 1
   2nd vector belongs to class 2
   3rd vector is unassigned 
   (Partial clustering- node of the tree).
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❖ Branch and Bound Clustering Algorithms
    How exhaustive search is avoided

Let B be the best value for criterion J computed so far.
If at a node of the tree, the corresponding value of J is greater than B, 
no further search is performed for all subsequent descendants springing 
from this node.
 Let   Cr=[c1,…,cr], 1 ≤ r ≤ N, denotes a partial clustering where 

           ci∈{1,2,…,m},  ci=j if the vector xi belongs to cluster Cj and xr+1,…,xN are   
     yet unassigned.

         For compact clusters and fixed number of clusters, m, a suitable cost     
     function is

          where mci is the mean vector of the cluster Cci

        with nj(Cr) being the number of vectors x∈{x1,…,xr} that belong to    
    cluster Cj.
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❖ Branch and Bound Clustering Algorithms (cont.)
Initialization

• Start from the initial node and go down to a leaf. Let B be the cost of the 
corresponding clustering (initially set B=+∞).

Main stage
• Start from the initial node of the tree and go down until either

− (i) A leaf is encountered. 
o If the cost B´ of the corr. clustering C´ is smaller than B then
    * B=B´
    * C´ is the best clustering found so far
o End if

− Or (ii) a node q with value of J greater than B is encountered. Then
o No subsequent clustering branching from q is considered.
o Backtrack to the parent of q, qpar, in order to span a different path.
o If all paths branching from qpar have been considered then
     * Move to the grandparent of q.
o End if

− End if
Terminate when all possible paths have been considered explicitly or implicitly.
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❖ Branch and Bound Clustering Algorithms (cont.)
Remarks:

• Variations of the above algorithm, where much tighter bounds of B 
are used (that is many more clusterings are rejected without explicit 
consideration) have also been proposed.

• A disadvantage of the algorithm is the excessive (and unpredictable) 
amount of required computational time.
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❖ Simulated Annealing
It guarantees (under certain conditions) in probability, the computation 
of  the globally optimal solution of the problem at hand via the 
minimization of  a cost function J.
It may escape from local minima since it allows moves that temporarily 
may increase the value of J.

      Definitions
An important parameter of the algorithm is the “temperature” T, which 

    starts at a high value and reduces gradually. 
A sweep is the time the algorithm spents at a given temperature so that 

    the system can enter the “thermal equilibrium”.
      Notation

Tmax is the initial value of the temperature T.
Cinit is the initial clustering.
C is the current clustering.
t is the current sweep.
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The algorithm:
● Set T=Tmax and C=Cinit.
● t=0
● Repeat

− t=t+1
− Repeat

o Compute J(C)
o Produce a new clustering, C´, by assigning a randomly chosen 

vector from X to a different cluster.
o Compute J(C´)
o If ΔJ=J(C´)-J(C)<0 then

* (A) C=C´
o Else

* (B) C=C´, with probability P(ΔJ)=e-ΔJ/T.
o End if

− Until an equilibrium state is reached at this temperature.
− T=f(Tmax,t)

● Until a predetermined value Tmin for T is reached.
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❖ Simulated Annealing (cont.)
Remarks:
● For T→∞, p(ΔJ)≈1. Thus almost all movements of vectors between 

clusters are allowed.
● For lower values of T fewer moves of type (B) (from lower to higher cost 

clusterings) are allowed.
● As T→0 the probability of moves of type (B) tends to zero.
● Thus as T decreases, it becomes more probable to reach clusterings that 

correspond to lower values of J.
● Keeping T positive, we ensure a nonzero probability for escaping from a 

local minimum.
● We assume that the equilibrium state has been reached
     ”If for k successive random reassignments of vectors, C remains  

     unchanged.”
●  A schedule for lowering T that guarantees convergence to the global 

minimum with probability 1, is
T=Tmax / ln(1+t)
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❖ Deterministic Annealing (DA)
It is inspired by the phase transition phenomenon observed when the 
temperature of a material changes. It involves the parameter β=1/T, 

    where T is defined as in simulated annealing.

The Goal of DA: Locate a set of representatives wj, j=1,…,m (m is fixed) 
in appropriate positions so that a distortion function J is minimized.

    J is defined as

By defining Pir as the probability that xi belongs to Cr, r=1,…,m, we can 
write:

Then, the optimal value of wr satisfies the following condition:
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❖ Deterministic Annealing (cont.)
     Assumption: d(x,w) is a convex function of w for fixed x.

Stages of the algorithm
• For β=0, all Pij’s are equal to 1/m, for all xi’s, i=1,…,N. Thus

   Since d(x,w) is a convex function, d(x1,wr)+…+d(xN,wr) is a convex 
function. All representatives coincide with its unique global minimum 
(all the data belong to a single cluster).

• As β increases, it reaches a critical value where Pir “depart 
sufficiently” from the uniform model. Then the representatives split 
up in order to provide an optimal presentation of the data set at the 
new phase.

