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Abstract— The present paper proposes an Evolutionary 

Algorithm (EA) as Artificial Intelligence (AI) for a Real Time 

Strategy (RTS) game. The engine of the game Bos Wars is used 

as a battle system, where the EA is able to create and evolve game 

strategies represented by scripts coded in the LUA language. To 

accomplish this goal, the EA communicates with the game engine 

sending scripts, playing matches and capturing statistical data to 

evaluate its individuals. The preliminary computational results 

indicate a superior performance of the EA that beats Bos Wars’ 

standard scripts.  

Keywords— Evolutionary algorithms, Artificial intelligence, 

Game, Real time strategy games. 

I.  INTRODUCTION  

The present paper applies an Evolutionary Algorithm (EA) 
to generate and evolve strategies for a Real Time Strategy 
(RTS) game called Bos Wars [1].  

The Bos Wars game is about future warfare, where the goal 
is to destroy all the enemies. Furthermore, this game demands 
resource management and action planning to attack other 
opponents. The artificial intelligence of the game uses a sorted 
list of actions (script) executed by non-player characters 
(NPC).  

There are five scripts available with different strategies, 
where the player can choose to play against any one of them. 
The proposed EA will be able to act as an alternative AI, 
generating and evolving scripts that control the NPC actions 
during the games. Thus, the player will play against different 
scripts at each match.  

Real time adaptation of the NPCs behavior can increase the 
level of entertainment [2] and the natural adaptability of the 
EAs can allow finding different and unpredictable strategies 
[3].  

However, the application of EAs as the game AI is not 
limited to make a static NPC strategy. The adaptability of EAs 
can lead the computer to outperform human players, forcing 
them to improve their game ability, making the entertainment 
experience better.  

The authors in [4] argue that playing against adapting AI 
scripts, produced by the application of EAs, can improve 
human player abilities more than if the games are played 
against other humans. 

In the last years, several articles report the use of EAs in 
computer games [5], [6], [7], [8], [9], presenting good results. 
As an example, in [9], EAs are used to construct highly 
competent players for the Reverse game. Furthermore, in [7], 
the authors say that the use of EAs allowed the construction of 
FreeCell solvers that outperform the best FreeCell solvers up to 
date. 

EAs have also been successfully applied in RTS games [2], 
[4], [10], [11] and [12]. Wargus is a RTS game where an EA is 
applied by Ponsen et al [2]. The method acts as a learning 
routine where individuals are defined by states representing 
different possible buildings. The evolutionary process produces 
competent scripts before the game begins (off-line learning) 
and a dynamic scripting algorithm is applied during the game 
play (on-line learning).  

The authors in [10] also use an EA to produce AI in the 
RTS game called Conqueror. The method makes decisions 
about actions that should be executed by NPCs. The presented 
results report a better performance of the EA.  

A navy-style RTS game based on capture the flag is also 
developed in [4] where another EA is applied. The method 
defines simple tactics spatially oriented that are able to control 
the overall strategy of NPCs. The authors report that it was 
more challenging to human players to play against the EA 
strategies than it playing against other human players. 

Another example of the application of EAs to computer 
games is the framework created in [11] to simulate battles 
amongst AI bots for the RTS game StarCraft. The proposed EA 
evolves the strategies executed by these bots.  

A hybrid approach combining a Genetic Algorithm (GA) 
and a Neural Network is presented in [12]. The hybrid method 
creates agents for the RTS game Wargus. The created agents 
are capable of displaying complex and adaptive behavior. 
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The goal of the proposed paper is to expand the work 
presented in [13], which shows that it is possible to use EAs to 
dynamically construct and evolve script strategies for the RTS 
game Bos Wars.  

The present paper introduces another representation of 
individuals as well as tailor-made crossover and mutation 
operators to deal with the proposed representation. The 
preliminary results found against standard scripts of the Bos 
Wars are reported. 

The paper is organized as follows. The Bos Wars game is 
described in Section 2 and the EA is introduced in Section 3. 
The computational results are reported in Section 4 and 
conclusions follow in Section 5. 

II. BOS WARS 

Bos Wars is an open source RTS game containing a C++ 
coded engine with AI scripts coded in the LUA language [14]. 
The game environment is set in the future, where several 
battles amongst different nations can simultaneously happen. 
The players have to plan attacks as well as manage resources. It 
is possible to play against human players or against default 
scripts. 

Each player controls a nation in a given territory on the 
map. The control allows selecting one or more units of their 
nation. These units must perform tasks such as move around 
the map, collect resources, or attack units of the opposing team. 
Thus, the player must keep collecting the resources and plan 
the construction of armies to attack and repel the enemies.  

