
2. Fundamental steps in structural mechanics

It is easy to recognize that all structures in nature are three-dimensional.
However, the reader has surely also encountered structures in simple forms
such as an assemblage of geometrically slender members. As we discussed in
the previous chapter, these simplified forms lead directly to models that are in
accordance with the hierarchical modeling process. In fact, there are a number
of structural mechanics mathematical models such as bars, beams, plates and
shells, among others, that provide a convenient and efficient way to model
structural behavior for design and analysis purposes. These mathematical
models will be discussed in the following chapters due to their importance in
the structural modeling process.

The objective of this chapter is to address some fundamental conditions
that should be met whichever structural mathematical model is used. The
discussion will be placed initially in a very general setting − the motion of
a deformable body − and we will extract fundamental conditions which lead
to “static equilibrium”. The simplest structural mathematical model − the
truss model − is then studied to exemplify, in a simple setting, the basic
steps associated with the formulation and solution of structural mechanics
problems. These steps are then systematized leading to the modern matrix
approach of analysis.

2.1 General conditions

There exist some fundamental general conditions regarding the analysis of a
structure which we present in this section.

2.1.1 Motion of a deformable three-dimensional body

Let us consider the motion of a three-dimensional body in 3-D space. The
body can be idealized as a collection of particles which are assumed to have
a mass density. At a given time, the set of positions occupied by the body
material particles which defines a region in 3-D space is referred to as a
configuration. In Figure 2.1 we show two configurations 0V and tV .

The configuration 0V represents the configuration at the onset of the
motion, i.e., for time t = 0, which is also referred to as the undeformed
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Fig. 2.1. Two configurations of a deformable body in a selected stationary Carte-
sian coordinate system

configuration, and tV stands for a generic deformed configuration1, i.e., for
time t. We denote by 0S and tS the boundary surfaces associated with 0V
and tV .

We adopt a Lagrangian description of the motion, i.e., we “follow” the
complete motion of the material particles, from time 0 to time t. The position
of a particle at time t is given by2 tx = x

(
0x, t

)
where 0x is the position

vector of this particle at time t = 0.
The motion of the body is governed by the action of the “rest of the uni-

verse” onto the body. This action is represented by forces which are generi-
cally referred to as externally applied forces. These may partly be unknown,
namely, when displacements of the body are prescribed, see below. There are
two kinds of externally applied forces. There is the field of forces per unit
of volume represented by tfB (tx, t) , called body forces. The most common
example of such a field is given by gravity acting on the body material par-
ticles. And there are externally applied forces on the surface of the body tS
represented by a field of tractions − forces per unit of surface area − denoted
by tfS (tx, t). These forces typically arise as a consequence of the contact of

1 In the 20th century, continuum mechanics was also presented as a mathematical
theory referred to as rational continuum mechanics, see Truesdell, 1977 and
references therein. Although we recognize the importance of these works, we
keep the mathematics in our presentation as simple as possible

2 Since t is an argument to our function, we could have simply written x = x
(
0x, t

)
to describe the particle position at time t. However, we choose to use the no-
tation tx = x

(
0x, t

)
with the left superscript t to emphasize that we consider

the configuration at the specific time t. This approach is also followed for many
other quantities, see also Bathe, 1996
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the body with other bodies, that is, the surrounding media, and included are
here the effects of the restraints applied to part of the body’s surface.

Let us define the resultant of all external forces applied to the body at
time t by

tR =
∫

tV

tfB d tV +
∫

tS

tfS d tS (2.1)

and the resultant moment at time t about the system origin O by

tMO =
∫

tV

tx × tfB d tV +
∫

tS

tx × tfS d tS. (2.2)

Here, tR, tMO are respectively called the external force and moment resul-
tants.

The motion of the body is governed by two principles. The first one is the
principle of linear momentum which states that

tR =
d

dt

∫
tV

tρ tẋ d tV (2.3)

where tρ (tx,t) is the mass density function at time t and tẋ =d tx/dt is
the material velocity at tx. The second principle, the principle of angular
momentum, is given by

tMO =
d

dt

∫
tV

tx× tρ tẋ d tV. (2.4)

These two principles need to be satisfied, in any motion, in an inertial
reference system3.

The principle of linear momentum for the dynamics of a point mass is
Newton’s 2nd Law, i.e., R = d

dt
(p) where p is the linear momentum, p = mv,

with m the point mass, v its velocity and R the resultant of the forces acting
on the point mass. We note that the right-hand side of equation (2.3) gives
the time derivative of the vectorial sum of the linear momenta of the material
particles of the body.

The principle of angular momentum for a set of point masses is given by
MO = d

dt

∑
i xi×mivi where MO is the resultant moment of all forces acting

on the point masses mi about the origin O and xi and vi are the position
and velocity of point mass i, respectively. Of course, the right-hand side of
equation (2.4) represents the integrated effect for the mass particles in the
continuum.

We emphasize that the fields of forces tfB and tfS represent all the influ-
ence of the “rest of the universe” on the motion of the body considered. Note
3 For structural and solid mechanics applications a reference system which is either

at rest or in rectilinear motion with constant velocity with respect to the planet
Earth can be taken as inertial
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that this general statement includes the very common situation in which the
motion of a part of the body’s surface is restrained. The physical devices
which constrain the motion of the body’s surface also belong to the “rest
of the universe” and their effect on the body’s motion also results into a
field of surface tractions. These physical devices are generically referred to as
restraints or supports.

Corresponding to these concepts, let us denote by tSu that part of the
body’s surface tS which has its motion restrained and by tSf the complemen-
tary part of the body’s surface. Therefore, on tSf there are the interactions
with other bodies represented by surface tractions but no restraints. The
restraints on tSu give rise to surface tractions which are referred to as reac-
tive surface tractions, or mostly, simply as reactions. This model situation
is schematically summarized in Figure 2.2. The surface tractions on tSf and
the body forces tfB are the external loads.

Fig. 2.2. Restrained body under external actions

In the above description we seem to have assumed that on tSu all dis-
placements (into the X, Y, and Z directions) are restrained. However, in
three-dimensional analysis, the particles on the surface tSu have three in-
dependent displacement degrees of freedom and only some of them may be
restrained. For example, a particle may be prevented from moving into di-
rections X and Y and free to move into direction Z. Hence, the definition
of tSu and tSf given above should be generalized and we define tSu and tSf

for each displacement degree of freedom. That is, we define tSu and tSf for
the displacement degree of freedom into the direction X and also into the
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directions Y and Z. Therefore, a given material particle may belong to tSf

for some displacement degree of freedom and to tSu for another degree of
freedom.

2.1.2 Properly supported bodies

A solid4 is properly supported if the supports prevent rigid body motions for
any external loading. Hence, in this case the displacements of the material
particles can only result from some straining of the material.

According to this definition, a properly supported rigid body can not
display motion since rigid body motions are prevented and straining of the
material can not occur. This concept can be also used to characterize a prop-
erly supported deformable body: indeed, assuming that this deformable body
were rigid, if this rigid body can not display motion, then the deformable body
is properly supported.

Considering a rigid body which is properly supported, we can conclude
directly from equations (2.3) and (2.4) that tR = 0 and tMO = 0 since the
velocity field is always zero (tẋ = 0). Here, we note that while a constant
velocity field also leads to tR = 0 and tMO = 0, kinematic restraints that
prevent rigid motions represent of course the sufficient condition for a rigid
body to display no motion for any externally applied loading.

When assessing whether a deformable body is properly supported or not,
we frequently investigate if the associated rigid body is properly supported
because this is usually simpler.

In practice, we frequently find that a number of solids are connected by
joints. In these cases the above concepts are also directly applicable, but each
individual solid — considered just like the single solid above — must then
be also properly supported by the rest of the assemblage. If this is not the
case, despite the fact that global rigid motions of the whole assemblage are
prevented by the supports, the assemblage of solids is said to contain one or
more internal mechanisms. Corresponding to each internal mechanism there
is an independent rigid motion that the solids can undergo while being still
connected at the joints.

In all these cases when rigid motions are possible, we sometimes also
simply say that the solid or the assemblage of solids is unstable (see Section
8.3 for a further discussion).

4 The notion of a body encompasses both solids and fluids. In this book we are
interested only in solids and suppose that the reader has an intuitive understand-
ing of the behavior of deformable solids when contrasted with the behavior of a
fluid. Frequently we use the term “body” with the implicit understanding that
we are actually considering a solid
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2.1.3 Internal actions

Consider next a generic part of a properly supported body in the con-
figuration t with volume ΔtV and total surface area ΔtS. Part of that
surface area ΔtS is the result of having sliced ΔtV from the total body
(refer to Figure 2.3). When subjected to external loads the deformable body
develops internal forces. Let us represent these internal forces, which are given
per unit of area, by tt. We postpone a more detailed discussion of these inter-
nal forces per unit of area − the stresses − until the next chapter. In Figure
2.3 a typical situation is summarized where the isolated part with all actions
on it is shown. The figure showing the isolated part is referred to as a “free
body diagram”.

