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A beam element subjected to
moderate transverse

Moment equilibrium on the beam element yields
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for small slope and moderate displacement



Adopt now the linear elastic material law
o= FEs

and calculate the bending moment across the beam section by
integrating dM = zdF = zodA, ie

O*w
o2’

M=FIr=—-FEI

with [ = f PR 2d A being the inertia moment of the beam cross—
section. Introducing this expression in the equilibrium equation
and disregarding the membrane force we obtain the linear gov-
erning equation of a beam as
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Let us start our study on the dynamics of beams by investigating
the linear elastic beam response in the absence of load, ie f = 0.
This is the case when the beam presents a free motion which, due
to its repetitive nature, is called free vibration. The governing
equation becomes
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which can be solved for some relatively simple, yet practical,
cases.

Note that the beam starts its
motion due to some external
load or initial condition, like
an initial displacement, and it
is then left to vibrate freely.
Observe that here a has units
of m? /s and therefore does
not represent a wave velocity.



Let us assume that the transverse displacement of the beam
can be represented by the product of two functions,

w(x,t) =W(2)T(t).
which. when substituted in the governing equations gives
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One side of this equation depends only on 2 and the other
only on ¢, which is only possible when they are a constant. say
w?, allowing us to write
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These two ordinary differential equations have the solutions

Wi(2z) = ay sin S + ag cos S + azsinh Sz + a4 cosh B
and

T'(t) = Ay sinwt + As cos 3,

. 9 .
with g% = w? / a®. A, and a, are constants to be determined
from the boundary and initial conditions, as the next example
shows.



The next figure shows a shaker to which a beam is connected
on its base via a clamped fixture. Suggest suitable boundary and
initial conditions for the beam and obtain its natural frequencies.

A cantilever beam connected
to a shaker and undergoing
free vibration in the first,
second and third vibration
mode. By each photo there is
the FE result. The respective
measured natural resonant
frequencies are 3.2 Hz, 20.1
Hz and 54.0 Hz, which are in
error no larger than 3.42% in
comparison with the FE
analysis.




erivatives of hyperbolic sine
id co—sine do not change
rnal. Also,

sinh? z + cosh? = = 1.

To solve this problem we need to determine the constants A
and a,, in the above solution. We know that at the support c
this cantilever beam, the displacement and curvature are zero, ¢
W) =0 and dW(0)/dx = 0. Also, the bending moment an
the transverse shear force at @ = L are zero, ie d°W (L)/dz? =
and d*W (L)/da® = 0. Introducing these conditions in W (x
glves

0 1 0 1 | a; ) (0

1 0 1 0 a; | ) O
—sin L —cos 3L sinh L cosh 5L as Sl 0
| —cos L sinfSL  coshBL sinh L | as ) L0

To avoid a trivial solution for this system, its determinan
must be zero, which gives

cos 3L cosh L = —1.



A sketch of the functions cos 2 and —1/ cosh 2, together with a
more refined calculation, will show that they intercept at

B1L = 1.875, BnL~nm/2, n=2357...

Knowing f3,,, the frequencies, called natural, w = 3?c are
obtained for this beam configuration. They are compared to
experimental values in the previous figure, indicating that the

model performs quite well for the first modes of vibration.
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We explore further the problem examined above by determing
an expression for W(a). We need to know the constants a,, for
n = 1,2,..., which can be obtained by expressing the constants
as,as,ay in the above system of equation as a function of aq,
olIvIing

cos B L + cosh B, L
sin B, L + sinh 5, L

Wi (x) = ay |cos Bpx — cosh B,z — (sin Bpx — sinh 3, x)

These are the so called natural modes of vibration. Note
that the constant a; can be obtained only when one impose some
condition to the beam. For instance, at the beam free end we
can set it to W (L) = 5mm and let the beam to vibrate. Using
the above expression, it is then possible to obtain a; and the
actual displacement, which can vield the stresses and strains in
the beam.
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The next table list the natural frequencies and modes of vi-
bration for various supporting cases of single span beams. Note
that the natural frequencies are

wn = B2/EI/m (rad/s)

and for n > 5, one can use \,, = \,,_1+m. The modes of vibration
are given by

o(x)y, = Ciy sin B2 4+ Cyy, cos Bpa + C'sy, sinh 3,2 + Cly,, cosh 3,2,
with 3, = A, /L and

¢, = [(sinh A\, + Asinh A\,,)/(cosh \,, + Bcos \,)]" .
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beam Pt A
configuration|simply sup. clamped free clamped—s.sup. cantilever
frequency sin A =0 |cosAcoshA = 1|cosAcoshA =1|tan A — tanh A = O|cos Acosh A = —1
equation
A1 T 4.7300 4.7300 3.9266 1.8751
Ao 27 7.8532 T.8532 7.0686 4.6941
Ag 3 10.9956 10.9956 10.2102 7.8548
Aa 4 14.1372 14.1372 13.3518 10.9955
modes of
vibration
ot — -1 -1 -1 1
A — -1 -1 -1 -1
B — -1 -1 -1 1
cq — 1.0008 1.0008 1.0008 0.7341
co — 1.0008 1.0008 1.0000 1.0185
c3 — 0.9999 0.9999 1.0000 0.9992
Cy — 1.0000 1.0000 1.0000 1.0000
Cin 1 Cn —Cn Cn Cn
Con 0 -1 1 -1 -1
C3n 0 —Cn —Cn —Cn —Cn
Can 0 1 1 1 1

Natural frequencies and vibration modes equations for various beam
configurations. Adapted from lecture notes by C.A. Nunes Dias, GMSIE—USP.
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