The resources available in Bos Wars are magma and energy 
that are obtained to allow creating structures and armies. 
Magma pumps are built on hot spots in the map to collect 
magma.  

However, engineer teams can also be used to collect 
magma from rocks. Energy is obtained building a power plant, 
a nuclear power plant or using engineers to collect it from 
trees. 

A total of 14 available structures can be built including 
vaults, power plants, aircraft factories, turrets for defense, 
among others. A total of 15 units are available, such as assault 
tanks and aircrafts.  

The main objective of this game is to destroy all enemy 
units and structures. Figure 1 gives an overview of a battle 
field. 

All actions executed by NPCs are previously defined in 
scripts that work as the AI of the game. There are three 
offensive scripts, one defensive, and one that is more balanced 
between offensive and defensive actions. The player can 
choose to play against one of these five scripts. 

Each script has two sets of instructions. The first set is 
composed of instructions to be executed just once, in the 
beginning of the game. The second set is a loop of commands 
responsible to control NPCs in a second phase. The actions in 
this loop are executed repeatedly until the game is finished. 

 

 

 
Figure 1: Overview of the Bos Wars game battle field. 

 

 

 
Figure 2: Communication between the EA and the game engine 

 

 

The proposed EA was coded in JAVA language and is 
integrated with the Bos War structure as shown by Figure 2. 

The EA creates and evolves several scripts, represented as 
individuals, which are evaluated by playing a single match. 
After the match, statistical data about the match are obtained 
and the individual of the EA is evaluated.  

One notable feature of Bos Wars is the absence of noise on 
matches played among scripts, i.e. Bos Wars does not generate 
a new random seed for each match. This means that, if two or 
more scripts are always selected to play against each other, the 
result is always the same. Thus, the EA can find a winner script 
that will always be better against the script it is playing. 

 

III. THE PROPOSED EVOLUTIONARY ALGORITHM 

The EA proposed in this paper is responsible to create and 
evolve scripts that work as the AI that control construction and 
NPC behavior for the Bos Wars game.  

Each individual will represent a script or a game strategy, 
where each gene is a possible action. The genes are classified 
as army genes or building genes that encode information about 
actions to create armies or actions to construct buildings, 
respectively.  

 



Figure 3 presents the parameters of these two types of 
genes.  

 

  

Figure 3: Representation of genes 

 

In the army gene, it is defined what unit must be created as 
well as its quantity and force. The parameter force is an integer 
value from 0 to 9. This value is used by the EA to identify the 
type of army during the decode process of the gene.  

The decode process is responsible to transform an 
individual into a game script. The building gene has the type of 
structures that will be built, i.e., magma pumps, vaults, power 
plants and aircraft factories, among others.  

As explained, each script of Bos Wars is compounded by 
two set of instructions (actions): one set that is executed just 
once and another set that is executed repeatedly. The 
representation of the proposed individual takes this into 
account.  

Each set of instructions is encoded separately and they can 
be of different sizes. Figure 4 shows a possible representation 
of an individual. 

 

Figure 4: Representation of an individual 

 

There are two chromosomes for each individual. The first 
chromosome has genes with information about actions that will 
be in the beginning of the script, outside of the loop. The 
second chromosome has the actions that will be decoded inside 
the loop of the game script.  

The gene G1 of the upper chromosome can encode the 
action “Build a vehicle factory” in Figure 4, for instance, while 
gene G2 represents the action “Create 3 helicopters units”. 

The information encoded by the proposed individual can be 
completely decoded into a game script. This script is executed 
by a NPC during a match. Thus, all of the genes from the two 
chromosomes of an individual are decoded into a game script 
in LUA language.  

The pseudo code in Figure 5 summarizes the decoding 
process.  

 

Figure 5: Pseudo code for the decoding process 

 

During the decode process, each chromosome is traversed 
from the first to the last gene, and each gene is decoded to one 
or more lines of a game script. The quantity of lines decoded 
depends on of the type of the gene and its position on the 
chromosome.  

The so called Building Genes are decoded into one line of a 
script as illustrated on Figure 6 for the genes G1 and G2. In this 
case, it is only enough to define the type of structures that will 
be built.  

If the gene encodes an Army, it can be decoded into one or 
three lines of a game script. There are some game features that 
need to be taking into account. For example, if a gene in 
position N has the same Force number than gene N+1, it is 
decoded into one line as shown by gene G3 in Figure 6.  

