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Let us start by analysing the simplest case of a wave prop-
agating in a straight rod, see next figure. A small compressive
disturbance applied in the rod will, so to say, pushes the mate-
rial ahead, which in turn will move the next material front, and
so on. We have then a compressive propagating pulse, causing
a compressive stress, —a, at, say, x. As the pulse travels, the
stress level at + = x + dx will change from —o to o+ (do/dx)dzx,
such that force equilibrium gives

do 0%u
—oA —dz | A = pAdx—=
o +(J+8x :I:) p $8t2
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where p is the rod density.
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Vector bold notation is not
used in this chapter until
section 0.

Equilibrium of a rod.



Returning now to our previous equilibrium equation and chang-
ing o by Ee, we obtain the so called wave equation

E0*u  0%u

p 02 Ot

We can find the solution of this equation by inspection. Con-
sidering the function

u-=f(:£—\/E7/pt)

and differentiating it twice with respect to time and space, we
can see that such a solution satisfies the wave equation. Another
function that is also the solution of the wave equation is

u=g(:1?+ E/,ot).



Examining close one of these solutions, say u = f, at t = t1
and x = 1, the resulting magnitude is u;. Such a magnitude
is also attained at t = {5 when = = x5, as depicted in the next
figure, so that

H1=f($1-\/E7/ﬁ0t1)=f(I2-\/E7A0t2)a

p ta—t1’

E Ioa — I

implying that the ratio

c=VE]/p




Material E P c v ay Ou
GPa | kg/m® | m/s MPa MPa
Acrylic 3 1180 1594 | 0.35 124 70
Aluminium 70 2700 | 5092 | 0.22 95 110
Beryllium 303 1844 | 12819 | 0.03 240 370
Brass 97 8670 | 3345 | 0.34 112 37
Cast iron 130 | 7810 | 4080 | 0.21 100 1650
Copper 130 | 8930 | 3815 | 0.34 33 210
Diamond 1200 | 3520 | 18464 | 0.20 - 60000
Epoxy resin 2.41 | 2600 963 | 0.40 85 97
Glass 62 2400 | 5083 | 0.25 - 33
Gold i 19300 | 1997 | 0.42 - 100
Ice 9 897 3168 | 0.33 - 1
Iron 211 | 7850 | 5184 | 0.29 100 350
Lead 14 11400 | 1108 | 0.42 19 32
Magnesium 44 1740 | 5029 | 0.35 105 205
Molybdenum | 330 | 1022 | 17969 | 0.38 415 515
Nickel 207 | 8880 | 4828 | 0.31 59 317
Platinum 171 | 21500 | 2820 | 0.39 140 180
Plexiglass 3 1190 1588 | 0.37 80 100
Porcelain 104 | 2400 | 6583 | 0.17 - 130
PVC 3 2500 1095 | 0.40 52 59
Quartz 70 2650 | 5355 | 0.17 - 48
Steel 200 | 7870 | 5041 | 0.29 | 300-1000 | 500-2000
Titanium 116 | 4500 | 5077 | 0.34 880 950
Tungsten 400 | 19250 | 4558 | 0.28 750 980
Uranium 208 | 18950 | 3313 | 0.30 200 500
Zinc 85 7100 | 3460 | 0.33 300 400




Since the material particles change their rest position, there
i1s some straining in the material and, hence, stress. The stress
level caused by a wave propagating in a linear elastic material
can be quantified considering that

u= f(xr—ct) @—g a—u—v——cﬁ
N ’ or Ox’ o oz’
from which it follows F -
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with pc being called mechanical impedance.
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being disturbed by the
sweeping of a wave.

also evident from the previous figure that a longitudinal distur-
bance moving the particles in the same (opposite) direction it
travels is a compressive (tensile) wave. Transverse movement of
particles causes material shearing and the associate waves are
called shear or torsional waves and are not considered here.