• The increase of β continues until Pij approach the hard clustering 
model (for all xi, Pir≈1 for some r, and Pij≈0 for j≠r).
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❖ Deterministic Annealing (cont.)

Remarks:
• It is not guaranteed that it reaches  the globally optimum 

clustering.
• If m is chosen greater than the “actual” number of clusters, the 

algorithm has the ability to represent the data properly.
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❖ Clustering using genetic algorithms (GA)
     A few hints concerning genetic algorithms

They have been inspired by the natural selection mechanism (Darwin).
They consider a population of solutions of the problem at hand and they 
perform certain operators to this, so that the new population is 
improved compared to the previous one (in terms of a criterion function 
J).
The solutions are coded and the operators are applied on the coded 
versions of the solutions.

     The most well-known operators are:
Reproduction: 

• It ensures that, in probability, the better (worse) a solution in the 
current population is, the more (less) replicates it has in the next 
population.

Crossover: 
• It applies to the temporary population produced after the application 

of the reproduction operator.
• It selects pairs of solutions randomly, splits them at a random 

position and exchanges their second parts.
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❖ Clustering using genetic algorithms (cont.)
Mutation:

• It applies after the reproduction and the crossover operators.
• It selects randomly an element of a solution and alters it with 

some probability.
• It may be viewed as a way out of getting stuck in local minima.

    Aspects/Parameters that affect the performance of the algorithm
The coding of the solutions.
The number of solutions in a population, p.
The probability with which we select two solutions for crossover.
The probability with which an element of a solution is mutated.
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❖ Clustering using genetic algorithms (cont.)

     GA Algorithmic scheme
t=0
Choose an initial population ℘t of solutions.
Repeat

• Apply reproduction on ℘t and let ℘t´ be the resulting temporary 
population.

• Apply crossover on ℘t´ and let ℘t´´ be the resulting temporary 
population.

• Apply mutation on ℘t´´ and let ℘t+1 be the resulting population.
• t=t+1

Until a termination condition is met.
Return 

• either the best solution of the last population, 
• or the best solution found during the evolution of the algorithm.
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❖ Clustering using genetic algorithms (cont.)
     Genetic Algorithms in Clustering
     The characteristics of a simple GA hard clustering algorithm suitable for  

 compact clusters, whose number m is fixed, is discussed next.

A (not unique) way to code a solution is via the cluster 
representatives.

[w1, w2,…, wm]
The cost function in use is

where

The allowable cut points for the crossover operator are between 
different representatives.
The mutation operator selects randomly a coordinate and decides 
randomly to add a small random number to it.
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❖ Clustering using genetic algorithms (cont.)

Remark:
• An alternative to the above scheme results if prior to  the 

application of the reproduction operator, the hard clustering 
algorithm (GHAS), described in the previous chapter, runs p times, 
each time using a different solution of the current population as 
the initial state. The p resulting solutions constitute the population 
on which the reproduction operator will be applied.
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DENSITY-BASED ALGORITHMS FOR LARGE DATA 
SETS

These algorithms:
❖ Consider clusters as regions in the l-dimensional space that are “dense” in 

points of X.
❖ Have, in principle, the ability to recover arbitrarily shaped clusters.
❖ Handle efficiently outliers.
❖ Have time complexity less than O(N2).

Typical density-based algorithms are:
❖ The DBSCAN algorithm.
❖ The DBCLASD algorithm.
❖ The DENCLUE algorithm.
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❖ The Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) Algorithm.

    The “density” around a point x is estimated as the number of points in X 
that fall inside a certain region of the l-dimensional space surrounding x.

    Notation
Vε(x) is the hypersphere of radius ε (user-defined parameter) centered at 
x.
Nε(x) the number of points of X lying in Vε(x).
q is the minimum number of points of X that must be contained in Vε(x), 
in order for x to be considered an “interior” point of a cluster.

    Definitions
1. A point y is directly density reachable from a point x if

(i) y∈Vε(x)
(ii) Nε(x)≥q (fig. (a)).

2. A point y is density reachable from a point x in X if there is a sequence 
of points x1, x2,…, xp∈X, with x1=x, xp=y, such that xi+1 is directly density 
reachable from xi (fig. (b)).
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❖ The DBSCAN Algorithm (cont.)
     3. A point x is density connected to a point y∈X if there exists z∈X such  

    that both x and y are density reachable from z (fig. (c)).

Example 4: Assuming that 
q=5, (a) y is directly density 
reachable from x, but not vice 
versa, (b) y is density 
reachable from x, but not vice 
versa, and (c) x and y are 
density connected (in addition, 
y is density reachable from x, 
but not vice versa).
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❖ The DBSCAN Algorithm (cont.)
     4. A cluster C in DBSCAN is defined as a nonempty subset of X satisfying 

    the following conditions:
• If x belongs to C and y∈X is density reachable from x, then y∈C.
• For each pair (x,y)∈C, x and y are density connected.

     5. Let C1,…,Cm be the clusters in X. The set of points that are not  
     connected in any of the C1,…,Cm is known as noise.

