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1.6.1. Is interesting to apply EAs to my 
problem?  

• Black box optimization 

 
 What should be the next point? 

f(x) 

x 

Legend: 

    Visited point 

    Candidate point 
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1.6.1. Is interesting to apply EAs to my 
problem?  
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• No Free Lunch Theorem  

 
 Considering all possible problems: 

 

All black box algorithms that do not revisit points will show the 
same average performance! 

 

 Implications: 

 

New black-box algorithm A is better than old black-box algorithm B 
(e.g., random walk without revisiting points) in half of the problems (in 
average) 
 But it is worse in the other half (in average) 

 

 So, why should we bother in creating new algorithms? 

 

1.6.1. Is interesting to apply EAs to my 
problem?  
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• Why are then a lot of people applying EAs and 

obtaining good results? 

 

 In fact, most of the “possible” problems are not interesting  

 

 In general, points in search spaces of real-world problems have 

continuous (and smooth) neighborhood  

 

 In such cases, experience has shown that EAs (and other search 

techniques ) perform well 

 

1.6.1. Is interesting to apply EAs to my 
problem?  
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Scale of “all” (known) problems 
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Random search 

 Special, problem tailored method 

EA 

Goldberg´s Vision (1989) 

1.6.1. Is interesting to apply EAs to my 
problem?  
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1.6.1. Is interesting to apply EAs to my 
problem?  
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EA1 

Michalewicz´s Vision (1996) 
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1.6.1. Is interesting to apply EAs to my 
problem?  

• HOWEVER, BE CAREFUL! 

 

• When EAs (generally) should not be used? 

 

 Instances of problems that can be solved by 

deterministic algorithms in “reasonable” time 

 

Example: The researcher develops a “new” EA and test it in 

instances of the Travelling Salesman Problem (TSP) with 

N=100, 200 and 300 cities 

However, the algorithm Concorde deterministically solves 

instances of the TSP with hundreds of cities in seconds 
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1.6.1. Is interesting to apply EAs to my 
problem?  

• When EAs (generally) should not be used? 

 

 Problems where it is known that a global optimum can 

be found in “reasonable” time 

 

Examples 

Most of the problems with polynomial time complexity, i.e., O(nk) 
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1.6.1. Is interesting to apply EAs to my 
problem?  

• When EAs (generally) should not be used? 

 

 Problems where other optimization algorithms 

(traditional optimization algorithms, other 

metaheuristics, heuristics, …) perform better  

For the given constraints to solve the problem 

 

How do we know this? 

i. Experimental comparison 

 traditional method adopted by most of the researches 

ii. Theory (when possible) 
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• Is it possible to “predict” if applying a given EA to my 

problem will be interesting? 

 In order to answer this question, we should understand how the EA 

works from a theoretical point of view 

 

• When applicable, theory can 

 Provide performance guarantees for the algorithm 

 Examples: runtime analysis 

 Help designing new algorithms, operators, or modifications of the 

known algorithms 

 Help understanding the influence of the algorithm´s parameters 

 Eventually be used to explain phenomena in other areas, e.g., 

Biology 

1.6.2. Introduction to the Theory of EAs 
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• Some criticisms to EAs… 

 “There is no guarantee of convergence to global optimum!” (?) 

 “It is not possible to understand how EAs work!” (?) 

 “It is not possible to understand how the parameter´s setting 

influence the performance!” (?) 

 

• In fact, there is a lot of questions that must be 

answered 
 

 We must not rely (only) on the inspiration of evolution by 

natural selection to justify the use of EAs 

 

 However, some of the criticisms are not exclusive to EAs 

 Example: For all known optimization algorithms, we should be very careful when 

we speak about convergence for algorithms applied to problems in the NP class 
 

 

1.6.2. Introduction to the Theory of EAs 
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• So, why apparently the theory is much well 

understood in other algorithms? 
 