If a gene N is the last gene on the chromosome, or it has a 
different Force number than the gene (N+1), or if the gene 
(N+1) is a Building Gene, gene N is decoded into three lines of 
a game script, as shown by the gene G4 in Figure 6. In this 
case, some specific actions related with the Army need to be 
performed. Details about these actions can be found in [1]. 

 

 

Figure 6: Example of a decoding  

 

1.    begin Decoding(chromo) 

2.       for i=1  to (chromo.size) 

3.            if chromo[i].type = ARMY then 

4.       decodeArmyGene(chromo[i]) 

5.  else 

6.       decodeBuildingGene(chromo[i]) 

7. end if 

8.        end for 

9.    end 



At the end of each match, the fitness value is determined by 
expression (1), where Fitness(t) is the fitness function, Tgame 
is the time the match took and Tmax is the time limit set for a 
match. 

The Fitness(t) calculates a fitness value taking into account 
if a script won or lost the match. A higher value is assigned to 
winner scripts that spent a shorter time to win than other 
winner scripts. On the other hand, a loser script that played 
longer has greater fitness than scripts that quickly lost. 

If the time limit (Tmax) is reached, there is no winner in the 
match. Thus, the individual being evaluated is assumed to be a 
loser and the enemy is named the winner. The idea is to 
consider a tie match a defeat for the EA when playing against 
other scripts.  

 

 

 

The pseudo code of the proposed EA is presented in Figure 
7. 

 

Figure 7: Pseudo code for the EA. 

 

To improve the initial scripts, the method evolves a 
population of scripts previously selected by an off-line learning 
phase that is responsible to provide a better initial population to 
the on-line evolutionary process. Initially, two populations with 
the same length are randomly created.  

Next, these two populations evolve through eight 
generations with their individuals playing against each other. If 
a tie match happens in this case, both individuals receive the 
same fitness value (0.5). 

The evolutionary process executed by each population 
follows independently steps described in Figure 7. In this case, 
for each match, an individual of the other population will be 
selected as an enemy script to play against and evaluate an 
individual of the evolving population.  

At the end of this initial (off-line) evolutionary process, the 
individuals with the best fitness value from both populations 
are selected to compose the initial population of the on-line 
evolutionary process. Thus, a learning phase can be executed 
before the game actually begins (off-line), in the attempt to 
select efficient scripts to be played against during the game. 

The evolutionary process that performs matches against 
other players (enemy) happens in fact after the initial 
population has been created and improved by off-line 
evolution.  

In this second phase, a new enemy is chosen (in line 2 of 
Figure 7). This enemy could be a pre-defined game script (such 
as any one of the five already included in Bos Wars), a script 
generated by the EA (as in the learning phase), or a human 
player.  

Every individual of the initial population plays one match 
against that enemy (line 3), then its fitness value can be 
calculated (line 4). This value will be used latter by the 
selection method (line 7). 

For the new generation, a total of population size-1 new 
individuals are created (line 6). A roulette wheel is applied as 
selection operator to determine two parents (line 7). Thus, the 
parents with higher fitness values have more chance to be 
selected.  

However, an elitism strategy is also applied in this step. 
The individual with the highest fitness value is always selected 
as the first individual for both selection methods at the first 
time, i.e. when i=1 in line 6.  

The crossover operator (line 8) is applied over the two 
selected parents chosen in the selection phase. Two crossovers 
methods were evaluated to see which would work best with the 
representation of individual proposed in this paper: uniform 
and one-point crossover. In both operators, chromosomes that 
encode actions outside the loop as well as chromosomes that 
encode actions inside the loop can only be recombined with 
chromosomes of the same type  

In the uniform crossover, each gene of the produced 
individual has 50% of chance to be inherited from one of the 
parents.  

If the chromosome of one parent is larger than the same 
chromosome in the other parent, the procedure follows the 
larger chromosome until its end, with 50% of chance of each 
gene to be copied to the resulting chromosome. 

In the one point crossover, a random cut point is defined for 
each chromosome. This random value is determined taking into 
account the chromosome with the smallest length.  

The genes before the cut point are inherited from one parent 
(randomly defined) and the genes after this point come from 
the other parent.  

1. begin EA(population)  

2.     enemy = chooseEnemy() 

3.     playMatch(pop,enemy) 

4.     calculateFitness( child) 

5.     while (stopping criteria not reached) 

6.        for i=1 to (populationSize-1) 

7.             parents  pop.selectParents() 

8.             child    crossover( parents ) 

9.             mutation( child, mRate ) 

10.             playMatch(child,enemy) 

11.             calculateFitness( child) 

12.            pop.insertion( child, counterMatch) 

13.        end for 

14.      pop.update() 

15.     end while 

16. end 



Figure 8 shows an example of the application of the 
uniform crossover. 