     6. A point x is called a core  (noncore) point if it has at least (less than) q 
     points in its neighborhood. A noncore point may be either 

• a border point of a cluster (that is, density reachable from a core 
point) or

• a noise point (that is, not density reachable from other points in X).
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❖ The DBSCAN Algorithm (cont.)
     Proposition 1: If x is a core point and D is the set of points in X that are 

density reachable from x, then D is a cluster.

     Proposition 2: If C is a cluster and x is a core point in C, then C equals to 
the set of the points y∈X that are density reachable from x.

    Therefore: A cluster is uniquely determined by any of its core points.

     Notation
Xun is the set of points in X that have not been considered yet.
m denotes the number of clusters.
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❖ The DBSCAN Algorithm (cont.)
    DBSCAN Algorithm

Set Xun=X
Set m=0
While Xun ≠ ∅ do

• Arbitrarily select a x∈Xun
• If x is a noncore point then

− Mark x as noise point
−  Xun=Xun-{x}

• End if
• If x is a core point then

−  m=m+1
− Determine all density-reachable points in X from x.
− Assign x and the previous points to the cluster Cm. The border 

points that may have been marked as noise are also assigned 
to Cm.

−  Xun=Xun-Cm
• End {if}

End {while}
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❖ The DBSCAN Algorithm (cont.)
Important notes:

• If a border point y of a cluster C is selected, it will be marked 
initially as a noise point. However, when a core point x in C will be 
selected later on, y will be identified as a density-reachable point 
from x and it will assigned to C.

• If a noise point y is selected, it will be marked as such and since it 
is not density reachable by any of the core points in X, its “noise” 
label will remain unaltered.

Remarks:
• The parameters ε and q influence significantly the performance of 

DBSCAN. These should selected such that the algorithm is able to 
detect the least “dense” cluster (experimentation with several 
values for ε and q should be carried out).

• Implementation of DBSCAN using R*-tree data structure can 
achieve time complexity of O(Nlog2N) for low-dimensional data 
sets.

• DBSCAN is not well suited for cases where clusters exhibit 
significant differences in density as well as for applications of 
high-dimensional data.
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❖ The Distribution-Based Clustering of LArge Spatial Databases 
(DBCLASD) Algorithm

     Key points of the algorithm:
The distance d of a point x∈X to its nearest neighbor is considered as 
a random variable.
The “density” is quantified in terms of the probability distribution of d.
Under the assumption that the points in each cluster are uniformly 
distributed, the distribution of d can be derived analytically.
A cluster C is defined as a nonempty subset of X with the following 
properties:

• The distribution of the distances, d, between points in C and their 
nearest neighbors is in agreement with the distribution of d 
derived theoretically, within some confidence interval.

• It is the maximal set with this property (insertion of additional 
points neighboring to points in C will cause (a) not to hold 
anymore).

• It is connected. Having applied a grid of cubes on the feature 
space, this property implies that for any pair of points (x,y) from C 
there exists a path of adjacent cubes that contains at least one 
point in C that connects x and y.
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❖ The DBCLASD Algorithm (cont.)

Points are considered in a sequential manner.
A point that has been assigned to a cluster may be reassigned to 
another cluster at a later stage of the algorithm.
Some points are not assigned to any of the clusters determined so far, 
but they are tested again at a later stage.

Remarks:
• DBCLASD is able to determine arbitrary shaped clusters of various 

densities in X.
• It requires no parameter definition.
• Experimental results show that:

− the runtime of DBCLASD is roughly twice the runtime of 
DBSCAN.

− DBCLASD outperforms CLARANS by a factor of at least 60.
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❖ The DENsity-based  CLUstEring (DENCLUE) Algorithm
     Definitions
     The influence function f y(x) for a point y∈X is a positive function that  

 decays to zero as x “moves away” from y (d(x,y)→∞). Typical examples 
 are:

                                                   ,
  

where σ is a user-defined function.

      The density function based on X is defined as (Remember the Parzen  
  windows):

      The Goal:
(a)  Identify all “significant” local maxima, xj

*, j=1,…,m of f X(x)
(b) Create a cluster Cj for each xj

* and assign to Cj all points of X 
that lie within the “region of attraction” of xj

*.
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❖ The DENCLUE Algorithm (cont.)
     Two clarifications

The region of attraction of xj
* is defined as the set of points in x∈ℜ l 

such that if a “hill-climbing” (such as the steepest ascent) method is 
applied, initialized by x, it will terminate arbitrarily close to xj

*.
A local maximum is considered as significant if f X(xj

*) ≥ ξ (ξ is a 
user-defined parameter).

      Approximation of f X(x)

      where Y(x) is the set of points in X that lie “close” to x.

      The above framework is used by the DENCLUE algorithm.
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❖ The DENCLUE Algorithm (cont.)
    DENCLUE algorithm

Preclustering stage (identification of regions dense in points of X)
• Apply an l-dimensional grid of edge-length 2σ in the ℜl space.
• Determine the set Dp of the hypercubes that contain at least one 

point of X.
• Determine the set Dsp(⊂ Dp) that contains the “highly populated” 

cubes of Dp (that is, cubes that contain at least ξc>1 points of X).
• For each c∈Dsp define a connection with all neighboring cubes cj 

in Dp for which d(mc,mcj) is no greater than 4σ, where mc, mcj are 
the means of c and cj, respectively.