• Difficulties with (a) Theory for EAs 

 EAs are vast and complex dynamical systems with many 

degrees of freedom 

 EAs are generally applied to complex problems with 

fitness landscapes that are difficult to be properly 

modeled 

 EAs involve probabilistic operators 

We often need statistical tools to analyze them 

Results are many times described over average behavior 

 Parallel: a predictive model for biological evolution 

1.6.2. Introduction to the Theory of EAs 
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• In Evolutionary Computation, there are more 

theoretical studies for Evolution Strategies 

 Real codification 

 Most of the papers on Theory deals with well-defined search-

spaces 

 

 

• Runtime analysis (time complexity) 

 Important question: How many iterations until global optima (or 

very good solutions) found? 

 

 http://www.cs.nott.ac.uk/~psxld/seminars/seminar_slides/pkl_seminar.pdf 

1.6.2. Introduction to the Theory of EAs 

15 

http://www.cs.nott.ac.uk/~psxld/seminars/seminar_slides/pkl_seminar.pdf


Computação Bioinspirada - 5955010-1 

• Here, we will discuss theory for Genetic Algorithms 

(GA) 

 

• Some approaches: 

Schema Theorem 

 

GA process investigated as a Markovian Process  

 

GA seen as a dynamical system 

Exact model 

 

Mechanical statistics approach 

 

Fitness landscapes approach 

1.6.3. Theory of GAs: Some Approaches 

16 
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• How do GAs work? 
 

 One explanation for the operation of GAs is the 
Building Blocks Hypothesis 
  

  Building block 
 Short low-order schema with good fitness 

 

Schema 
 Template describing a subset of solutions (strings) with 

similarity in some positions  

 In other words, a schema is a hyperplane in the 
search space 

 

1.6.3.1. Theory of GAs: Schema Theorem 

17 
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• Schemata (considering the binary representation) 

 
 Strings composed by 0, 1, * (“don’t care”) 

 

 Examples 

1.6.3.1. Theory of GAs: Schema Theorem 

000 100 

010 
110 

001 

011 
111 

101 

00* 

1** 
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• Why do we use shemata? 

 
 They represent a subset of solutions (chromosomes) 

instead of only one solution 
The analysis of the population becomes easier 

 

 Some positions of the solutions (genes) may be 
more important to the optimization process than 
others 

 

 Reproduction operators can change a chromosome 
and not change a schema 

1.6.3.1. Theory of GAs: Schema Theorem 
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• Properties of a schema H 

 

 Order o(H)  

Number of fixed positions 

Examples: o( 011*1** ) = 4, o( 0*1*1** ) = 3 

 

 

 Defining lenght  (H) 

Distance between first and last fixed positions 

Examples:  ( *011**1* ) = 5 ,  ( 0*1***1 ) = 6 

 

1.6.3.1. Theory of GAs: Schema Theorem 

20 



Computação Bioinspirada - 5955010-1 

• Holland´s formulation for the Standard GA 

 Standard GA: fitness proportionate parent selection, 

one point crossover, and bit-flip mutation 

 Considering a chromosome of length l that contains a 

schema H. The probability of disrupting the schema 

 

By crossover is: 

 

 

 

By mutation is: 

 

 

 

 

1.6.3.1. Theory of GAs: Schema Theorem 
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• Holland´s formulation for the standard GA 

 Combining with proportionate selection, we have the 

equation for the expected number of individuals 

representing schema H in next generation 

 

 

 

1.6.3.1. Theory of GAs: Schema Theorem 
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Schema Theorem  

 

The number of instance within the population of short low-
order schemata of above-average fitness will increase 
exponentially in subsequent generations 
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1.6.3.1. Theory of GAs: Schema Theorem 

Building Blocks Hypothesis 

 

Short low-order schemata of above-average fitness (building 
blocks) are combined and recombined to form strings with 
potentially better fitness 

• In this way, the complexity of the problem would be 

reduced 

 Instead of building strings with high fitness directly, a procedure 

that requires trying all possible combinations of genes, strings 

each time better would be built by combining the best partial 

solutions found by various strings with lower order 
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• The Two-Armed Bandit Problem 

 

 Consider a machine with two independent arms 

One arm pays an average reward of μ1 (with variance σ1
2 ) while 

the other arm pays an average reward of  μ2  (with variance σ2
2 ) 

Which arm should we explore? 

