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Clustering – definition

Notation:
X = {x1, x2, . . . , xm} (objects)
Number of clusters: c (usually unknown)
Clusters: C1, C2, . . ., Cc

Standard definition

Partition

A partition of a set X is a collection of parts/subsets C1,C2, . . . ,Cc ,
c > 0, such that:

Cj 6= ∅, j = 1, . . . , c

∪cj=1Cj = X

Ci ∩ Cj = ∅, i , j = 1, 2, . . . , c e i 6= j
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Clustering approaches

Sequential: fast and straightforward because the objects (feature
vectors) are presented at most six times to the algorithm. The final
result is dependent of the order of the objects presented. The
resulting clusters are compact and hyperspherical or hyperellipsoidal.

Hierarchical: agglomerative or divisive.

agglomerative: decreasing sequence of the number of clusters.
divisive: increasing sequence of the number of clusters.

Optimization: The number is usually fixed and a cost function is
optimized.

Other: Branch and bound, genetic, stochastic, etc.
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Optimization Algorithms

(minimize a cost function)

k-means
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Cost function

Two basic types:

Functions that measures variance between objects of the same group:
Sum-of-Squared Error Criterion or Minimum Variance criteria.

Functions based on Scatter matrices.
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Clustering based on the minimization of a cost
function

From all possible partitioning, choose the one that minimizes a cost
function

Given m objects, how many k = 1 partitions?

N(m, 1) = m

How many k = m partitions?

N(m,m) = 1

How many k = n, n > m partitions?

N(m, n) = 0
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Clustering based on the minimization of a cost
function

Let Lkm−1 be the set of all possible partitions of m − 1 elements into k
parts.

If we add a new element to this partition:

this element can be added to one of the parts of Lkm−1

this element can form a new cluster to each member of Lk−1m−1
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Clustering based on the minimization of a cost
function

Therefore the number of possible clusterings of m elements in k clusters is:

N(m, k) = kN(m − 1, k) + N(m − 1, k − 1)

N(m, k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jm

Some examples: N(9, 2) = 109584, N(100, 5) ∼ 1068

It is not possible to try all possible partitions!
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Iteractive algorithms

Start with an arbitrary partition (random, for instance)

Repete until a stop criterium is satisfied

slightly modify the partition

verify if the new partition decreases the cost function and substitute of
true.

Return the best partition

The returned solution is not optimal.
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k-means algorithm

1 Choose k points in the feature space (initial centroids).

2 Put each object to be classified to the group whose centroid is nearer.

3 Recompute the centroids after distributing all the objects

4 Repete steps 2 and 3 until convergence of the centroids.
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k-means algorithm: simulation

Nina S. T. Hirata & R. Hirata Jr. MAC0459 / MAC5865 (2020) IME-USP 12 / 38



k-means algorithm: simulation

Nina S. T. Hirata & R. Hirata Jr. MAC0459 / MAC5865 (2020) IME-USP 12 / 38



k-means algorithm: simulation

Nina S. T. Hirata & R. Hirata Jr. MAC0459 / MAC5865 (2020) IME-USP 12 / 38



k-means algorithm: simulation

Nina S. T. Hirata & R. Hirata Jr. MAC0459 / MAC5865 (2020) IME-USP 12 / 38



Algoritmo k-means

There are several k-means alternatives, mainly in relation to the
initial k prototypes.

Different initial partitions can generate different final results.

Disadvantage: specify the number of classes.

Alternative: run the algorithm for different number of clusters
k = 1, 2, 3, . . ., and analyse some critera to choose k .

The algorithm can use other points than the centroid.

It is possible to show that k-means algorithms minimize the “mean
square error” cost function.
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Cost function
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Set of objects to be grouped: m itens

X = {x1, x2, . . . , xm}

Clustering: c clusters

Cj = {xj1, xj2, . . . , xjnj}, j = 1, 2, . . . , c

Centroid Cj : mj (nj itens)

mj =
1

nj

∑
x∈Cj

x

Global mean (m objects)

m =
1

m

∑
x∈X

x =
1

m

c∑
j=1

njmj
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Minimum variance cost

Object: x = (x1, . . . , xd)

Group mean Cj : mj = (mj1, . . . ,mjd)

Difference between x and mj :

||x−mj ||2 = (x1 −mj1)2 + . . .+ (xd −mjd)2

Sum of the squared differences between all objects of the same group
to its mean. ∑

x∈Cj

||x−mj ||2
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Cost based on minimum variance

Sum of the squared differences

Je =
c∑

j=1

∑
x∈Cj

||x−mj ||2

Can be rewritten as:

Je =
1

2

c∑
j=1

njs j

where

s j =
1

n2j

∑
x∈Cj

∑
x′∈Cj

||x− x′||2

In this formulation, it is clear that we are computing the Euclidean mean
squared distance to all pair of points in the group.
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Cost based on minimum variance

Sum of the squared differences cost function (or minimum variance)

Je =
c∑

i=1

∑
x∈Xi

||x−mi ||2

k means minimizes Je cost function

Compact groups

May not be the best option if group sizes are too different
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Cost based on minimum variance

In the equation of Je ,

Je =
c∑

j=1

∑
x∈Cj

||x−mj ||2 =
1

2

c∑
i=j

njs j

s j can be substituted by any other measure.