Main stage
• Determine the set Dr that contains: 

− the highly populated cubes and 
− the cubes that have at least one connection with a highly 

populated cube.
• For each point x in a cube c∈Dr determine Y(x) as the set of points 

that belong to cubes cj in Dr such that the mean values of cjs lie at 
distance less than λσ from x (typically λ=4).
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❖ The DENCLUE Algorithm (cont.)
    DENCLUE algorithm (cont.)

For each point x in a cube c∈Dr
• Apply a hill climbing method starting from x and let x* be the local 

maximum to which the method converges.
• If x* is a significant local maximum (f X(x*) ≥ ξ) then

− If a cluster C associated with x* has already been created then
o x is assigned to C

− Else
o Create a cluster C associated with x* 
o Assign x to C

− End if
• End if

End for
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❖ The DENCLUE Algorithm (cont.)
Remarks:

• Shortcuts allow the assignment of points to clusters, without 
having to apply the hill-climbing procedure.

• DENCLUE is able to detect arbitrarily shaped clusters.
• The algorithm deals with noise very satisfactory.
• The worst-case time complexity of DENCLUE is O(Nlog2N).
• Experimental results indicate that the average time complexity is 

O(log2N).
• It works efficiently with high-dimensional data.
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CLUSTERING ALGORITHMS FOR 
HIGH-DIMENSIONAL DATA SETS

❖ What is a High-dimensionality space?
     Dimensionality l of the input space with

20 ≤ l ≤ few thousands
     indicate high-dimensional data sets.

❖ Problems of considering simultaneously all dimensions in high-dimensional 
data sets:

“Curse of dimensionality”. As a fixed number of points spread out in 
high-dimensional spaces, they become almost equidistant (that is, the 
terms similarity and dissimilarity tend to become meaningless).
Several dimensions may be  irrelevant to the identification of the 
clusters (that is, the clusters usually are identified in subspaces of the 
original feature space).

❖ A way out: Work on subspaces of dimension lower than l.
Main approaches:

• Dimensionality reduction clustering approach.
• Subspace clustering approach.
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 An example:
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❖ Dimensionality Reduction Clustering Approach
     Main  idea

Identify an appropriate l´-dimensional space Hl´ (l´ < l).
Project the data points in X into Hl´.
Apply a clustering algorithm on the projections of the points of X into 
Hl´.

          Identification of Hl´ may be carried out using either by:
• Feature generation methods,
• Feature selection methods,
• Random projections.



62

❖ Dimensionality Reduction Clustering Approach (cont.)

     Feature generation methods
In general, these methods preserve the distances between the points 
in the high-dimensional space, when these are mapped to the 
lower-dimensional space.
They are very useful in producing compact representations of the 
original high-dimensional feature space.
Some of them may be integrated within a clustering algorithm 
(k-means, EM).
They are useful in cases where a significant number of features 
contributes to the identification of the clusters.
Typical Methods in this category are: 

• Principal component analysis (PCA).
• Singular value decomposition (SVD).
• Nonlinear PCA.
• Independent component analysis (ICA).
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❖ Dimensionality Reduction Clustering Approach (cont.)

     Feature selection methods
They identify the features that are the main contributors to the 
formation of the clusters.
The criteria used to evaluate the “goodness” of a specific subset of 
features follow either the

• Wrapper model (The clustering algorithm  is first chosen and a set 
of features F

i is evaluated through the results obtained from the 
application of the algorithm to X, where for each point only the 
features in F

i
 are taken into account).

• Filter model (The evaluation of a subset of features is carried out 
using intrinsic properties of the data, prior to the application of the 
clustering algorithm).

They are useful when all clusters lie in the same subspace of the 
feature space.
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❖ Dimensionality Reduction Clustering Approach (cont.)
     Clustering using Random Projections: 

Here Hl’ is identified in a random manner.
     Note: The projection of an l-dimensional space to an l´-dimensional space 

(l´ < l) is uniquely defined via an  l´ x l  projection matrix A.

     Issues to be addressed:
(a)  The proper estimate of l´. Estimates of l´ guarantee that the 

distances between the points of X, in the original data set will be 
preserved (with some distortion) after the projection to a randomly 
chosen l´-dimensional space, whose projection matrix is constructed 
via certain probabilistic rules (Preservation of distances does not 
necessarily preserve clusters).

(b)  The definition of the projection matrix A. Possible rules for 
constructing A are: 
1. Set each of its entries equal to a value stemming from an i.i.d. 

zero mean, unit variance Gaussian distribution and then normalize 
each row to the unit length.

2. Set each entry of A equal to -1 or +1, with probability 0.5.
3. Set each entry of A equal to +√3, -√3 or 0, with probabilities 1/6, 

1/6, 2/3, respectively.
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❖ Dimensionality Reduction Clustering Approach (cont.)