Fig. 2.3. Representation of a generic isolated part of the body showing the internal
forces per unit of area: the “free body diagram”

Considering ΔtV , the principles of linear and angular momenta are, of
course, directly applicable as long as we consider all the forces acting on ΔtV
and ΔtS including the field tt. The forces tt are now part of the “rest of the
universe” acting on the body ΔtV (and indeed can be thought of as forces
tfS). Hence, the above discussion is directly applicable: the body5 considered
is simply ΔtV instead of tV .
5 Actually, we could have introduced the principles of linear and angular momenta

for any part of the body, since all that matters to establish (2.3) and (2.4) is
to represent all the actions of the “rest of the universe” on whatever body we
consider: any body considered will always be a part of the universe
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2.1.4 Assumptions for static analysis

Consider a properly supported body which is initially at rest and not sub-
jected to external actions. Assume that the external loads are then applied
very “slowly” from zero to their final values such that the induced accelera-
tions tẍ and velocities tẋ can be neglected, that is, the dynamic effects are
negligible. These assumptions characterize static analysis and, then, equa-
tions (2.3) and (2.4) simplify to

tR = 0 (2.5)

and

tMO = 0. (2.6)

Equations (2.5) and (2.6) are the principles of linear and angular momenta
for static analysis. In this case, the variable t (used for “time”) should be
interpreted as a label used only to specify the external loading at time6 t.

A useful concept is that of a system of forces in static equilibrium. A
system of forces including body forces and surface tractions is said to be in
static equilibrium in the configuration at time t if tR = 0 and tMO = 0.
Hence in static analysis, the force system of all external actions on the body
(due to all externally applied loads and all reactions) is to be always in static
equilibrium (due to (2.5) and (2.6)).

Finally, we note that if (2.5) is satisfied and (2.6) is satisfied with respect
to a point O, then (2.6) is also satisfied when we select any other point O′

instead of O. In fact, since tR = 0 and

tMO′ = tMO − rOO′ ×t R

where rOO′ is the vector from O to O′, we obtain tMO = tMO′ . Hence,
the resultant moment about O′ is equal to the moment about O. This result
implies that if a system of forces is in static equilibrium the moment resultant
about any point is zero.

Of course (2.5) and (2.6) also apply to the generic part of the body ΔtV ,
but as pointed out above, tt must then be included as actions from the “rest
of the universe” onto this body part. Hence, in static analysis the condition
is that the force system given by tfB, tfS and tt acting onto any part of the
body is in static equilibrium. This fact will be used throughout the book.

2.1.5 Assumptions for a linear static analysis

In addition to considering static conditions (and not dynamic effects), most
of this book is concerned with situations for which the material internal
6 Of course, strictly, time is always present and can not be “switched off ”, and

hence “t” is a convenient label to specify the loading
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force-displacement relationships are linear and the loads are such that the
body displacements are very small; indeed we can assume in the analysis
that the displacements are infinitesimally small. As a result, when we use the
linear and angular momentum principles given by equations (2.3) and (2.4),
we assume that the deformed configurations are geometrically the same as
(identical to) the undeformed configuration. This means that the equilibrium
of the body is considered neglecting all body displacements − that is, as if
the body did not displace.

With these assumptions

tR =
∫

0V

tfB d 0V +
∫

0S

tfS d 0S (2.7)

tMO =
∫

0V

0x × tfB d 0V +
∫

0S

0x × tfS d 0S. (2.8)

We note that all integrals are using the undeformed configuration.
In general, in linear static analysis we are only interested in the final

configuration resulting from the applied loading. In such case, there are only
two configurations of interest, the initial configuration − that prior to the
application of the loads − and the deformed configuration reached due to
the application of the loads. When we assume this situation, we drop the left
superscript t associated with time.

2.1.6 Summary

Before we proceed to the next section, we would like to summarize the most
important points discussed:

• The motion of a deformable body was characterized in a very general set-
ting, i.e., a body of arbitrary shape was considered undergoing arbitrary
motions.

• The interaction of the body with the “rest of the universe” was charac-
terized by fields of forces and displacement restraints. The fields of forces
include forces due to the restraints.

• Two general principles, the principle of linear momentum and the principle
of angular momentum were stated; they govern every motion of the body
(and of any part thereof).

• The concept of a properly supported body was introduced. The concept is
based on purely kinematic conditions and reflects the idea that a properly
supported deformable body can experience displacements due only to the
straining of its material fibers, i.e., an associated rigid body displays no
motion for any applied loads.

• The assumptions of linear static analysis were introduced.
• The concept and conditions for static equilibrium were given.
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These general concepts and facts are applicable to any structural system.
Indeed, they provide the theoretical framework upon which the mathematical
models presented in this book will be built.

Until now we mentioned structures and structural systems without a pre-
cise definition of “a structure”. In fact, we relied on the intuitive understand-
ing of the reader. We can now better characterize a structure or structural
system.

We define a structure or a structural system as an assemblage of three-
dimensional deformable bodies. Although this definition encompasses all
structures, the modeling of bodies as three-dimensional frequently does not
lead to the most efficient mathematical models to predict their behavior.
Fortunately, in many cases, deformable bodies possess specific characteris-
tics that allow a more effective modeling. These characteristics are linked
to the geometries of the bodies, the kind of external loading, the boundary
conditions and the connections between bodies. The more effective modeling
uses these characteristics to establish displacements and force flow assump-
tions which lead to the various mathematical models of structural mechanics.
These mathematical models are the subject of the forthcoming chapters.

In the next section we study a simple structure − the truss structure. In
a truss, the basic “bodies” that together make up the structure are slender
bodies, the truss elements connected and only loaded at frictionless hinges.
The ability to analyze a truss structure is of course of practical value but in
presenting the general framework for truss analyses, we shall also introduce
and explore the fundamental conditions which are always part of the formula-
tion of every structural problem, namely: equilibrium, constitutive behavior
and compatibility.

2.2 The analysis of truss structures − to exemplify
general concepts of analysis

In order to convey the objectives outlined above, we start by characterizing
a truss structure and then we apply the fundamental conditions introduced
in Section 2.1 to a typical truss structure.

2.2.1 Model assumptions

We define a truss structure as an assemblage of slender prismatic solids of
constant transverse cross-section which are called bars, and −
• The bars are connected to each other at frictionless pin joints (detailed

later on).
• All external loading is applied as concentrated forces to the joints.
• The truss structure is only restrained at the joints.
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Fig. 2.4. A truss structure in the XY plane

In order to fix ideas let us consider the truss structural model in Figure 2.4.
The structure is located in the XY plane and only loaded in that plane. Hence
all actions take place in the XY plane (and we can refer to the structure as a
“planar truss”). The truss bars are represented by straight lines which meet
at the joints represented by the small circles. We shall refer to the joints as
nodes; actually, more accurately, each node represents a joint. The supports
are connected directly to nodes 1 and 2 and the external load is given by the
concentrated force applied (also directly) to node 4.

In Figure 2.5 we show the detail of the connection represented by node
3. We consider not only the model representation used in Figure 2.4 but
also a physical representation that gives the reader more insight into the
pin-type joint behavior of a truss connection. Although the physical joint
representation is still schematic, we can visualize the pin and how the bars
are connected through the pin. The kinematics of the bars and the joint are
assumed to be such that:

• The frictionless joint does not restrain the rotations of the bars.
• The lines representing the truss bars pass through the axes of the bars and

the center of the joint.
• The bars displace with the joint.

2.2.2 Kinematic conditions for a properly supported truss

As we discussed in Section 2.1.2, we can identify whether an assemblage of
solids and, hence, a structure is properly supported and does not have an
internal mechanism by (first) assuming that the elements of the structure are
rigid (where in a truss structure the joints are still assumed to be frictionless).
If then the rigid structure and any part thereof can not undergo any motion,
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Fig. 2.5. Representation of a truss joint

the actual structure is properly supported and does not possess an internal
mechanism.

Considering a truss structure, we should assume that each bar is rigid
and verify whether a rigid body motion of the truss as a whole, or of any of
its members, or of any of its parts is not possible.

Consider bars 1, 2 and 3 of the truss in Figure 2.4. They form a triangle
and since each bar is assumed to be rigid, if bars 1, 2 and 3 were to move,
they would have to do so as a rigid triangle. Namely, a triangle with sides
of fixed lengths maintains its shape. For bars 3, 4 and 5 the same argument
holds. Since bar 3 is common to both “rigid” triangles, the whole assemblage
of bars, i.e., bars 1 to 5 would behave as a rigid body.

Now, to examine if the assemblage of bars could have a rigid motion, we
need to consider that the structure is supported. Hence, we can immediately
conclude that the assemblage considered as rigid can not move since node 1
is fixed and a rotation about node 1 is prevented by the support at node 2.

Therefore, by kinematics alone, we conclude that the truss model of Fig-
ure 2.4 is properly supported and does not have an internal mechanism, and
structural displacements can only be due to the straining of the bars. Al-
though we consider here a very simple truss structure, this kinematics based
approach can be applied to trusses of any complexity to arrive at a correct
assessment of whether a truss structure is properly supported and does not
have an internal mechanism. Note that this kind of analysis is independent
of the external loading acting on the structure.
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Fig. 2.6. Truss with reactions introduced explicitly

2.2.3 Equilibrium conditions for a truss model

Next, we detail how the “static equilibrium” condition can be applied to the
truss structure to obtain the reactions at the supports and the internal forces
of the truss bars.