 

An “optimal” strategy is to exponentially increase the number of 

trials in the best observed arm 

1.6.3.1. Theory of GAs: Schema Theorem 
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• The K-Armed Bandit Problem 

 

 In the GAs, we are not solving the previous problem, 

but a problem where K hyperplanes (schemata) are 

explored simultaneously 

 

 According to Holland, the GA approaches the "optimal" 

strategy to exponentially increase the number of 

attempts of the current best hyperplanes (schemata) 

1.6.3.1. Theory of GAs: Schema Theorem 
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• Arguing pro... 

 
 The building block hypothesis “can” be used to 

explain why some problems are difficult for GAs 

 
Examples 

 

Deceptive Problems: when low-order schemata, 
rather than combining to generate higher-order 
promising schemata, combine to form schemata 
that result in suboptimal solutions 

 

Scaling: when some schemata have very higher 
fitness when compared to others 

1.6.3.1. Theory of GAs: Schema Theorem 
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• Arguing con… 

 

 There are criticisms about the schema theorem and the 

building block hypothesis. Some of them: 

 

 It does not consider the constructive effects of crossover and 

mutation 

 

Due to the use of the estimated fitness of a given schema, the 

theorem says nothing about the future generations from t + 2 

 

Problems designed to be easier for the GA according to the 

building blocks hypothesis (e.g., Royal Road Functions) are 

sometimes easier for other algorithms, e.g., hill-climbing with 

random mutation 

1.6.3.1. Theory of GAs: Schema Theorem 
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• Arguing pro (again)... 

 
 Algorithms and operators can be designed to 

explicitly explore the building blocks 

 
Examples: some Estimation of Distribution 

Algorithms (EDAs) explicitly identify and 
recombine building blocks (gene linkage) 

 

Messy GA  

 

Population-based incremental learning (PBIL) 

 

Compact Genetic Algorithm (cGA)  

1.6.3.1. Theory of GAs: Schema Theorem 
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• Arguing pro (again)... 

 
 One legacy of the interest in schemata: 

application of Walsh transforms to binary GAs 

 

Walsh Transforms 
 

Allow to perform function decomposition for binary 
representation 

Parallel: Fourier Transform decomposes a 
continuous function (signal dependent on time) 

Parallel: Walsh coefficients similar to Fourier 
coefficients (frequencies) 

 

Can be used in theoretical studies 

1.6.3.1. Theory of GAs: Schema Theorem 

29 



Computação Bioinspirada - 5955010-1 

• Initially proposed by M. Vose 
 

• Simple GA is seen as a discrete dynamical 

system 
 

 The Exact Model Approach is also known as Dynamical 

Systems Approach 

 

 Dynamical system 

Mathematical concept in which fixed rules describe the 

dependence on time of a state in a geometric space (state 

space) 

    tt xfx 1

1.6.3.2. Theory of GAs: Exact Model 
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• GA as a discrete dynamical system 
 

 Let n be the (finite) size of the search space 

 If the chromosome has l elements, then n = 2l 

 

 In the exact model, all possible candidate solutions are 

represented in a discrete space with n dimensions 
 

Thus, the current population of the GA can be described as an 

n-dimensional vector 

 

Each element defines the proportion of each candidate solution in 

the population, i.e., p(k) = v(k) / N, where 

The k-th element of v indicates the number of copies of the k-th 

candidate solution in the population of size N 

1.6.3.2. Theory of GAs: Exact Model 
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1.6.3.2. Theory of GAs: Exact Model 

• GA as a discrete dynamical system 
 

 As the sum of elements in p is equal to 1, the vector 

population may be described as belonging to a simplex 

 

 

 

 

 

 Thus, the GA's behavior is seen as a trajectory in a 

simplex 
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• GA as a discrete dynamical system 

 

 The model considers infinite population (exact 

model) 

 

However, GAs with finite population can be analyzed 

 

The deviation (relative to the trajectory for the infinite population) is 

inversely proportional to the population size 

 

1.6.3.2. Theory of GAs: Exact Model 
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1.6.3.2. Theory of GAs: Exact Model 

• Dynamical System of the GA 

 

 

 
 

• For the GA with (bit-flip) mutation and 

proportional selection 
 

 

 

 

U: nxn matrix representing the transitions due to mutation 

F: nxn diagonal matrix with the fitness of each candidate solution 
34 
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35 