     Having defined A:
Project the points of X into Hl´
Perform a clustering algorithm on the projections of the points of X into 
Hl´.

     Problem: Different random projections may lead to totally different results.

     Solution:
Perform several random projections Hl’.
Apply a clustering algorithm on the projections of X to each Hl’.
Combine the clustering results and produce the final clustering.

      A method in the above spirit is described next (O(N 2)).
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      Clustering using Random Projections
Select l´.
Generate A1,…,Ar different projection matrices using the (b.1) rule 
given above.
For s=1 to r

• Run GMDAS for the s-th random projection of X.
• Compute the probability that xi belongs to the j-th cluster of the s 

projection, P(Cj
s|xi), i=1,…,N,  j=1,…,ms.

• Create the similarity matrix Ps, where Pij
s is the probability that xi 

and xj belong to the same cluster,

End for
Compute the average proximity matrix P, so that Pij is the average of 
Pij

s s, s=1,…,r.
Apply GAS (actually its complete link version) on P.
Plot the similarity between the closest pair of clusters at each iteration 
versus the number of iterations.
Select the clustering that corresponds to the most abrupt decrease in 
the plot.
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❖ Subspace Clustering Approach
This approach deals with the problem where clusters are formed in 
different subspaces of the feature space.
The subspace clustering algorithms (SCA) reveal clusters as well as the 
subspaces where they reside.
SCA can be divided into two main categories

• Grid-based SCAs
• Point-based SCAs.

      Grid-based Subspace Clustering Algorithms (GBSCAs)
      Main strategy:

1) Identification of the subspaces of the feature space that are likely to 
contain clusters.

2) Determination of the clusters lying in each of these subspaces.
3) Description of the resulting clusters.
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Grid-based Subspace Clustering Algorithms (cont.)
1)  Identification of subspaces

• Here an l-dimensional grid is applied on the feature space and the 
subspaces that are likely to contain clusters are identified based on 
the k-dimensional units (boxes) (k ≤ l) defined by the grid.

• In order to avoid to consider explicitly all the possible subspaces, 
the algorithms establish certain criteria that comply with the 
so-called downward closure property.

• Downward closure (DC) property: If a criterion is satisfied in a 
k-dimensional space, it is also satisfied in all of its (k-1)-dimensional 
subspaces.

• Due to the DC property, identification of subspaces is carried out in 
an iterative bottom-up fashion (from lower to higher dimensional 
subspaces).

2) Determination of the clusters
    Clusters are identified as maximally connected components of units in 

each of the subspaces defined in the previous step.
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Grid-based Subspace Clustering Algorithms (cont.)
Two popular GBSCAs are:

The CLIQUE.
The ENCLUS.

The CLIQUE (CLustering In QUEst) Algorithm
          Preliminaries – Definitions
          Assume that an l-dimensional grid of edge-size ξ is applied on the  

     feature space.
• A unit u of the grid is written as ut1x…x utk≡ (ut1,…, utk) (t1<…<tk, k ≤ 

l), where uti=[ati,bti) is a right-open interval in the partitioning of the 
ti-th dimension of the feature space (e.g., t1=2, t2=5, t3=7 indicates a 
unit lying in the subspace spanned by x2, x5 and x7 dimensions).

• A point x is contained in a k-dimensional unit u=(ut1,…, utk) if ati≤  xti< 
bti for all ti.

• The selectivity of a unit u is defined as the fraction of the total 
number of data points (N) contained in u.

• A unit u is called dense if its selectivity is greater than a user-defined 
threshold τ.
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The CLIQUE  Algorithm (cont.)

● Two k-dimensional units u=(ut1,…, utk) and u´=(ut1´,…, utk´ ) share a face 
if there are (k-1)-dimensions (e.g., xt1,…,xtk-1), such that utj=utj´,  
j=1,2,…,k-1 and either atk=btk´ or btk=atk´.

● Two k-dimensional units are said to be directly connected if they have in 
common a (k-1)-dimensional face.

● Two k-dimensional units u1 and u2 are said to be connected if there 
exists a sequence of k-dimensional units, v1,…,vs, with v1=u1 and vs=u2, 
such that each pair (vi,vi+1) of units is directly connected.

● In CLIQUE, a cluster is defined as a maximal set of connected dense 
units in k dimensions.

● Downward closure property of the density: “If there is a dense unit u in 
a k-dimensional space, there are also dense units in the projections of u 
in all (k-1)-dimensional subspaces of the k-dimensional space”.
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Example 5: A two dimensional grid of lines 
of edge size ξ applied in the 
two-dimensional feature space.

• Two-dimensional and one-dimensional 
units are defined.

• ui
q denotes the i-th one dimensional 

unit along xq
• uij denotes the two dimensional unit 

resulting from the Cartesian product of 
the i-th and j-th intervals along x1 and 
x2, respectively.

• For τ=3:
− u1

1, u2
1, u4

1, u2
2 are 

one-dimensional dense units, each 
containing 4, 4, 4 and 9 points, 
respectively.