Let us consider the equilibrium condition applied to the whole truss (this
would correspond to taking V ≡ ΔV in the terminology for the solid body
considered in Figure 2.3). Introducing the reactions as shown in Figure 2.6
and imposing the equilibrium conditions R = 0 and MO = 0, we obtain∑

FX = 0, X1 = 0∑
FY = 0, Y1 + Y2 − P = 0∑
M1 = 0, Y2 · a − P · 2a = 0.

In the above equations we are introducing the notation
∑

FX and
∑

FY to
represent the summation of all forces in the X and Y directions respectively,
and

∑
M1 represents the summation of the moments of the external forces

about node 1. We obtain

Y2 = 2P and Y1 = −P.

Next we impose the equilibrium condition to a generic bar of the truss (in
Figure 2.3, this would correspond to taking ΔV as the bar in consideration),
as shown in Figure 2.7. Here we also show the internal forces that could
possibly arise. We note that no concentrated moment is introduced since we
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Fig. 2.7. Generic truss element, bar, of a truss. Shown are the magnitudes and
directions of the forces acting onto the bar j and onto the nodes k and m (from the
bar)

assume that the bars are free to rotate at the nodes. Hence, no such moment
can arise.

Imposing R = 0 and MO = 0 for the bar and using the local axis system
shown in Figure 2.7, we arrive at∑

Fx = 0, H2 − H1 = 0, H1 = H2∑
Fy = 0, V1 + V2 = 0, V1 = −V2∑

MO = 0, V2 · � = 0, V2 = 0

and hence V1 = 0 also.
Therefore, each bar can only carry an axial force. We denote this force in

bar j by Nj and a positive value is associated with tension. For the generic
bar considered Nj = H1 = H2. This situation is shown in Figure 2.8.

If we next consider the equilibrium of the truss nodes, we can determine
the forces in the truss structure of Figure 2.4.

In Figure 2.9 we show all nodes isolated from the rest of the truss struc-
ture. As we mentioned earlier, see Figure 2.3, any part of the structure must
be in equilibrium and so must be each joint, that is each node. Hence, we
can suppress the central portions of the truss bars and introduce the ax-
ial forces of the bars onto the remaining parts of the structure, namely the
joints/nodes. Then, each node shown has to be in equilibrium and, in this
example, we can directly solve for all bar forces.

In Figure 2.10, we also include the bars and indicate once more the con-
dition that any part of the structure must be in equilibrium.
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Fig. 2.8. Schematic representation of force in bar j and its action onto the end
nodes

Fig. 2.9. Nodes of the truss structure considered as “free bodies”

Note that moment equilibrium is trivially satisfied for each joint since the
lines of action of the forces pass through a point (the node). The condition
R = 0 implies for node 4
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Fig. 2.10. Exploded view of bars and joints of the truss in Figure 2.4, and two
typical parts that are in equilibrium

∑
FX = 0, −N4 − N5

√
2

2
= 0

∑
FY = 0, −P − N5

√
2

2
= 0

and hence

N4 = P and N5 = −P
√

2.

Consider next the equilibrium of node 3

∑
FX = 0, N4 − N1

√
2

2
= 0

∑
FY = 0, −N3 − N1

√
2

2
= 0.

Using that N4 = P yields

N1 = P
√

2 and N3 = −P.

We note that the equilibrium of bar 4 has already been implicitly taken into
account. Next, let us impose the equilibrium of node 2
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∑
FX = 0, N5

√
2

2
− N2 = 0

∑
FY = 0, Y2 + N5

√
2

2
+ N3 = 0

which yields

N2 = −P and Y2 = 2P.

Finally, considering node 1∑
FX = 0, X1 + N1

√
2

2
+ N2 = 0

∑
FY = 0, Y1 + N1

√
2

2
= 0

which yields

X1 = 0 and Y1 = −P.

Note that the values of X1, Y1 and Y2 are exactly the reactions already
calculated by considering the global equilibrium of the complete structure (see
Figure 2.6). This is the consequence of the important fact already mentioned
but repeated now:

If equilibrium of each joint and each bar of a truss structure is satis-
fied, then also global equilibrium of any part the structure and hence of the
complete structure is directly satisfied.

2.2.4 Constitutive behavior for a truss bar

Note that we did not consider so far the material of the truss bars; indeed the
bars of the truss in Figure 2.4 could be of steel or wood, and the same forces
would be transmitted. However, if − in general − we would like to evaluate
the displacements of the nodes of any truss structure − an information of
engineering interest − we need to characterize and quantify for each bar
the relation between the internal force and the induced deformation. This is
achieved by means of the constitutive behavior for each truss bar.

Consider a generic truss bar carrying the axial force N as shown in Figure
2.11.

The relevant quantity to characterize locally internal forces is the stress.
For the one-dimensional truss bar the stress is constant over the section and
normal to it. Therefore, it is given by τ = N/A as shown in Figure 2.12.

The material behavior of the truss bar is depicted in Figure 2.13. Here
τ = Eε where ε is the strain

ε =
Δ�

�
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Fig. 2.11. Internal force in a generic truss bar; the force is the same at any section
of the bar

Fig. 2.12. Stress in a truss bar

and E is Young’s modulus.
This stress-strain relationship is usually referred to as Hooke’s law and

materials with this stress-strain property are called “linear elastic”. The “lin-
ear” refers to the fact that the stress is linearly proportional to the strain.
The “elastic” means that the same (τ , ε) curve is followed for any loading or
unloading causing an increase or a decrease in the stress/strain values. This
property also means that for a given strain the stress value is unique and
directly obtained from the (τ , ε) diagram.

Considering our truss model, if we assume that Hooke’s law holds we can
relate the axial force acting in a bar to the elongation of the bar, i.e.,

τ =
N

A
= E

Δ�

�
⇒ N =

EA

�
Δ� or Δ� = N

�

EA
.

2.2.5 Compatibility conditions for a truss

So far we discussed the equilibrium requirements of a truss structure and
the constitutive relation of the bars. Considering any truss structure, the
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Fig. 2.13. Tension test data for a truss bar. Hooke’s law

forces in the truss elements (bars) extend or shorten the bars and yet the
bars must remain connected at the frictionless pins and some of the pins are
restrained to move. The fact that the bars (the structural members) remain
connected and the displacement boundary conditions need to be satisfied −
for any externally applied loading − leads to the compatibility conditions:
these conditions ensure that in any motion the structure “remains intact”
(all elements stay connected) and the displacement boundary conditions are
satisfied.

Considering again our truss structure in Figure 2.4, the change of length
of each bar is given by

Δ�i =
Ni

EiAi
�i. (2.9)

Using the Δ�i, i = 1, · · · , 5, we can now find the final positions of the nodes
using the compatibility conditions: that the bars remain connected at the
nodes and the structure satisfies the displacement boundary conditions.

We call this complete method of analysis the elementary method for an-
alyzing truss structures: the determination of the internal forces of the bars
and reactions as accomplished above and the evaluation of the nodal dis-
placements using (2.9) and kinematics. The example below is an application
of the elementary method.

Example 2.1

Use the elementary method to solve the truss problem of Figure 2.4.
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Table 2.1. Data obtained for the truss in Figure 2.4 considering a = 2m, Ei =
2.1 × 1011N/m2 (steel), Ai = 1.439 × 10−3m2 for i = 1, · · · , 5 and P = 60kN .
Forces are given in Newtons and lengths in meters

Bar Ni Δ�i = Ni
EiAi

�i ε = Δ�i
�i

�i + Δ�i

1 84853 7.942 × 10−4 2.808 × 10−4 2.8292

2 −60000 −3.971 × 10−4 −1.986 × 10−4 1.9996

3 −60000 −3.971 × 10−4 −1.986 × 10−4 1.9996

4 60000 3.971 × 10−4 1.986 × 10−4 2.0004

5 −84853 -7.942 × 10−4 −2.808 × 10−4 2.8276

Solution

For the evaluation of the forces of the bars and the reactions we refer to
Section 2.2.3.

For the evaluation of the displacements, we summarize in Table 2.1 the
data obtained by applying equation (2.9). This data is used for the calculation
of the nodal positions of the deformed truss structure.

In Figure 2.14, we describe in four steps the determination of the deformed
configuration of the truss. The change of length of the bars is magnified 300
times for visualization purposes. Note that the bars extend/shorten and freely
rotate.

In Figure 2.14a, we show the final position of bar 2, which is obtained
by introducing its shortening and taking into account the restraints. Hence
nodes 1 and 2 are already in their final positions. We also show the stretching
of bar 1.

In Figure 2.14b, we show the shortening of bar 3, which is shown in an
intermediate position, considering the displacement of node 2 but not the
rotation of bar 3. The final position of node 3 is also indicated, and it is
obtained by the rotation of bars 1 and 3 around nodes 1 and 2, respectively.

In Figure 2.14c bars 1, 2 and 3 are in their final positions and bars 4 and
5 are shown in intermediate positions considering their extension/shortening
and the displacements of nodes 2 and 3, but not the rotations of bars 4 and
5. We indicate how the final position of node 4 is obtained by the rotations
of bars 4 and 5 around nodes 3 and 2, respectively.