Reflection of waves in free
(top) and fixed (bottom)
boundaries. Adapted from
M.A. Meyers, Dynamic
Material Behavior, Wiley,
1994.
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There are many practical examples where, instead of collid-
ing, a given bar may be loaded by some pulse or other initial
condition and its dynamics is of interest to us. We can expand
our analysis of waves in bars by exploring the so called vibration
solutions to the equilibrium equation

E 9%u 1 0%u

which has now the forced term f(x,t). Dropping it for the mo-
ment we can examine the axial free vibration of the bar, whose
displacement depends on time and position and it can be ex-
pressed as the combination of two functions U(z) and T'(¢) such
that,

u(z,t) = U(x)T(t).

Accordingly, the wave equation now reads

2 d*U(z) 1 d*T(t)
U(z) dt2 — T(t) di2

Note that its left side depends only on x, while the right one on
t. This is only possible if these sides equal to a constant term,
that we set as —w? for convenience. This leads to the equations

d?U(z) w?
di2 * c2

U(x)=0



and

d°T(t) 5
T2 tw T(t),
whose solutions are
U(x) = aj cos =4 a9 Sin 22 and T(t) = ag cos wt + a4 sin wt,
c c

giving

u(x,t) = (al cos — + a9 sin E) (a3 cos wt + a4 sin wt)
c c

with the constants a,, as, az, as being obtained from the bound-
ary conditions, ie the way the rod is held in space, and from the
initial conditions, ie the way the rod is set in motion at ¢ = 0,
respectively.
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Consider, as an example of application of the above solution,
a horizontal bar of length L supported by strings and lightly hit
at one of its end. This will set it to vibrate and the aim is to
calculate the natural frequencies and vibration modes of the bar
in its free condition.

The boundary conditions for this case is that of a free—free
bar, meaning that at the extremes there is no stress. Since ¢ =
Ee and € = du/dx, we can write

dU (0,t) dU(L,t)
I d —_— = ).
1 0 an T 0
The first equation at z = 0 implies that
d —
U () — T g 2L + B2 s X — 0 = a =0
dz c c c c

and the second boundary condition yields

o wl
sin— =0,
c
since a1 = 0 implies a trivial solution. The above equation has

the solution
wp L

C

= nm, n=1223,...

and the bar can vibrate at various natural frequencies, each one
associate to the respective natural mode

nimwx

Un(x) = aq cos - H



The complete motion of the bar is given by

nmwr

T (o),

[
u(z,t) = Zal cos
n=1

with 7'(¢) being the harmonic function seen before. Observe that
this solution depends on a, obtained once a known excitation is
applied to the bar

The above example indicates that, for each natural frequency,
also called eigenvalues, there is an associate natural mode of
vibration.

Note the use of

o0

u(w,t) = 3 Un(@)Ta(t),

n=1

ie the bar will vibrate in a way that entails a combination of
the basic vibration modes. This advanced idea is known as
the expansion theorem. A rigorous proof of this theorem is not
given here but we indicate that the eigenvectors are orthogonal
and form a basis in the n-dimensional space. The solution of a
linear dynamic problem is a combination of these eigenvectors,
the weight of each vector being an unknown determined by the
boundary and initial conditions of a given problem.
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A mass G is attached at the free end of a vertical rod fixed
on a ceiling. Evaluate the influence of the mass on the natural
frequencies of the rod.

M — Mode 1
: . ——Mode?

0.00 0.10 0.20 0.3 e ode 3

The figure indicates that the boundary conditions at the bar
support and at the mass extreme are,

u(0,t) =0

and

du(L,t) O%u(L,t)
“ox o

By using them in the equilibrium equations we obtain the tran-
scendental frequency equation

F(L,t) = Ao(L,t) = AE

Bptan B, =m,, n=12,...

with 8, = w,L/c and m, = m/G, the ratio between the rod
mass, m, and the suspended mass, G. As before, each n repre-
sents one of the infinity natural frequencies, an eigenvalue.
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A bar iz verticallv fixed on a ceiling and it has elastic modulus
E, density p and cross section A. At its opposite extreme it is
loaded by a mass (¢ via a massless string, as depicted in the next
fiure. Obtain the dynamic displacement field of the bar when
the string is cut at £ = 0.

L T— A
=3
G

A known boundary condition for this problem is that, at the
support,

u(er =01 =10,

which implies that, in our general solution w(r,t) seen before,
1] = 0.