− u12 and u22 are two-dimensional 
dense units each containing 4 
points.

• u12 and u22 are directly connected.

• The downward closure 
property of the density 
is shown for units u12, 
u22.
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The CLIQUE  Algorithm (cont.)
     Main stages of CLIQUE

1. Identification of subspaces.
2. Identification of clusters.
3. “Description” of clusters.

1. Identification of subspaces
A. Determination of dense units
• Determine the set D1 of all one-dimensional dense units.
•  k=1
• While Dk ≠ ∅ do

− k=k+1
− Determine the set Dk as the set of all the k-dimensional dense 

units all of whose (k-1)-dimensional projections, belong to Dk-1.
• End while
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The CLIQUE  Algorithm (cont.)

B. Determination of high coverage subspaces.
• Determine all the subspaces that contain at least one dense unit. 
• Sort these subspaces in descending order according to their 

coverage 
   (fraction of the num. of points of the original data set they contain).
• Optimize a suitably defined Minimum Description Length criterion 

function and determine a threshold under which a coverage is 
considered “low”.

• Select the subspaces with “high” coverage. 
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The CLIQUE  Algorithm (cont.)
2. Identification of clusters
● For each high coverage subspace S do 

− Consider the set E of all the dense units in S.
− While E≠∅

o  m´ =1
o Select a randomly chosen unit u from E.
o Assign to Cm´, u and all units of E that are connected to u.
o  E=E-Cm´

− End while
● End for

      The clusters in the data set are all clusters identified in all high coverage 
  subspaces (they are consisted of units).
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The CLIQUE  Algorithm (cont.)
3. Minimal description of clusters

      The minimal description of a cluster C,  produced by the above  
   procedure, is the minimum possible union of hyperrectangular regions.

       For example 
• A ∪ B is the minimum cluster description of the shaded region.
• C ∪ D ∪ E is a non-minimal cluster description of the same region.
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The CLIQUE  Algorithm (cont.)
     3. Minimal description of clusters (algorithm)
     For each cluster C do
     1st stage

●  c=0
● While C ≠ ∅

− c=c+1
− Choose a dense unit in C
− For i=1 to l

o Grow the unit in both directions along the i-th dimension, trying 
to cover as many units in C as possible (boxes that are not 
belong to C should not be covered).

− End for
− Define the set I containing all the units covered by the above 

procedure
− C=C-I

● End while
   2nd stage

● Remove all covers whose units are covered by at least another cover.
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The CLIQUE  Algorithm (cont.)

Example 6: 
•ui

q, uij are defined as in 
example 5.

•ξ=1 and τ=8% (thus, each 
unit containing more than 
5 points is considered to be 
dense).

•The points in u48 and u58, 
u75 and u76, u83 and u93 are 
collinear.
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Example 6 (cont.)
    Identification of subspaces
    One-dimensional dense units:  
     D1={u2

1, u3
1, u4

1, u5
1, u8

1, u9
1, u1

2, u2
2, u3

2, u5
2, u6

2}
    Two-dimensional dense units:  
     D2={u21, u22, u32, u33, u83, u93}
    Notes:

● Although each one of the u48, u75, u76 contains more that 5 points, they are not 
included in D2.

● Although it seems unnatural for u83 and u93 to be included in D2, they are 
included since u3

2 is dense.
●  All subspaces of the two-dimensional space contain clusters.

   Identification of clusters
   One-dimensional clusters:
    C1={u2

1, u3
1, u4

1, u5
1}, C2={u8

1, u9
1}, C3={u1

2, u2
2, u3

2}, C4={u5
2, u6

2}.
   Two-dimensional clusters:
    C5={u21, u22, u32, u33}, C6={u83, u93}.
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Example 6 (cont.):
    Description of clusters
    C1={(x1): 1≤ x1<5}
    C2={(x1): 7≤ x1<9}
    C3={(x2): 0≤ x2<3}
    C4={(x2): 4≤ x2<6}
    C5={(x1, x2): 1≤ x1<2, 0≤ x2<2}∪{(x1, x2): 2≤ x1<3, 1≤ x2<3}
    C6={(x1, x2): 7≤ x1<9, 2≤ x2<3}

    Note that C2 and C6 are 
essentially the same cluster, 
which is reported twice by 
the algorithm.
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The CLIQUE  Algorithm (cont.)
Remarks:
● CLIQUE determines automatically the subspaces of the feature space 

where high-density clusters exist.
● It is insensitive to the order of the presentation of the data.
● It does not impose any data distribution hypothesis on the data set.
● It scales linearly with N but scales exponentially with l.
● The accuracy of the determined clusters may be degraded because the 

clusters are given not in terms of points of X but in terms of dense 
units.

● The performance of the algorithm depends heavily on the choices of ξ 
and τ.