Finally, in Figure 2.14d the deformed configuration of the complete truss
structure is shown. With the steps detailed in Figure 2.14 and using the data
of Table 2.1, it is possible to evaluate all nodal displacements of the truss.

�
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Fig. 2.14. Determination of the deformed configuration of a truss structure

Note that we used in Example 2.1 the important assumption of linear
analysis: the displacements of the bars and their rotations are infinitesimally
small.

In Figure 2.15a we schematically show a generic bar rotating about A for
two conditions: large and infinitesimally small rotations. In Figure 2.15b, we
detail the assumption of an infinitesimally small rotation. With θ assumed
infinitesimally small, the displacement δ due to the rotation is assumed to
take place at the 90 degree (right) angle to the bar. Also, the length of the
deformed bar �d and the magnitude of the displacement δ are given by

�d =
�

cos θ
and δ = �d sin θ.

which when θ is infinitesimally small (using cos θ = 1 and sin θ = θ) leads to

�d = � and δ = �θ.

Note that the bar does not change its length due to the rotation (and hence
any force carried by the bar is not changed due to the rotation). For example,
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Fig. 2.15. Rotation of a generic truss bar. (a) Large rotation and (b) Infinitesimally
small rotation

bars 1 and 3 when rotated about nodes 1 and 2, respectively, to meet at node
3 in the deformed configuration, see Figure 2.14b, do not change their lengths
due to the rotations. We use this assumption throughout the book, except in
Chapter 8.

Another important assumption due to considering that the displacements
are infinitesimally small − already mentioned (see Section 2.1.5) − which
we want to recall here once more is that the equilibrium conditions (for the
bars, the joints, and any part of the truss) are established and satisfied in
the original configuration of the structure. Hence, although the truss nodes
and bars moved (see Figure 2.14 for the truss in Figure 2.4) the equilibrium
conditions assume that these displacements are so small that they can be
entirely neglected.

We finally note that as we use the linear model assumptions and solve
a truss problem, as in Example 2.1, the calculated nodal displacements and
bar rotations may not come out to be infinitesimally small. This fact is re-
vealing that the solution of the linear model is only an approximation to
the response of the actual physical problem − as the hierarchical modeling
process emphasizes.

However, for actual engineering truss structures, the nodal displacements
and bar rotations predicted by the linear model are mostly small as can be
verified examining the numerical solution values and, hence, in most cases,
the linear model is adequate for design purposes. If the linear model predicts
large nodal displacements and bar rotations, then a nonlinear analysis may
be necessary, see Chapter 8.

The objective of Example 2.1 was to present the elementary method for
solving truss structures and to give insight into the use of constitutive rela-
tions and compatibility conditions to calculate the displacements of a truss
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structure. Of course, as the number of the bars increases − and there may
be many bars in truss structures − the application of the above methodology
becomes very cumbersome. We will see in Section 2.3, that the use of matrix
methods leads to a much more efficient solution.

2.2.6 Statically determinate and indeterminate trusses

For the truss of Figure 2.4, the equilibrium conditions alone allowed us to
determine the reactions and the forces in all bars. This kind of structure
is termed statically determinate since the equilibrium conditions alone are
sufficient to determine all bar forces and reactions.

However, this is not always the case. To understand when we can obtain
the axial forces from equilibrium only and when not, we take a step back and
consider two very simple truss structures.

Let us consider the truss structure shown in Figure 2.16a. Of course, this
structure is properly supported.

Fig. 2.16. a) Two-bar truss structure. R1 and R2 are concentrated applied loads
and U1 and U2 are the node 1 displacements. Nodes and elements are numbered;
b) Equilibrium of node 1 for the two bar truss

The structure can be solved by considering the equilibrium of node 1, as
shown in Figure 2.16b, which leads to∑

FX = 0, R1 − N1 = 0 ⇒ N1 = R1∑
FY = 0, R2 − N2 = 0 ⇒ N2 = R2.

The bar elongations are given by
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Δ�1 =
N1

E1A1
�1 = 2.53968×10−4 m, Δ�2 =

N2

E2A2
�2 = 1.90476×10−4 m.

and

U1 = Δ�1, U2 = Δ�2.

Fig. 2.17. a) Three-bar truss structure. The properties of bars 1 and 2 are as in
Figure 2.16 and E3 = 2.1× 1011 N/m2, A3 = 3A1; b) Equilibrium of node 1 for the
three-bar truss

Let us now add to the structure of Figure 2.16 an inclined bar as shown in
Figure 2.17a. Obviously, this new structure is still properly supported. The
equilibrium of node 1, as shown in Figure 2.17b, now yields∑

FX = 0, −N1 − N3

√
2

2
+ R1 = 0

∑
FY = 0, −N2 − N3

√
2

2
+ R2 = 0

which leads to

N1 + N3

√
2

2
= R1, N2 + N3

√
2

2
= R2. (2.10)

Therefore there are infinitely many values of N1, N2 and N3 that satisfy
the equilibrium conditions. However, if we consider the actual structure (the
physical problem) − which admits as a mathematical model the truss model
of Figure 2.17a − we would, of course, be able to experimentally measure
unique forces in the truss bars for given loads R1 and R2. It is easy to conclude
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that the equilibrium conditions in equation (2.10) alone are not sufficient to
determine the truss internal forces and the reactions. The truss of Figure
2.17a is a simple example of a statically indeterminate structure: for such
structures we also need to consider the constitutive relations of the materials
used and the compatibility conditions to solve for the internal forces.

Suppose we choose values for N1, N2 and N3 which satisfy (2.10). These
values would then satisfy the equilibrium conditions. Of course, these val-
ues could then be used to evaluate the bar elongations Δ�1, Δ�2 and Δ�3.
However, in general these elongations will not lead to a valid deformed con-
figuration, i.e., the ends of bars 1, 2, and 3 would not connect to a single
point, the supposedly new position of node 1. Therefore, the compatibility
condition that the bars remain connected at node 1 would be violated.

In Figure 2.18a, we show bar elongations that lead to a kinematically ad-
missible configuration, i.e., a compatible deformed configuration. Of course,
there is a relation that should be satisfied by Δ�1, Δ�2 and Δ�3, namely the
compatibility condition. In Figure 2.18b, we show the region around node 1
magnified and we can write

tanα =
Δ�1 − Δ�3 cos α

Δ�3 sin α − Δ�2

which for α = 45◦ leads to the compatibility condition

Δ�1 + Δ�2 = Δ�3

√
2. (2.11)

Using the constitutive relations, equation (2.11) can be written in terms of
the axial forces

N1

E1A1
�1 +

N2

E2A2
�2 =

N3

E3A3
�3

√
2.

Introducing the data given in Figure 2.17a

N1 +
N2

2
− 2N3

3
= 0. (2.12)

Equations (2.10) and (2.12) contain the requirements of equilibrium, com-
patibility and material behavior. We can solve and obtain

N1 = 11.34 kN, N2 = 31.34 kN, N3 = 40.52 kN.

The nodal displacements are now given by

U1 = Δ�1 =
N1

E1A1
�1 = 7.203 × 10−5 m

U2 = Δ�2 =
N2

E2A2
�2 = 9.951 × 10−5 m

Summarizing, we recognize that, since the three-bar truss structure is a
statically indeterminate structure, we had to use the following conditions
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Fig. 2.18. Compatibility of displacements for node 1

• equilibrium
• compatibility
• constitutive

in order to solve for the internal forces in the structure. Once the internal
forces have been calculated, the nodal displacement can be obtained as in the
analysis of a statically determinate truss structure. These three conditions
are the fundamental conditions that govern the behavior of every problem in
structural mechanics.

Fig. 2.19. New truss structure obtained by adding bar 6 to truss in Figure 2.4

In order to further elaborate on statically indeterminate structures, we
show in Figure 2.19 the truss of Figure 2.4 with an extra bar linking nodes
1 and 4. The truss of Figure 2.19 is no longer statically determinate. Con-
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ceptually, the change from the statically determinate to the statically inde-
terminate structure is very similar to the change from the two-bar structure
(Figure 2.16a) to the three-bar truss structure (Figure 2.17a). In fact, we can
study the truss of Figure 2.19 as shown in Figure 2.20: the displacement of
node 4 will depend on the value of N6 and this bar force extends/shortens
bar 6. The compatibility condition (that the bar 6 must fit into the distance
between nodes 1 and 4 in the deformed geometry) can only be enforced by
also using the constitutive relations of the bars.

Fig. 2.20. Another representation of the previous truss

As for the three-bar truss in Figure 2.17, nodal equilibrium alone would
not give the bar forces of the truss of Figure 2.19. We would again obtain a
system of equations with one degree of indeterminacy.

This problem is solved later on in this chapter using the matrix method
of analysis which provides a much more efficient solution procedure.

2.3 Matrix displacement method for trusses

In this section we introduce the matrix displacement method for planar truss
structures. It is important to note that the concepts discussed in the context
of trusses are also directly applicable to more complex structural analyses,
like when considering frame structures. Therefore, the objective of this sec-
tion is not only to present an efficient method for solving truss structures
of arbitrary complexity but also to introduce the main concepts of matrix
structural analysis.

