Appendix D **Equations of Motion in Cylindrical Coordinates**

The equations of motion of an incompressible newtonian fluid with constant μ , k, and c_p are given here in cylindrical coordinates (r, θ, z) , which are related to cartesian coordinates (x, y, z) as in Fig. 4.2:

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$ (D.1)

The velocity components are v_r , v_θ , and v_z . Here are the equations:

Continuity:

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(v_\theta) + \frac{\partial}{\partial z}(v_z) = 0$$
 (D.2)

Convective time derivative:

$$\mathbf{V} \cdot \nabla = v_r \frac{\partial}{\partial r} + \frac{1}{r} v_\theta \frac{\partial}{\partial \theta} + v_z \frac{\partial}{\partial z}$$
 (D.3)

Laplacian operator:

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}$$
 (D.4)

The *r*-momentum equation:

$$\frac{\partial v_r}{\partial t} + (\mathbf{V} \cdot \nabla)v_r - \frac{1}{r}v_\theta^2 = -\frac{1}{\rho}\frac{\partial p}{\partial r} + g_r + \nu \left(\nabla^2 v_r - \frac{v_r}{r^2} - \frac{2}{r^2}\frac{\partial v_\theta}{\partial \theta}\right)$$
(D.5)

The θ -momentum equation:

$$\frac{\partial v_{\theta}}{\partial t} + (\mathbf{V} \cdot \nabla) v_{\theta} + \frac{1}{r} v_{r} v_{\theta} = -\frac{1}{\rho r} \frac{\partial p}{\partial \theta} + g_{\theta} + \nu \left(\nabla^{2} v_{\theta} - \frac{v_{\theta}}{r^{2}} + \frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta} \right) \quad (D.6)$$

Equations of Motion in Cylindrical Coordinates 831

The *z*-momentum equation:

$$\frac{\partial v_z}{\partial t} + (\mathbf{V} \cdot \nabla) v_z = -\frac{1}{\rho} \frac{\partial p}{\partial z} + g_z + \nu \nabla^2 v_z$$
 (D.7)

The energy equation:

$$\rho c_p \left[\frac{\partial T}{\partial t} + (\mathbf{V} \cdot \nabla) T \right] = k \nabla^2 T + \mu \left[2(\epsilon_{rr}^2 + \epsilon_{\theta\theta}^2 + \epsilon_{zz}^2) + \epsilon_{\theta z}^2 + \epsilon_{rz}^2 + \epsilon_{r\theta}^2 \right]$$
(D.8)

where

$$\epsilon_{rr} = \frac{\partial v_r}{\partial r} \qquad \epsilon_{\theta\theta} = \frac{1}{r} \left(\frac{\partial v_{\theta}}{\partial \theta} + v_r \right) \\
\epsilon_{zz} = \frac{\partial v_z}{\partial z} \qquad \epsilon_{\theta z} = \frac{1}{r} \frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z} \qquad (D.9) \\
\epsilon_{rz} = \frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} \qquad \epsilon_{r\theta} = \frac{1}{r} \left(\frac{\partial v_r}{\partial \theta} - v_{\theta} \right) + \frac{\partial v_{\theta}}{\partial r}$$

Viscous stress components:

$$\tau_{rr} = 2\mu\epsilon_{rr}$$
 $\tau_{\theta\theta} = 2\mu\epsilon_{\theta\theta}$
 $\tau_{zz} = 2\mu\epsilon_{zz}$

$$\tau_{r\theta} = \mu\epsilon_{r\theta}$$
 $\tau_{\thetaz} = \mu\epsilon_{\thetaz}$
 $\tau_{rz} = \mu\epsilon_{rz}$
(D.10)

Angular velocity components:

$$2\omega_{r} = \frac{1}{r} \frac{\partial v_{z}}{\partial \theta} - \frac{\partial v_{\theta}}{\partial z}$$

$$2\omega_{\theta} = \frac{\partial v_{r}}{\partial z} - \frac{\partial v_{z}}{\partial r}$$

$$2\omega_{z} = \frac{1}{r} \frac{\partial}{\partial r} (rv_{\theta}) - \frac{1}{r} \frac{\partial v_{r}}{\partial \theta}$$
(D.11)