● There is a large overlap among the reported clusters.
● There is a risk of losing small but meaningful clusters, after the pruning 

of subspaces based on their coverage.
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Grid-based Subspace Clustering Algorithms (cont.)
The ENCLUS  Algorithm
● It follows the three-stage philosophy of CLIQUE (identification of 

subspaces, determination of clusters, description of clusters).
● The last two stages of ENCLUS are the same with those of CLIQUE.

      1. Identification of subspaces that contain clusters
      Definitions

● Entropy H(Xk) of a k-dimensional subspace Xk (k ≤ l ) of X:
− Apply a k-dimensional grid on X k.
− Measure the percentage of points that fall within  each one of the n 

grid units.
− Compute the entropy as

   where n is the total number of units.
● Downward closure property of entropy: “If a k-dimensional space is of 

low entropy all of its (k-1)-dimensional subspaces are also of low 
entropy”.
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The ENCLUS  Algorithm (cont.)
●  Interest interest( Xk ) of a k-dimensional subspace Xk (k ≤ l) of X:

where t1<…<tk (k ≤ l) and  xtj
k denotes the j dimension of Xk.

− It measures the degree of correlation among the dimensions of Xk.
− The higher the interest the stronger the correlation among the 

dimensions of Xk.
− The minimum value of the interest is zero. In this case, the 

dimensions of Xk are independent to each  other.

● A subspace with “low” entropy (below a user-defined threshold ω) is 
considered to have  a good clustering.

● A significant subspace is a subspace with good clustering and interest 
above a user-defined threshold ε.
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The ENCLUS  Algorithm (cont.)
     ENCLUS seeks for subspaces Xk with:

● High coverage (high percentage of points covered by all dense units in 
Xk). 

● High density of points in the dense units in the subspace.
● High correlation among the dimensions of the subspace.

Remarks:
● The above requirements are indicative of a subspace with nonrandom 

structure.
● Also, a subspace with a strong clustering structure has lower entropy 

than a subspace where data do not show any clustering tendency.

     Notation
      Bk: the set of significant k-dimensional subspaces.
      Dk: the set of subspaces that have good clustering but they are of low 

interest.
      A1: the set of all one-dimensional subspaces
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The ENCLUS  Algorithm (cont.)
    2. Determination of significant subspaces

● Based on A1, determine B1 and D1.
● k=1
● Repeat

− Determine Ak+1 as the set containing all the (k+1)-dimensional 
subspaces E such that

o E is the result of the union of two k-dimensional subspaces in Dk 
sharing (k-1) dimensions and

o All k-dimensional projections of E belong to Dk
− k=k+1

● Until Ak=∅
● Return the significant subspaces B1∪…∪Bk-1.

     The rest stages of the algorithm are applied on the significant subspaces 
extracted above.
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The ENCLUS  Algorithm (cont.)

Remarks:
● ENCLUS is insensitive to the order of consideration of the data.
● It can unravel arbitrarily shaped clusters.
● The computational time required by ENCLUS scales linearly with N.
● There is a significant overlap among the reported clusters.
● ENCLUS depends heavily on the choice of the edge of the grid as well 

as on the parameters ω and ε.
● Other Grid-based subspace clustering algorithms are

• MAFIA
• Cell-based clustering method (CBF)
• CLTree algorithm.
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❖ Subspace Clustering Approach (cont.)
    Point-based Subspace Clustering Algorithms (PBSCA)
    In these algorithms

The clusters are defined in terms of data points of X.
Each data point contribute to a single cluster.
The clusters as well as the subspaces in which they live are 
simultaneously determined in an iterative fashion.

    Typical PBSCAs
PROCLUS
ORCLUS

The PROCLUS algorithm
• Its main idea is to generate an initial set of medoids and to iterate 

until an “optimum” set of medoids results, estimating at the same 
time the subspace where each cluster resides.

•  Inputs of the algorithm: number of clusters, m, average 
dimensionality, s.

• It consists of three stages: the initialization stage, the iterative 
   stage and the refinement stage.
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The PROCLUS algorithm (cont.)
     1. Initialization stage (a, b are user-defined parameters).

● Generate a sample X´ of size am from X, via random selection.
● Generate, via random selection, a subset X´´ of X´ of size bm (b<a) such 

that each of the points in X´´  lies as far as possible from the other 
points in X´´.

● Generate, via random selection, the subset Θ of X´´ of size m and let IΘ 
denoting the corresponding index set.

● The elements of Θ are taken as the initial estimates of the medoids of 
the m clusters.
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The PROCLUS algorithm (cont.)
     2. Iterative stage

● Set cost=∞
● iter=0
● Repeat

− iter=iter+1
− (A) For each i∈IΘ determine the set of dimensions Di of the 

subspace where the cluster Ci lives.
− (B) For each i∈IΘ determine the corresponding cluster Ci.
− (C) Compute the cost J(Θ) associated with Θ.
− If J(Θ) < cost then

o Θbest=Θ
o cost=J(Θbest)

− End if
− (D) Determine the “bad” medoids of Θbest.
− Set Θ=Θbest and replace its bad medoids with randomly selected 

points from X´´.
● Until a termination condition is satisfied.