We recall that the fundamental conditions of equilibrium, compatibility
and constitutive behavior translate in the case of trusses, subjected to joint
forces only, to:
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• Every node should be in equilibrium considering the forces of the truss bars
that connect to that node and, possibly, external forces applied directly to
the node. Each bar is automatically in equilibrium as it only carries an
axial (constant) force.

• The axial deformations of the truss bars must lead to a compatible de-
formation of the complete structure taking into account how the bars are
linked to each other and to the supports. The joints (nodes) do not deform.

In the matrix formulation, the above conditions of equilibrium, constitu-
tive behavior and compatibility are directly − and in a very elegant manner
− enforced.

2.3.1 Truss bar stiffness matrix in its local system

We begin by establishing a relation between the end displacements and forces
of a truss bar.

Let us use the convention given in Figure 2.21 for the end forces and
displacements. The symbol ∼ over the quantities is used to show that a local
coordinate system, aligned with the bar axis, is adopted. Then

Δ� = ũ2 − ũ1, N = EA
Δ�

�
=

EA

�
(ũ2 − ũ1)

f̃2 = N, f̃1 = −N

with N positive when the bar is in tension.

Fig. 2.21. Local end-displacements and forces acting onto a truss bar

The equations above can be written in matrix form as follows⎡⎣ EA
� −EA

�

−EA
�

EA
�

⎤⎦⎡⎣ ũ1

ũ2

⎤⎦ =

⎡⎣ f̃1

f̃2

⎤⎦ .

Let us define

ũ =

⎡⎣ ũ1

ũ2

⎤⎦ , f̃ =

⎡⎣ f̃1

f̃2

⎤⎦

k̃ =

⎡⎣ k̃11 k̃12

k̃21 k̃22

⎤⎦ =

⎡⎣ EA
�

−EA
�

−EA
�

EA
�

⎤⎦
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where ũ is referred to as the column matrix of element nodal point displace-
ments, f̃ as the column matrix of element nodal point forces (acting onto the
bar) and k̃ as the element stiffness matrix. All quantities are referred to the
local coordinate system. The term “element” is representing a truss bar and
is also used in later chapters to represent other structural members.

It is instructive to interpret the physical meaning of the coefficients in
the stiffness matrix. For that purpose, let us impose a unit displacement at
the left end and restrain the displacement to be zero at the right end, i.e.,
ũ1 = 1 and ũ2 = 0. Then⎡⎣ k̃11 k̃12

k̃21 k̃22

⎤⎦⎡⎣ 1

0

⎤⎦ =

⎡⎣ f̃1

f̃2

⎤⎦
leading to k̃11 = f̃1 and k̃21 = f̃2. In other words, the stiffness coefficient
k̃11 = EA

� is the force that must be applied in the displacement degree of
freedom ũ1 onto the bar to impose a unit displacement when ũ2 = 0. The
coefficient k̃21 = −EA

� is the force (reaction) at the right end onto the bar,
i.e., the force of the restraint onto the bar. Of course, the interpretation of
k̃11 as a stiffness coefficient is now evident since it gives the magnitude of the
force necessary to produce a unit displacement. An analogous interpretation
can be given for k̃12 and k̃22 associated with imposing a unit displacement at
the right end and fixing the left end. These results are summarized in Figure
2.22.

Fig. 2.22. Interpretation of the stiffness coefficients as forces applied onto the bar

Suppose now that we would like to solve the problem depicted in Fig-
ure 2.16 with the aid of the truss element stiffness matrix. This is a simple
problem to demonstrate the matrix method of analysis.

Considering bar 1, we note that at its right end the node can displace not
only along the axial direction but also along the transverse direction (the Y
direction). In Figure 2.21, a nodal transverse displacement was not considered
as a degree of freedom of the truss bar because there is no stiffness provided
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by the bar to such displacement. As a consequence, for example, if in Figure
2.22b there were no support at the right end, which prevents the transverse
displacement, the bar could rigidly rotate about the left support. Of course,
in the problem of Figure 2.16 the stiffness for the transverse displacement at
the right end of bar 1 is provided by bar 2, which shares the node with bar
1, because for bar 2, such nodal displacement is along its axial direction.

Considering that a truss structure always consists of an assemblage of
truss bars, we add, as shown in Figure 2.23, the transverse degrees of freedom
for a generic truss element. Then the truss element stiffness matrix is given
by

k̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
EA
� 0 −EA

� 0

0 0 0 0

−EA
� 0 EA

� 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.13)

Fig. 2.23. Degrees of freedom of a truss bar

The physical meaning of the second and fourth rows and columns being
zero is that there is no stiffness associated with the degrees of freedom given
by ũ2 and ũ4. In fact, the equation

k̃ũ = f̃ (2.14)

tells that for any values of ũ2 and ũ4 (which would amount to vertical dis-
placement and rotation of the bar) there is no induced internal bar force and
there are no induced nodal forces (see also Figure 2.15 and the corresponding
discussion).

Of course, the stiffness matrix given in equation (2.13) is useful as long
as the truss bar is part of an assemblage and the stiffness for the transverse
degrees of freedom ũ2 and ũ4 is provided by other bars.

2.3.2 Solution of a two-bar truss structure using the matrix
method

Returning to the problem of Figure 2.16, if we obtain the displacements of
node 1, which is the only node with free degrees of freedom, the problem is
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solved. Let U1 and U2 be such displacements as shown in Figure 2.24 (the
same notation for these displacements has been used before). Note that we
use capital letters to denote that these displacements are degrees of freedom
defined for the whole structural assemblage. In this way, we distinguish such
degrees of freedom from the individual bar degrees of freedom for which we
use lower case letters. Note also that U1 and U2 (the structure degrees of
freedom) are here referred to the global coordinate system X, Y .

Fig. 2.24. Definitions for the two bar truss structure

In Figure 2.24, the degrees of freedom of bars 1 and 2 are also shown.
The arrow on a bar axis defines the orientation of the bar and establishes
a local (bar attached) numbering for the end nodes of the bar. The table
included in Figure 2.24 shows, for each bar, the relation between the global
node numbering (for the structure) and the local node numbering of the bar.
We observe that the numbering of the displacements and forces of the bar
starts always from the local node 1.
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To solve the problem, we need to enforce equilibrium of the global node
1. We see that the end displacements and forces of the bars 1 and 2 (the
quantities identified by a curl) at the global node 1 are not referred to a
single coordinate system. Therefore, to facilitate the enforcement of nodal
equilibrium, it is convenient to define the bar end displacements and forces
in a common coordinate system which is chosen to be the global one. These
nodal displacements and forces for bars 1 and 2 in the global system are also
shown in Figure 2.24. The ∼ symbol over the lower case letters is dropped
since we are considering a global system for these quantities.

The element stiffness matrices in the global system are, in general, differ-
ent from those in the local system. Later on, in this section, we will derive
a general expression which relates these stiffness matrices. However, for bars
1 and 2 in this problem we can easily obtain the global matrices as shown
below. In fact, for bar 1 since the local and global systems are the same, we
directly write

k(1) = k̃(1)

where again the k(1) (without the ∼ symbol) indicates that we are using the
global system, and therefore

k(1)u(1) = f (1).

For bar 2, we have ũ1 = u2, ũ2 = −u1, ũ3 = u4 and ũ4 = −u3 with analogous
relations for the forces. Using

k̃(2)ũ(2) = f̃ (2).

and the relations between the global and local quantities, we obtain⎡⎢⎢⎢⎢⎢⎢⎣
E2A2

�2
0 −E2A2

�2
0

0 0 0 0

−E2A2
�2

0 E2A2
�2

0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u2

−u1

u4

−u3

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
f2

−f1

f4

−f3

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.15)

Re-ordering the equations leads to⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 E2A2
�2

0 −E2A2
�2

0 0 0 0

0 −E2A2
�2

0 E2A2
�2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u1

u2

u3

u4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
f1

f2

f3

f4

⎤⎥⎥⎥⎥⎥⎥⎦ (2.16)

and, therefore, since k(2)u(2) = f (2),
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k(2) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 E2A2
�2

0 −E2A2
�2

0 0 0 0

0 −E2A2
�2

0 E2A2
�2

⎤⎥⎥⎥⎥⎥⎥⎦ .

It is important to note that the nodal forces are always defined in the same
coordinate system as the nodal displacements and that the fi are the forces
acting onto the bar elements (just like the displacements are imposed onto
the bar element).