Fixed points 

• Dynamical System of the GA 

 Example  

figure adapted from [REEVES & ROWE, 2004]  

1.6.3.2. Theory of GAs: Exact Model 



Computação Bioinspirada - 5955010-1 

• Some observations 
 

 The existence, location and stability of fixed points and 

attractors can be defined by the analysis of the 

generational operator  

 

 For GAs with proportional selection and bit-flip mutation, 

fixed points and attractors are given by the eigenvectors 

of UF 

 

 All population trajectories converge to the main fixed point 

(in which part of the population is in a global optimum) 

In other words: the system is asymptotically stable 

1.6.3.2. Theory of GAs: Exact Model 
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• Some observations 
 

 The other eigenvectors are related to metastable states 

 

They play very important roles in the evolutionary process 
 

They can change the trajectory in the simplex and trap the population for 

generations 

Local optima 

 

 Similar analysis can be made for the case with crossover 

and with other operators 

 

 The exact model allow to understand the effects of 

parameters like population size and mutation rate 
 

 

1.6.3.2. Theory of GAs: Exact Model 
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• Problems 
 

 A very large number of equations to be analyzed 

for practical problem 

In general, applicable for small solution spaces 

 

 The fitness of all candidate solutions must be 

known 

 

1.6.3.2. Theory of GAs: Exact Model 
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• Fitness landscape 
 

 What is a fitness landscape? 

1.6.3.3. Theory of GAs: Fitness Landscapes 

0   0  0  0  0  0  0  0  1   1  1  1  1  1  1  1 

0   0  0  0  1  1  1  1  0   0  0  0  1  1  1  1 

0   0  1  1  0  0  1  1  0   0  1  1  0  0  1  1 

0   1  0  1  0  1  0  1  0   1  0  1  0  1  0  1 
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• Fitness landscape 
 

 The landscape observed for a particular function is an 

artifact of the algorithm used 

In other words: of the neighborhood induced by the operators 

 

 Can be defined by the triple (S,n,f) where 

S: search space 

n(x): neighborhood function 

f(x): fitness function 

 

 In this way, when analyzing the fitness landscape, it is 

essential to analyze the neighborhood structure induced 

by the operators 
 

 

1.6.3.3. Theory of GAs: Fitness Landscapes 
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• Fitness landscape 
 

 How the neighborhood relations are defined? 

 

We can use an adjacency matrix A 

 

Using the diagonal matrix, D, containing the degrees of each 

vertex, we can still define the graph Laplacian 

 

   Δ = A-D 

 

 
 

 

1.6.3.3. Theory of GAs: Fitness Landscapes 
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• Elementary landscapes 
 

 Fitness landscapes that satisfy for all points s the following 

equation 

   Δ f(s) + (C / m) f(s) = 0  

 C is a problem-specific parameter 

 m is the size of the problem instance 
 

 Several combinatorial optimization problems, e.g., TSP, 

have elementary landscapes 

All minima are lower, all maxima are higher than the averaged 

fitness (fm) for all candidate solutions in the space 

Cost to find a local optimum in a maximization problem using 

neighborhood search (under mild conditions on the nature of the 

fitness): O( m log2(fmax/fm) ) 

 
 

 

 
 

 

1.6.3.3. Theory of GAs: Fitness Landscapes 
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• Dynamic Evolutionary Optimization  

 

 EAs applied to Dynamic Optimization Problems (DOPs) 
 

The fitness landscape changes during the optimization process 

 

Example: Evolutionary Robots 

Robots totally or partially designed by EAs  

 In general, when the fitness of the solutions are experimentally 

obtained (e.g., when the individual of the EA defines a control law 

that is tested during a period of time in a real robot), days are 

required for the optimization process 

During this long period, changes often occur: 

    - In the robot. Examples: Battery charge oscillation, faults, … 

    - In the environment. Examples: illumination variation, … 

 

 

 

43 

1.6.4.1. Example: Dynamical Systems 
Approach Applied to DOPs 
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• Problem 

 

 Analysis of the fitness modifications in a dynamic 

problem with evolutionary robots (simulations) 

Problem: simple navigation task  

DOP:  

Faults occur in the robot during the optimization process 

 