Specifically, in this equation

s j =
1

n2j

∑
x∈Cj

∑
x′∈Cj

||x− x′||2

the term in red can be substituted by any other similarity measures s(x, x′)

In special
s j = minx,x′∈Cj

s(x, x′)
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Cost based on scatter matrix

Scatter matrix for cluster j:

Sj =
∑
x∈Cj

(x−mj)(x−mj)
t

Within class scatter matrix:

SW =
c∑
i=j

Sj

Between class scatter matrix:

SB =
c∑

j=1

nj(mj −m)(mj −m)t

Total scatter matrix: it does not depend on the partioning

ST =
∑
x∈X

(x−m)(x−m)t
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Pause for an example (J&W, page 57)
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Some facts to think on

Scatter matrix Sj of a class j is proportinal to the sample
convariance matrix of that same class

The eigenvalues and eigenvectors of Sj tell the orthogonal directions
of the higher variance of clusters Sj

The sum of variances (diagonal of matrix Sj) is equal to the sum of
the eigenvalues of Sj

The Within class scatter matrix SW “summarizes” the internal
variance of the classes
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Cost based on scatter matrix

Trace cost:

tr [SW ] =
c∑

j=1

tr [Sj ] =
c∑

j=1

∑
x∈Cj

||x−mj ||2 = Je

trace: sum of the diagonal elements

Diagnonal elements: represent variances in each direction of the feature
space Rd

Minimize the trace of SW means minimize the Within class spreading

tr [SW ] is equivalent to the squared sum cost function
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Cost based on scatter matrix

Instead of minimizing the Within class, we can maximize the between
class matrix

Because ST = SW +SB , maximize tr [SB ] is equivalent to minimize tr [SW ].

Nina S. T. Hirata & R. Hirata Jr. MAC0459 / MAC5865 (2020) IME-USP 25 / 38



Cost based on scatter matrix

Determinant cost:

Jd = |SW | = |
c∑

j=1

Sj |

The determinant of the Within class scatter matrix represents the volume
of the scattering of a cluster.

In many situations it results in clusters that are similar to the trace cost
function.

However, it is not sensible to scaling.
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Cost based on scatter matrix

The eigenvalues λ1, . . . , λd of S−1W SB are invariant to non null linear
transforms.

We can show that:

tr [S−1W SB ] =
d∑

i=1

λi

Therefore, a good criterium is to maximize tr [S−1W SB ]

Invariant cost function

Jd = tr [S−1T SB ] =
d∑

i=1

1

1 + λi
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How to validate the clustering result

Run the algorithm several times, using different parameters

Run different cluster algorithms

Check with area specialists
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Some other thoughs and
algorithms
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Clustering based on density

Clusters are regions of high density.

Basic idea: estimate the density of the points in the space and group
based on density significance

Good for complex shaped clusters

Nina S. T. Hirata & R. Hirata Jr. MAC0459 / MAC5865 (2020) IME-USP 30 / 38



SOM - Self Organized Maps
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SOM - Self Organized Maps

Basic idea: map objects in a high dimensional space to a low
dimensional space making that objects that are near in high
dimension remain near in low dimension.

The low dimension space corresponds to a set of notes
organized in a grid in the plane (map)

Each node of the map has a coordinate (in the plane) and a
vector of weights of dimension d

OBS.: The literature usually presents as SOM as a kind of
neural network
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SOM - Self Organized Maps - Architecture

Orange nodes: BMU (best matching unit), node that has a vector of
weights similar to a given input x ∈ X .

Pink and dark blue nodes: neighbors defined by a window function.

Nina S. T. Hirata & R. Hirata Jr. MAC0459 / MAC5865 (2020) IME-USP 33 / 38



SOM - Self Organized Maps - Algorithm

Initialize the weight of the nodes of the map
Repeat

For each x ∈ X
Let pk be a BMU
Update the BMU and its neighbors p

wki (t + 1) = wki (t) + η(t)φ(p− pk)(xi − wki (t))

until convergence

φ is a window function (kernel function) and η(t) is a learning rate.

wki is the ith component of the weight vector wk associated to node pk in the

map
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SOM - Self Organized Maps

Example: if the weight vector has 3 components, they can be thought as
the R, G, B channes and the map can be “painted” by the corresponding
RGB color.

It is not easy to divide the map in regions: how may colors (groups)? To which group the nodes

in the border are inside (for instance, between green and blue?)

Nina S. T. Hirata & R. Hirata Jr. MAC0459 / MAC5865 (2020) IME-USP 35 / 38



SOM - Self Organized Maps

Example: The original space are several statistics of a country (education,
health, etc)
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SOM - Self Organized Maps
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SOM - Self Organized Maps

Interpretation of a map

Color of the nodes: the intensity represents the
difference between nodes (neighbors), for instance,
the mean difference between the weight vectors.

Dark lines corresponds to discontinuities and light
color regions to similar weight nodes

Each region can be interpreted as a group

We still can apply clustering.
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