 

 

Figure 8: Example of uniform crossover operator. 

 

In the mutation phase, each offspring has a probability, 
given by the mutation rate, to have one of its genes changed 
(line 9). If an individual is to be mutated, its two chromosomes 
can be modified. A total of four types of mutation operators 
were proposed: 

• Swap: two genes are randomly selected to exchange 
positions with each other. 

• Change: the parameters in the gene are modified. 

• Removal: the gene is removed from the 
chromosomes. 

• Addition: a new gene is created and inserted in a 
random position in the chromosome. 

The number of mutations to be performed over the 
individual is randomly selected, so more than one type of 
mutation can be executed at the same time. The mutation is 
exemplified in Figure 9, where swap, insertion and remove 
mutations are applied in Child. 

The new individuals are always inserted in the intermediate 
population (line12) that has a total of 2*population size – 1. 
After all new individuals have been inserted; the population is 
resized (line 14) to population size, where the worse 
individuals are discarded. 

 

   

Figure 9: Example of mutation operator. 

 

 

IV. COMPUTATIONAL RESULTS 

 

The EA was set with a population of seven individuals and 
0.5 of mutation rate. The individuals were initialized with 
different lengths of chromosomes. Chromosome size for 
actions outside the loop can range from 7 to 120 genes, while 
the chromosome size for actions inside the loop ranges from 7 
to 25 genes. All these values were obtained based on some 
empirical tests previously conducted. 

Each computational test reported in this section was 
repeated 10 times to evaluate the performance and stability of 
the EA. Therefore, the results reported takes into account the 
average performance of the method.  

The first studied assessment is on the type of crossovers 
applied over the proposed representation of individuals. In 
these tests, two EAs are set to compete against each other, 
playing 50 matches where they control their NPC teams on Bos 
Wars.  

One EA is set to execute uniform crossover and the other 
EA executes one-point crossover. The other values of EA 
parameters are seven of population size and 0.5 of mutation 
rate. The roulette wheel is applied as selection.  

In this experiment, there is no off-line learning phase and 
both methods starts with the same initial population randomly 
generated. Figure 10 shows the moving average, where each 
point depicted in the chart is the average of the last 5 values. 
These values are the average fitness obtained in each match 
taking into account the 10 executions of the EA.  

 

 

 

Figure 10: Uniform crossover vs. One-point crossover 

 

It is shown in Figure 10 that uniform crossover 
outperformed one point crossover, when applied in the 
proposed representation of individuals.  

The EA with uniform crossover always outperforms one-
point crossover after 26 matches, and the most part of its 
moving average values are in the interval [0.6;0.7]. During the 
50 matches, repeated 10 times for each execution, the uniform 



crossover wins 57% of the matches; one-point wins 38% and 
5% are tied matches. 

In the next experiments, the EA was executed with 7 
individuals, uniform crossover, 0.5 of mutation rate and 
roulette wheel selection.  

The method plays now against the three most difficult 
standard scripts of Bos Wars. Previous work [13] showed that 
the strategies named as Default, Tank Rush and Blitz were 
harder to beat by EAs than the other two included in the game. 

First, the EA was evaluated against each script separately, 
where the stopping criterion adopted is the first victory reached 
by the EA. The aim of this strategy was to evaluate how long 
(how many matches) it takes to the EA to generate a script able 
to outperform a game script.  

As stated before, there is not noise in the game; therefore, 
this winner script evolved by the EA will always beat the game 
script. During each execution, the EA plays 50 matches against 
a game script. A total of 10 executions were performed.  

Table I presents the performance of the EA, showing the 
minimum, maximum and average number of matches 
necessary to beat each one of the scripts. 

 

 

Table I. Number of matches to find a winner individual fighting against 
each one of the game script 

  Script 

  Default 

Tank 

Rush Blitz 

Min. 1 1 1 

Max. 7 27 36 

Avg. 3 7 8 

 

The results indicate that the EA needs to play a small 
number of matches to evolve a script able to outperform those 
available in Bos Wars.  

The minimum number of matches necessary to outperform 
all three game scripts was only one match. This means that the 
learning phase of the method was able to produce an initial 
population containing individuals that already beat the scripts 
provided in the game. 

The proposed method had no problems to beat the Default 
script where only 7 matches (maximum) in average were spent 
to generate a better script.  

On the other hand, the Blitz script was harder to beat, and it 
took 36 matches in the worst case for the EA to win. On 
average, a total of 10 matches were enough for the EA to 
defeat the game scripts. 