We are now ready to enforce equilibrium at the global node 1. Referring
to Figure 2.25, equilibrium in the X direction leads to

R1 −
(
f

(1)
3 + f

(2)
3

)
= 0 ⇒ R1 = f

(1)
3 + f

(2)
3 (2.17)

where we use the superscripts to identify the contributions from bar 1 and bar
2. However, the superscripts are used only when necessary. For example, in
equation (2.15) the superscripts for ui, fi were not used since it is implicitly
understood that we are working with bar 2. Equilibrium in the Y direction
gives

R2 −
(
f

(1)
4 + f

(2)
4

)
= 0 ⇒ R2 = f

(1)
4 + f

(2)
4 . (2.18)

Fig. 2.25. Equilibrium of node 1, forces acting onto the bars and onto the node

Of course, since we have only an axial force in a truss bar
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f
(1)
4 = f

(2)
3 = 0. (2.19)

Introducing the stiffness relations and using equation (2.19), we can write
(2.17) as

R1 = k
(1)
31 u

(1)
1 + k

(1)
33 u

(1)
3 . (2.20)

Considering that u
(1)
1 = 0 (global node 2 is fixed) and the compatibility

relation

U1 = u
(1)
3

we arrive at

k
(1)
33 U1 = R1. (2.21)

Analogously, using (2.19) , equation (2.18) can be written as

R2 = k
(2)
42 u

(2)
2 + k

(2)
44 u

(2)
4 . (2.22)

Since node 3 is fixed u
(2)
2 = 0 and using the compatibility relation

U2 = u
(2)
4

we obtain

k
(2)
44 U2 = R2. (2.23)

Introducing the values of the stiffness coefficients, equations (2.21) and (2.23)
can be written in matrix form as⎡⎣ E1A1

�1
0

0 E2A2
�2

⎤⎦⎡⎣ U1

U2

⎤⎦ =

⎡⎣ R1

R2

⎤⎦ . (2.24)

Let

U =

⎡⎣ U1

U2

⎤⎦ , R =

⎡⎣ R1

R2

⎤⎦ (2.25)

where U is the column matrix of the free nodal degrees of freedom of the
structure and R is the column matrix of the external nodal forces acting on
the free degrees of freedom. We can write

KU = R (2.26)

where K, implicitly defined by (2.24) and (2.26), is the global stiffness matrix
of the structure associated with the free degrees of freedom.
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Note that the physical interpretations given earlier for stiffness coefficients
also hold for those of the global K matrix. That is, the first column in K gives
the external forces necessary to impose U1 = 1 with U2 = 0, and analogously
the second column gives the external forces associated with U2 = 1 with
U1 = 0. Due to the very simple nature of this problem, the stiffness matrix
K could have been simply obtained in this way.

Solving (2.24) using the mechanical and geometrical properties of the bars
leads to

U1 = 2.53968 × 10−4 m, U2 = 1.90476 × 10−4 m (2.27)

which are the values obtained earlier.
Of course, since the bars are orthogonal there is no coupling between

the vertical and horizontal displacements. This fact is reflected by the zero
off-diagonal elements in the stiffness matrix.

Let us next consider the solution of the problem defined in Figure 2.17;
that is, when an inclined bar is added to the structure. If we had the stiffness
matrix of element 3 in the global coordinate system we could directly enter its
contributions to the equilibrium of node 1. Therefore, we need to derive the
stiffness matrix of a bar arbitrarily oriented in the global coordinate system.

2.3.3 Stiffness matrix of an arbitrarily oriented truss element

The degrees of freedom of an arbitrarily oriented truss element are summa-
rized in Figure 2.26.

Fig. 2.26. Local and global degrees of freedom of an arbitrarily oriented truss
element

We would like to obtain the matrix k such that

ku = f
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where u and f are as in (2.16) . Of course, we have already derived k̃ such
that, see (2.13),

k̃ũ = f̃ . (2.28)

Before deriving k based on a transformation matrix, let us show how k
could be constructed column by column imposing unit displacements.

As an example, we obtain the first column by imposing a unit displace-
ment u1 = 1 and fixing the remaining degrees of freedom, i.e., u2 = u3 =
u4 = 0. We know that under such conditions k11 = f1, k21 = f2, k31 = f3

and k41 = f4.

Fig. 2.27. Imposed horizontal unit displacement and corresponding forces. a) Im-
posed displacement and corresponding shortening of bar; b) Resulting force Q act-
ing onto the bar; c) Nodal forces (stiffness coefficients) corresponding to (replacing)
force Q

Referring to Figure 2.27, we have
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Δ� = 1 · cos α

Q = EA
Δ�

�
=

EA

�
cos α.

Then, because the stiffness coefficients are forces into directions u1, u2, u3

and u4, and applied onto the element

k11 = f1 = Q cos α =
EA

�
cos2 α

k21 = f2 = Q sin α =
EA

�
cos α sin α (2.29)

k31 = f3 = −Q cos α = −EA

�
cos2 α

k41 = f4 = −Q sin α = −EA

�
cos α sin α.

Proceeding in an analogous way, we could construct the remaining columns.
Of course, the bar axial force N = −Q.

However, a more effective procedure to obtain k is to use transforma-
tion matrices, where ũ and f̃ in (2.28) are expressed in terms of u and f ,
respectively.

The kinematic relation between the displacements at node 1 measured in
the local (x̃, ỹ) and global (x, y) systems is, see Figures 2.28 and 2.29,

ũ1 = u1 cos α + u2 sin α

ũ2 = −u1 sin α + u2 cos α.

Fig. 2.28. Nodal point displacement vector u of local node 1 expressed in (x, y)
and (x̃, ỹ) coordinate systems

These relations can be written in matrix form
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Fig. 2.29. Displacements u1 = 1 and u2 = 1 expressed in (x̃, ỹ) coordinate system

⎡⎣ ũ1

ũ2

⎤⎦ =

⎡⎣ cos α sin α

− sin α cos α

⎤⎦⎡⎣ u1

u2

⎤⎦ .

For the displacements of the local node 2, the same kind of relationship holds⎡⎣ ũ3

ũ4

⎤⎦ =

⎡⎣ cos α sin α

− sin α cos α

⎤⎦⎡⎣ u3

u4

⎤⎦
which allows us to write

ũ = Tu (2.30)

where

T =

⎡⎢⎢⎢⎢⎢⎢⎣
cos α sinα 0 0

− sin α cos α 0 0

0 0 cos α sin α

0 0 − sin α cos α

⎤⎥⎥⎥⎥⎥⎥⎦ .

Since we transformed vector components, the same relation holds for the
forces

f̃ = Tf . (2.31)

It is easy to verify that T is an orthogonal matrix, i.e.,

T−1= TT , TT T = I.

Now substituting for ũ and f̃ in (2.28) yields

Tf = k̃Tu
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and left multiplying both sides by TT

TT Tf = TTk̃Tu

we obtain

f =
(
TTk̃T

)
u

yielding

k = TTk̃T. (2.32)

Performing the matrix multiplications we arrive at

k =
EA

�

⎡⎢⎢⎢⎢⎢⎢⎣
cos2 α sin α cos α − cos2 α − sin α cos α

sin α cos α sin2 α − sin α cos α − sin2 α

− cos2 α − sin α cos α cos2 α sinα cos α

− sin α cos α − sin2 α sin α cos α sin2 α

⎤⎥⎥⎥⎥⎥⎥⎦ .

(2.33)

Note that the first column in (2.33) corresponds to the results given in (2.29).

2.3.4 Solution of the three-bar truss structure using the matrix
method

We can now efficiently solve the problem described in Figure 2.17. Using
relation (2.32) we evaluate the stiffness matrix of element 3, k(3), choosing
node 4 as its initial node and impose the equilibrium of node 1. Equilibrium
in the X direction gives

R1 −
(
f

(1)
3 + f

(3)
3

)
= 0 (2.34)

where we used that f
(2)
3 = 0. Equilibrium in the Y direction gives

R2 −
(
f

(2)
4 + f

(3)
4

)
= 0 (2.35)

where we used that f
(1)
4 = 0. Introducing the stiffness relations into (2.34)

and (2.35) leads to

k
(1)
33 u

(1)
3 + k

(3)
33 u

(3)
3 + k

(3)
34 u

(3)
4 = R1 (2.36)

k
(2)
44 u

(2)
4 + k

(3)
43 u

(3)
3 + k

(3)
44 u

(3)
4 = R2. (2.37)
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We note that in the above equations the stiffness coefficients k
(1)
34 , k

(2)
43 are not

included since, as bar 1 is horizontal and bar 2 is vertical, these coefficients
are zero. Of course, for bar 3 these terms are not zero.

Introducing the compatibility relations

U1 = u
(1)
3 = u

(3)
3 , U2 = u

(2)
4 = u

(3)
4

we can re-write equations (2.36) and (2.37) as(
k

(1)
33 + k

(3)
33

)
U1 + k

(3)
34 U2 = R1

k
(3)
43 U1 +

(
k

(2)
44 + k

(3)
44

)
U2 = R2.

The global stiffness coefficients are implicitly defined in the above equations
and they are given by

K11 = k
(1)
33 + k

(3)
33 , K12 = k

(3)
34 (2.38)

K22 = k
(2)
44 + k

(3)
44 , K21 = k

(3)
43 .

Therefore the matrix equation for the structural assemblage is⎡⎣ K11 K12

K21 K22

⎤⎦⎡⎣ U1

U2

⎤⎦ =

⎡⎣ R1

R2

⎤⎦ (2.39)

and its numerical solution is given by

U1 = 7.203 × 10−5 m, U2 = 9.951 × 10−5 m.

We note that:

• The off-diagonal stiffness coefficients are now different from zero due to
the inclined bar which couples the horizontal and vertical displacements
U1 and U2.

• The structure stiffness matrix K is obtained by summing the appropriate
stiffness coefficients of the bar elements. This assemblage process is a direct
consequence of imposing the equilibrium and compatibility conditions at
the nodes (joints).