We also know that, once the string is cut, the bar is set in
motion. The bar end at » = L i3 now free to vibrate and there
is no more stress there, =o that

du(L,t) & w, Wl o
=2 T (0 =0

A vertical bar loaded by a

Mmass.

giving the natural frequencies of the bar as

nwe
T — ﬂ::l 3 E.“
2L’ T

The bar motion reads now

o
i

oo
. mIr )
u(z,t) = Esm ‘_?.J_L (2 coswnt + agsinw,t)

TI.=I

with the constant as being incorporated by o and a4.
We also have that the strain £ caused by the hanged mass, the
har weight not being considered, affects the axial displacement

guch that, at £ =0,
nwTT

ET = 8in Eug,
which can be multiplied by :-.'irl%‘-:,:E and integrated from 0 to L
to give
BeL _
09 = s (DT

Finally, considering that ay = 0 since du(z,0)/dt = 0, we
have the final motion of the bar as

BN —— C08

- L g a1 . mTE  nmel
e E,& A EA T sy 2L

n=1,

where use was made of the fact that the strain is = = o/F =

Gg/EA.

The next figure plots for some elected parameters (L = 1m,
A=1mm? & =1 kg) the motion of a steel bar after the string
is cut.
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In the examples above, loading was imposed to the bar via
an initial condition. It was not necessary to have in the wave
equation the force term, f(z,t). For a forced vibration however,
fi{z, i) comes into play and we need to solve the partial differen-
tial equation

E #u(z.t)
F dr

1 B ﬂﬂu{r, t)
+ P—A_f[:ﬂ.‘,i:l = T

To solve it generically, let us assume, as we did before, that
the solution is of the type u(z.f) = 3} 7, Un(z)T,(f). Substi-
tuting it in the above equation, multiplying by U, (z) and inte-
grating along the bar length, it follows that

— [ E. L dEUn{I:, diTn{t]. L

I
= F'Lﬂ"! | Un(x)f(z.t)dx.

We will see in Chapter 4 that [ U, (r)Un(x) =0forn #m
and [ Un(z)Um(x) = 1 for n = m, ie the natural modes of vibra-
tion form a orthonormal basis, with this orthogonality conditions
being alzo valid for the derivatives of the eigenfunctions. These
properties render the above equation as

d?T,, (t)
di?

L
+w? Tolt) = PLA L Un(z) f(x, t)dz.

whose solution is

L
Talt) = j; U-[z],.,_ﬁE flz, 7)sinw,(t —7)drde.

pAL,
The final sought foreed solution becomes then

u(r t) = iw fL Unlz) fi flz,7)sinwy(tf — 7)drdr.
0

.I'J"'h‘-"n o

n=1

This is known as the

Duhamel integral.
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Obtain the ensued motion of the free—free bar mn the next
figure suddenly pulled in its extreme x = L by a foree F.

We note first that the vibration modes for this free—free bar is
UL (z) = a1 cos nwr/L, with the natural frequencies w, = nwc/L.
Normalizing U, (z) according to

L
f Ug(z)de =1,
]

we have that &y = +/2/L and we ohtain

— sin —(t — T

£l =
u(z, ) AT

The time integral above amounts to £ (1 — cos et} and

pu'l o
the integral along the length is simply U, (z = L) = ﬁ[—l]“
since the foree i= concentrated. Hence, the vibrational motion of
thiz heam is given hy

2LF (— _naT _nwct
~ T2c2pA Z s (] - mT) '

Observe that any force applied to the beam will also move it
ag a rigid hody and this can be quantified by solving the equilib-
rium equation for a rigid rod

daft)

whose solution
F 2
Ep {L

needs to be added to @z, ¢) to give the total motion of the bar

i(t) =

F 2 2LF (—1" LS et
,i) = 1 — —_—
u(zt) 2pAL ?r c* pﬂl Z n* ( o L )

ST [ e [ £ ]
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5 00E-07 4

time (s)

The next figure plots this solution for some specific param-
eters, a 10 mm diameter, 500 mm long aluminium bar under a
force of 10 N. An inset is provided that shows only the vibrational
motion, ie without the rigid body one.
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Demonstracao

Abrir garrafa de vinho

https://www.youtube.com/watch?v=hbQQg53VGGc open a wine bottle
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