The next experiment aimed to simulate a human player 
playing against the EA scripts. If human players lose a match 
they usually change the strategy to counter the AI of the game. 

Thus, a routine was developed to simulate a player that always 
changes the strategy every time the EA wins.  

In this routine, one of the three scripts (Default, Tank Rush 
and Blitz) is randomly chosen to play against the EA. If the EA 
loses a match, the selected game script remains playing while 
the EA continues generating new individuals to compete. If the 
EA wins the match, the current individual will be kept to play 
another match and a new enemy script is randomly chosen.  

The goal of this experiment was to find a robust individual, 
which can beat the three scripts of the Bos Wars game. The 
stopping criterion of each test was to play 200 matches or to 
find an individual able to win against the three scripts.  

The random choice of game scripts does not select the same 
script. For instance, if the EA individual wins Blitz, the next 
possible choice is against Default or Tank Rush. If Tank Rush 
is selected and the EA individual wins again, the next option to 
be selected is only Default. If this individual wins the Default 
script, than the EA execution is finished. Otherwise, a new 
individual is generated by the EA to play against Default and 
the steps explained before are repeated. 

Moreover, the fitness function for this experiment was 
modified so that the value returned is the average of the fitness 
values of the three matches played, against each one of the tree 
scripts.  

Suppose that one new individual wins two matches, but it 
loses the third one. In this case, its fitness value is determined 
as the average of the fitness value, obtained using equation 1 
(in section 3), in the three matches played by this individual. 
Thus, this average will include the fitness value related with the 
two victories and one defeat.  

Figure 11 shows the number of matches necessary to find 
this robust individual, i.e. the EA script that wins the tree game 
scripts sequentially. 

 

 Figure 10: Number of matches to find the robust individual. 

 

The EA found this robust individual in 9 out of 10 
executions, where less than 60 matches were necessary. Table 
II shows the number of matches required for the EA to beat 
one, two and three scripts in sequence. 

 



 

Table II. Number of matches to find a winner individual fighting against 
three scripts randomly selected 

  Min. Max. Avg. 

1 script 1 24 7 

2 scripts 2 171 30 

3 scripts 3 Not Found 37 
 

The minimum number of matches in Table 2 reveals that a 
robust individual was already evolved in the initial population 
in some executions.  

In this case, the initial population evolved during the 
learning phase already generated one individual that was able 
to win the three game scripts sequentially. 

In the worst case, the method spent 24 matches to beat one 
script and it took longer to win sequentially two scripts. This 
situation is the third execution shown on Figure 10, where the 
sequence of three victories was not reached.  

However, on average, the method took 7 matches to the 
first win, 30 matches to sequentially beat two scripts and 37 to 
find the winner script. The average values did not take into 
account the third execution results. 

 

V. CONCLUSION 

 

The paper presented preliminary results applying an EA to 
produce (evolve) scripts that act as artificial intelligence, 
controlling NPCs in a real time strategy game called Bos Wars. 
The proposed EA introduces a representation of individual with 
tailor-made crossover and mutation operators.  

The performance of the proposed EA was first evaluated 
when uniform or one-point crossovers were separately applied 
over the proposed representation of individuals.  

The results showed that uniform crossover outperformed 
one-point crossover. The representation of individuals encodes 
information about actions to be executed during the matches.  

The uniform crossover was more able to exchange this 
information, producing more diversity and generating better 
individuals than one-point crossover. Thus, this method was set 
as crossover in following experiments. 

Next, the EA was validated against the hardest standard 
scripts available in the Bos Wars game. First, the performance 
of the EA was evaluated against each game script.  

The method was able to evolve a script that outperformed 
all the other three game scripts, spending a reduced number of 
matches on average.  

In several experiments, the off-line learning phase of the 
proposed approach itself was able to generate a very capable 
script, able to defeat the Bos Wars ones.  

This means that the method can provide AI control scripts 
with superior performance than those available in the game 
with very few generations or number of matches. 

The last experiment tried to simulate the behavior of a 
human player, changing the strategy every time the EA wins. 
The main idea was to verify the EA ability to find a robust 
individual able to win the three scripts.  

Although the method did not find this robust individual in 
one of the tests, in the other nine executions, a very robust 
individual that was able to beat all other three scripts was found 
in less than 60 matches.  

On average, the method spent around 37 matches to win the 
three scripts. These results indicate the potential adaptability of 
the EA to strategy changes. The method seems to learn quickly 
from its defeats, evolving the scripts even when the opponent 
strategy changes.  

As future work, the EA will be evaluated against human 
players. An adaptation of the proposed EA to the Wargus game 
is also under development. 
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