• The equilibrium, compatibility and constitutive conditions for the bar ele-
ments are satisfied by use of the (correct) element stiffness matrices.

• The structure stiffness matrix is established for the bars in their original
configuration, i.e., the joint displacements which are caused by the applied
loading do not enter K.

• We have obtained U1 and U2 from (2.39) which completely characterize
the solution of this statically indeterminate structure. Therefore the ma-
trix method of solution gives directly the solution of statically indetermi-
nate (and statically determinate) structures by enforcing all equilibrium,
compatibility and constitutive conditions simultaneously.
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• The displacements U1 and U2 have decreased due to adding the diagonal
bar. This, of course, makes sense physically.

Let us further explore the three-bar truss structure problem. We formu-
lated this problem only in terms of the free degrees of freedom U1 and U2.
We could have also included the degrees of freedom at the supports which
are shown in Figure 2.30.

Fig. 2.30. Three-bar truss structure with all degrees of freedom shown

We observe that we have numbered all degrees of freedom. It is implied
that for each degree of freedom i there is a displacement Ui and a force Ri. For
the free degrees of freedom, the force is specified and the displacement is to be
determined. For a restrained degree of freedom, the displacement is specified
and the reaction force associated with such restraint is to be determined. The
fixed conditions at the supports in this case imply, of course, that

U3 = U4 = U5 = U6 = U7 = U8 = 0.

Therefore, once the free degrees of freedom have been calculated, i.e., when
equation (2.39) has been solved, all the end bar displacements are known and
all the bar end forces can be readily obtained by using the element stiffness
matrices; that is, for bar (m)

f (m)= k(m)u(m). (2.40)

Consider bar 1, we have

U1 = u
(1)
3 , U2 = u

(1)
4 , U3 = u

(1)
1 , U4 = u

(1)
2 .

Equation (2.40) applied to bar 1 leads to
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f (1) =
E1A1

�1

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

U1

U2

⎤⎥⎥⎥⎥⎥⎥⎦
which yields

f (1) =

⎡⎢⎢⎢⎢⎢⎢⎣
−11344

0

11344

0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The reactions R3 and R4 can be evaluated using that node 2 is in equi-
librium. Hence

R3 = f
(1)
1 = −11344 N, R4 = f

(1)
2 = 0.

In an analogous manner, for bar 2

u
(2)
3 = U1, u

(2)
4 = U2, u

(2)
1 = U7, u

(2)
2 = U8.

f (2) =
E2A2

�2

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

U1

U2

⎤⎥⎥⎥⎥⎥⎥⎦ , f (2) =

⎡⎢⎢⎢⎢⎢⎢⎣
0

−31344

0

31344

⎤⎥⎥⎥⎥⎥⎥⎦ .

Hence

R7 = f
(2)
1 = 0, R8 = f

(2)
2 = −31344 N.

And for bar 3

u
(3)
3 = U1, u

(3)
4 = U2, u

(3)
1 = U5, u

(3)
2 = U6.

f (3) =
E3A3

�3

⎡⎢⎢⎢⎢⎢⎢⎣
1
2

1
2

− 1
2

− 1
2

1
2

1
2 − 1

2 − 1
2

−1
2 −1

2
1
2

1
2

−1
2

−1
2

1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

U1

U2

⎤⎥⎥⎥⎥⎥⎥⎦ , f (3) =

⎡⎢⎢⎢⎢⎢⎢⎣
−28655

−28655

28655

28655

⎤⎥⎥⎥⎥⎥⎥⎦ .

Hence
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R5 = f
(3)
1 = −28655 N, R6 = f

(3)
2 = −28655 N.

Considering the three-bar truss structure, we observe that, in general,
the displacements at the supports could be prescribed to have values different
from zero. To consider this coupling explicitly, we evaluate the stiffness matrix
corresponding to all degrees of freedom of the structure.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k
(1)
33

+

k
(3)
33

k
(3)
34 k

(1)
31 0 k

(3)
31 k

(3)
32 0 0

k
(3)
43

k
(2)
44

+

k
(3)
44

0 0 k
(3)
41 k

(3)
42 0 k

(2)
42

k
(1)
13 0 k

(1)
11 0 0 0 0 0

0 0 0 0 0 0 0 0

k
(3)
13 k

(3)
14 0 0 k

(3)
11 k

(3)
12 0 0

k
(3)
23 k

(3)
24 0 0 k

(3)
21 k

(3)
22 0 0

0 0 0 0 0 0 0 0

0 k
(2)
24 0 0 0 0 0 k

(2)
22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

U6

U7

U8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

R2

R3

R4

R5

R6

R7

R8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.41)

The additional stiffness coefficients − besides K11, K12, K21, K22 which
are already given in (2.38)− can be obtained by also considering the equilib-
rium and compatibility conditions of nodes 2 to 4, in the same way as given
above for node 1. These considerations lead to adding the element stiffness
matrices into the global structure stiffness matrix following the correspon-
dence between the numbering of structure global and element local degrees
of freedom. The non-zero contributions from each element can be identified
in the matrix of (2.41).

The equations in (2.41) are then solved by specifying all known nodal
displacements and the known externally applied nodal forces. The reactions
can then be directly obtained by simply evaluating the left-hand side of (2.41).

We next develop this procedure in detail for general truss structures −
and indeed for any other structural element assemblage.
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2.3.5 Systematization of the matrix formulation for truss
structures

We show in Figure 2.31 a part of a generic truss structure. In the matrix
formulation of a truss problem, all bars, all nodes and all degrees of freedom
are numbered, and the bar orientations are chosen. We select node g as a
representative truss node to which we impose equilibrium.

Fig. 2.31. Part of a truss structure

Referring to Figure 2.32, we can write for the node g

Ri = f
(a)
3 + f

(b)
3 + f

(c)
1 + f

(d)
1 , Rj = f

(a)
4 + f

(b)
4 + f

(c)
2 + f

(d)
2 (2.42)

where we recall that the element end forces are applied onto the elements.
Hence, equations (2.42) reflect the fact that the external loads acting on

a node are equilibrated by the sum of the bar end forces that connect to this
node.

In order to facilitate the accounting of bar local and structure global
numbering of degrees of freedom and the force summation process, we define
for a generic bar (m) a N × 1 column matrix F(m) where N is the total
number of degrees of freedom of the structure. The nodal forces of bar (m)
are placed in F(m) at the positions corresponding to the global numbering of
the bar degrees of freedom. The remaining positions in F(m) are each filled
with 0. For example, for bar (b)

F(b)T

= [0 · · · 0

i

f
(b)
3

j

f
(b)
4 0 · · ·

p

f
(b)
1 0 · · · 0

r

f
(b)
2 0 · · · 0]1×N .

With F(m) given for every bar of the bar assemblage we can write the equi-
librium equations for every degree of freedom as

R =
ne∑

m=1

F(m) (2.43)
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Fig. 2.32. Pictorial representation of equilibrium of node g

where R is the column matrix of external forces applied to the nodes of the
truss corresponding to the global structural degrees of freedom and ne is the
total number of bar elements of the structure. Considering, for example, the
degree of freedom i, we have

Ri = F
(a)
i + F

(b)
i + F

(c)
i + F

(d)
i (2.44)

since (a), (b), (c) and (d) are the only bars which have end forces correspond-
ing to the global degree of freedom i (that is, the ith entries of F(m) are zero
for all other bars (m �= a, b, c, d)). Referring to Figure 2.32 we can write

F
(a)
i = f

(a)
3 , F

(b)
i = f

(b)
3 , F

(c)
i = f

(c)
1 , F

(d)
i = f

(d)
1

and, hence, equation (2.44) is just the first equation of (2.42).
Now let us define a N × N matrix denoted by K(m) such that

K(m)U = F(m) (2.45)

where U is the column matrix of the global displacement degrees of free-
dom and K(m) has non-zero entries only at the positions associated with the
nodal displacements of bar (m) when these nodal displacements are num-
bered according to the global ordering. Equation (2.45) contains, considering
the relations between global and local numbering of degrees of freedom, the
equations given by

k(m)u(m) = f (m) (2.46)
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and all remaining equations in (2.45) result into 0 = 0 identities. Hence, all
non-zero coefficients of K(m) can be obtained from the coefficients of k(m).
For example, for bar (b), we have

K(b)
pp = k

(b)
11 , K(b)

rr = k
(b)
22 , K(b)

pr = k
(b)
12 , K

(b)
pi = k

(b)
13 , K

(b)
pj = k

(b)
14

and so on.
Note that as we use equation (2.45) to reproduce (2.46) , we are implicitly

enforcing compatibility since the bar end displacements are taken to be the
global displacements.

Now we are ready to present the following important derivation. Substi-
tuting (2.45) into (2.43) yields

R =

(
ne∑

m=1

K(m)

)
U (2.47)

leading to

KU = R (2.48)

and, of course,

K =
ne∑

m=1

K(m) (2.49)

is the stiffness matrix of the total structure obtained from the element stiffness
matrices.