89

     Iterative stage (cont.)
(A)  Determination of cluster subspaces
● For each point xi, i∈IΘ, 

− the set of points L that consists of points in X that lie in a sphere 
around xi of appropriate radius is determined.

− The “concentration” of the distances between xi and each x∈L 
along each direction is measured. 

● Among the total number of ml dimensions, the ms dimensions with the 
lowest concentration are selected for the identification of the subspaces 
Di s that correspond to the clusters Ci s

(B) Determination of the clusters
For each point x∈X
● Its one-dimensional distances from each xi, i∈IΘ, along each dimension 

of Di are computed and their mean, denoted by disti is determined.
● x is assigned to the cluster with the minimum disti.
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Iterative stage (cont.)
(C) Computation of J(Θ)
● For each x∈X the lowest disti, denoted by dist, is computed.
●  J(Θ) is computed as the average of these dist s.

(D) Determination of “bad” medoids
A medoid is considered “bad” if either
(a) Its corresponding cluster has the least number of points or,
(b) its corresponding cluster has less than (N/m)q points, where q is a 

user-defined constant (typically q=0.1).

3. Refinement stage
After the completion of the iteration stage, 
● Di s are recomputed based on more precise information.
● Ci s are recomputed based on the above defined Di s.
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Remarks:
● PROCLUS is biased toward hyperspherically shaped clusters.
● Cluster subspaces must be of similar size (since the average 

dimensionality is an input to the algorithm).
● The Initialization stage is crucial since it is desirable to obtain 

representative points from all physical clusters.
● PROCLUS is somewhat faster than CLIQUE on large data sets.
● Its required computational effort increases linearly with the dimension 

of the feature space l.
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Point-based Subspace Clustering Algorithms (cont.)
The ORCLUS algorithm

     Key points
● This is a point based SCA of agglomerative hierarchical nature.
● At each iteration 

− the number of clusters decreases from an initial value m0 to a final 
user-defined value m.

− the dimensionality decreases from l0 (the dimensionality of the 
feature space) to a final user-defined value l.

● The reduction in the number of clusters as well as  in the dimensionality 
must be carried out in the same number of iterations.

● The subspace where each cluster lies is represented by vectors that are 
not necessarily parallel to the axes of the original feature space.
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Remarks:
● ORCLUS is biased toward hyperspherical clusters.
● The required computational time is O(m0

3+m0Nl0+m0
2l0

3). That is,
− It increases linearly with N.
− It increases cubically with l0.

● Computational time may be reduced by adopting random sampling 
techniques.

● Increased values of m0 may improve the quality of the final clustering.
● The subspaces of all clusters are restricted to the same dimensionality.
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Point-based Subspace Clustering Algorithms (cont.)
Remarks (GBSCAs vs PBSCAs):
● In GBSCAs, all clusters are represented as unions of dense units (rough 

description), while in PBSCAs they are represented in terms of data 
points (exact description).

● In GBSCAs a point may contribute to more than one cluster in different 
subspaces through its projections, while in PBSCAs each point 
contributes to a single cluster.

● In GBSCAs the identification of clusters is carried out only after the 
determination of the appropriate subspaces. In PBSCAs the clusters as 
well as the appropriate subspaces are simultaneously determined in an 
iterative fashion.

●  GBSCAs are able, in principle, to unravel arbitrarily shaped clusters, 
while PBSCAs are biased toward hyperspherically-based clusters.

● The computational time required by most of the GBSCAs and PBSCAs 
scales linearly with N, the number of points.

● The computational time required by the above GBSCAs increases 
exponentially with the dimensionality of the input space, l, whereas in 
PBSCAs it exhibits a polynomial dependence.
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Remarks (GBSCAs vs PBSCAs) (cont.):
● In GBSCAs there are no restrictions concerning the dimensionality of the 

subspaces, whereas the PBSCAs pose constraints on it.
● In GBSCAs there exists a large overlap in the resulting clusters. On the 

contrary, most of the PBSCAs produce disjoint clusters.
● Both GBSCAs and PBSCAs are sensitive to the choice of the involved 

user-defined parameters.
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MISCELLANEOUS CLUSTERING ALGORITHMS

Clustering algorithms based on a variety of ideas not included in the above 
main categories have also been developed. Such algorithms are:

❖ Algorithms based on the so-called tabu search method, where the next 
     state of the algorithm is selected from a set of candidate clusterings 

resulting from the current state of the algorithm.
❖ Algorithms inspired by physical laws. 
❖ Algorithms that combine ideas from fuzzy clustering and agglomerative 

algorithms.
❖ Algorithms based on conceptual distances.
❖ Algorithms that employ graph theory-based concepts in a probabilistic 

framework.
❖ Algorithms that combine data partitions resulting from different clustering 

algorithms.
❖ Algorithms that state the clustering problem in information theoretic terms, 

such as entropy.
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❖ Algorithms that employ the wavelet transform (for large data sets with low 
dimensionality).

❖ Algorithms that impose constraints on the data points or on specific 
parameters.

❖ Algorithms using Hidden Markov Models (HMMs).