The analysis of the fitness modifications in the problems 

studied here, and in other problems too, can help the 

development and analysis of benchmark DOP generators 

1.6.4.1. Example: Dynamical Systems 
Approach Applied to DOPs 
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• Problem 

 Mobile robot with a frontal sensor 

 Controller: l-dimensional binary 

vector (control vector) 

 Indicates the action for each possible 

state 

State: input from sensor and memory of 

last action 

 Fitness of the individual (control 

vector) 

number of  positions occupied by the 

robot during 10 iterations or until the 

robot hits a wall  

45 

1.6.4.1. Example: Dynamical Systems 
Approach Applied to DOPs 
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• Problem 

 

 Model 1 (l=4 bits): two actions 

Move forward and rotate 90 degrees 

 Model 2 (l=8 bits): four actions 

Move forward, rotate 90 or -90 degrees, wait 

 Three faults can occur in the robot 

Fault 1: sensor inputs always equal to zero 

Fault 2: sensor inputs always equal to one 

Fault 3: wrong sensor inputs 

 Each fault represents a different change (DOP) 

 The effects of the changes on the fitness vector were 

analysed and the dynamical system was simulated 

 

 

 

1.6.4.1. Example: Dynamical Systems 
Approach Applied to DOPs 
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Simulation: GA with mutation and proportional selection 
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• k-bounded pseudo-Boolean optimization 

 Example: NK Landscape Model 

Cost function given by 

 

 

 

 

x: solution with size N 

mi: binary mask with size N and K+1 ones  

K: integer controlling the epistasis degree 
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1.6.4.2. Example: Partition Crossover 
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• Example 

 

 N=5, K=1, adjacent neighborhood 

49 

            455344233122511 ,,,,,
5

1
xxfxxfxxfxxfxxff x

x1 x2 x3 x4 x5 

1.6.4.2. Example: Partition Crossover 
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 1-point crossover 

50 

1 0 0 0 0 0 1 0 0 1 

Parent 1   Parent 2 

1 0 0 0 0 1 

Offspring A   Offspring B 

1 0 0 0 

            455344233122511 ,,,,,
5

1
xxfxxfxxfxxfxxff x

1.6.4.2. Example: Partition Crossover 
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• How do we preserve the interaction of the 

solution components in order to allow the 

linear decomposition of the cost function? 

 

 

 

 Solution: we partition the solutions according to the 

interactions and common characteristics of the parents 

- Recombination by Decomposition 

Example: 

   Partition Crossover 

            455344233122511 ,,,,,
5

1
xxfxxfxxfxxfxxff x

1.6.4.2. Example: Partition Crossover 
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x1 x2 x3 x4 x5 
Interaction 

Graph 

Partition 2 
Partition 1 

            

      
     

       3442331222

4555111
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x

x

xxx

x

Parent 1: 01000 

Parent 2: 00101 

x1 x2 x3 x4 x5 Recombination 

Graph 

1.6.4.2. Example: Partition Crossover 
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• Analysis 

 

 The decomposition of the evaluation function 

allows to deterministically find the best among 

2q offspring at the cost of evaluating only two 

solutions 
 

Thus, the cost of finding the best among a number 

of offspring that grows exponentially with the number 

of partitions is linear (if the cost of evaluating one 

solution is linear) 

1.6.4.2. Example: Partition Crossover 

q is the number of partitions 

found 
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1.6.4.2. Example: Partition Crossover 
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1.6.4.2. Example: Partition Crossover 
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1.6.5. Conclusions 

• We must not rely (only) on the inspiration of evolution 

by natural selection to explain how EAs work 

 

• Theoretical studies are necessary 

 

• There are few theoretical studies in Evolutionary 

Computation 

 Main difficulties 

 EAs are vast, non-determistic, complex dynamical systems 

 There is not a general method applicable to all situations  
 We do not know completely the fitness landscape in most of the real-word problems 
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1.6.5. Conclusions 

• However, there are several cases of success 

 Example: runtime analysis for several problems 

 

• Theory, when applicable, can 

 Provide performance guarantees for the algorithm 

 Help designing new algorithms and operators 

 Help understanding the influence of the algorithm´s parameters 

 Eventually be used to explain phenomena in other areas 

 

• Anyway, experimental comparison is essential 
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