We observe that equation (2.48) represents the matrix formulation for
a generic truss structure and this equation contains all three fundamental
requirements:

• Equilibrium
• Compatibility
• Constitutive

“Equilibrium” because each truss element is always in equilibrium for any
force it carries and (2.43) enforces the equilibrium of the nodes. “Compat-
ibility” because the bars are connected to the joints which are undergoing
unique displacements (some of which are imposed as displacement boundary
conditions). “Constitutive” because the correct Young’s modulus E is used
for each element. Hence, once U has been calculated from (2.48) , the truss
problem has been solved.

The matrices K(m), F(m) were defined because they are very useful to
present the above theoretical derivations in a rigorous and elegant manner.
However, most entries of the matrices K(m)and F(m) are zero and, in actual
computations, we need to take advantage of this fact.
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Let us briefly describe an efficient computational procedure to obtain K.
Since all non-zero entries of K(m) are in k(m), K can be obtained without
constructing the K(m). We define for every bar element of the truss the
following row matrix

LM(m) =

u1[
�

u2

p

u3

q

u4

r
]

(2.50)

which is referred to as the element connectivity array. The number � in the
first entry is the number of the degree of freedom of the structure which
corresponds to the displacement u1 of bar (m). Analogously, p, q and r cor-
respond to u2, u3 and u4. For example, the element arrays for bars (a), (b),
(c) and (d) defined in Figure 2.31 are

LM(a) =
[

s t i j
]
, LM(b) =

[
p r i j

]
LM(c) =

[
i j m �

]
, LM(d) =

[
i j o q

]
.

The assemblage process implied by the summation sign in equation (2.49)
can be effectively performed starting with an array of an empty N ×N matrix
(each entry in the matrix is initially zero) which eventually will contain K.
For every bar element in the structural assemblage, m = 1, · · · , ne, we then
add the element stiffness matrix into this array. Considering bar (m) for
which LM(m) is given in (2.50) we add

k
(m)
11 to the entry �� of the array

k
(m)
12 to the entry �p

k
(m)
13 to the entry �q

k
(m)
14 to the entry �r

k
(m)
22 to the entry pp

k
(m)
23 to the entry pq

k
(m)
24 to the entry pr

k
(m)
33 to the entry qq

k
(m)
34 to the entry qr

k
(m)
44 to the entry rr.

We note that since each bar stiffness matrix is symmetric (see equation
(2.33)), the structure stiffness matrix K is also symmetric, see equation
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(2.49). For this reason we construct in the assemblage procedure only the
upper diagonal part of K.

To demonstrate the matrix procedure we consider the following examples.

Example 2.2
Formulate and solve the problem described in Figure 2.4 and considered

in Example 2.1 using the matrix method.

Solution
We adopt the nodal and bar numbering already given in Figure 2.4 and

define in Figure 2.33 the numbering of the degrees of freedom as well as the
bar orientations.

Fig. 2.33. Definitions for the matrix formulation of the problem in Figure 2.4

The next step is to obtain the stiffness matrices of the bar elements in
the global coordinate system. We note that for bars 2 and 4, the local and
global coordinate systems (of displacements and nodal forces) are the same.
Therefore, we can write

k(2) = k(4) =
EA

a

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The stiffness matrices of bars 1 and 5 are the same and can be obtained,
corresponding to the global coordinate system, using equation (2.33) with
α = 45◦ leading to
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k(1) = k(5) =
EA

√
2

4a

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
and for bar 3 we use again equation (2.33) with α = 90◦ arriving at

k(3) =
EA

a

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

To assemble the global stiffness matrix, we need the element connectivity
arrays

LM(1) =
[

7 8 3 4
]
, LM(2) =

[
7 8 5 6

]
LM(3) =

[
5 6 3 4

]
, LM(4) =

[
3 4 1 2

]
LM(5) =

[
5 6 1 2

]
.

Then performing the assemblage procedure leads to

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k
(4)
33

+k
(5)
33

k
(4)
34

+k
(5)
34

k
(4)
13 k

(4)
23 k

(5)
13 k

(5)
23 0 0

k
(4)
44

+k
(5)
44

k
(4)
14 k

(4)
24 k

(5)
14 k

(5)
24 0 0

k
(1)
33

+k
(3)
33

+k
(4)
11

k
(1)
34

+k
(3)
34

+k
(4)
12

k
(3)
13 k

(3)
23 k

(1)
13 k

(1)
23

k
(1)
44

+k
(3)
44

+k
(4)
22

k
(3)
14 k

(3)
24 k

(1)
14 k

(1)
24

k
(2)
33

+k
(3)
11

+k
(5)
11

k
(2)
34

+k
(3)
12

+k
(5)
12

k
(2)
13 k

(2)
23

symmetric

k
(2)
44

+k
(3)
22

+k
(5)
22

k
(2)
14 k

(2)
24

k
(1)
11

+k
(2)
11

k
(1)
12

+k
(2)
12

k
(1)
22

+k
(2)
22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and introducing the numerical values we obtain

K =
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.

Hence the complete set of equilibrium equations with the applied nodal force
P and imposed displacement restraints is

EA

a
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.51)

Hence we can identify natural partitions for the load and displacement column
matrices. The displacement partitioning is obtained according to whether the
displacement degrees of freedom are free or restrained. Denoting by Ua the
free displacement degrees of freedom and by Ub the restrained degrees of
freedom, we can write
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UT =
[

UT
a UT

b

]
where for this particular case

UT
a =

[
U1 U2 U3 U4 U5

]
and

UT
b =

[
U6 U7 U8

]
.

Analogously, for the load column matrix

RT =
[

RT
a RT

b

]
where Ra collects the external loads for the free degrees of freedom and for
this case is given by

RT
a =

[
R1 R2 R3 R4 R5

]
with R1 = R3 = R4 = R5 = 0 and R2 = −P . The column matrix Rb collects
the reactions and is given by

RT
b =

[
R6 R7 R8

]
.

Furthermore, the partitions of the load and displacement column matrices
also induce the following partitioning for the stiffness matrix⎡⎣ Kaa Kab

Kba Kbb

⎤⎦⎡⎣ Ua

Ub

⎤⎦ =

⎡⎣ Ra

Rb

⎤⎦ . (2.52)

Here Ra and Ub contain always known values whereas Ua and Rb contain
always unknown values. In order to solve the system in (2.52) we use

KaaUa + KabUb = Ra (2.53)

KbaUa + KbbUb = Rb (2.54)

and obtain

KaaUa = Ra − KabUb (2.55)

which can be solved for Ua. Having obtained Ua, the reactions Rb can be
evaluated from (2.54).

In this case, (2.55) reads
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EA

a
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since Ub = 0. Introducing the numerical values for E, A, a and P and solving
yields

U1 = 1.91737 × 10−3 m, U2 = −3.43765 × 10−3 m

U3 = 1.52027 × 10−3 m, U4 = −3.97101 × 10−4 m

U5 = −3.97101 × 10−4 m.

The reactions are evaluated using (2.54)
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=

⎡⎢⎢⎢⎣
R6

R7

R8

⎤⎥⎥⎥⎦

which leads to

R6 = 120000 N, R7 = 0, R8 = −60000 N.

To complete the solution, we need to evaluate the internal forces in the truss
bars. Considering bar 1 and using the nodal displacements, we obtain the
end displacements of bar 1

u
(1)
1 = U7 = 0, u

(1)
2 = U8 = 0

u
(1)
3 = U3 = 1.52027 × 10−3 m, u

(1)
4 = U4 = −3.97101 × 10−4 m.

Therefore, the global nodal forces acting onto the bar are

f (1) = k(1)u(1) =

⎡⎢⎢⎢⎢⎢⎢⎣
−60000

−60000

60000

60000

⎤⎥⎥⎥⎥⎥⎥⎦
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where the values are given in the units used throughout the solution (New-
tons).
We could extract the axial force from f (1) by projecting the components into
the axial direction. Equivalently, we can evaluate f̃ (1) using equation (2.31)
with α = 45◦, which leads to⎡⎢⎢⎢⎢⎢⎢⎣
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0

⎤⎥⎥⎥⎥⎥⎥⎦
and hence, of course,

N1 = −f̃
(1)
1 = f̃

(1)
3 = 84853 N.

In an analogous manner we can evaluate the remaining internal bar forces to
obtain

N2 = −60000 N, N3 = −60000 N, N4 = 60000 N, N5 = −84853 N.

�
Of course, the solution results given in Example 2.2 are those we obtained

earlier (see Example 2.1).
It is instructive to compare the two solution methods. We solved the

problem described in Figure 2.4, firstly, by using an elementary method in
which the bar forces are determined by equilibrium of the joints and then the
displacements are found and then, secondly, by the matrix method. We note
that even in this case in which this elementary method allows to find the nodal
forces by nodal equilibrium only − with good insight into the deformation
of the structure − the determination of the nodal displacements is relatively
complex and difficult to systematize. Hence, the matrix method has great
appeal since the whole procedure can be easily systematized and implemented
in computer programs leading to the solution of very large problems in a
straight forward and fast manner.

Furthermore, the solution of statically indeterminate trusses requires no
additional considerations.

Example 2.3

Consider the truss described in Figure 2.19, which is obtained by adding
bar 6 to the truss structure of Figure 2.4. Assuming that bar 6 has the
same Young’s modulus and cross-sectional area as the other bars, modify the
matrix formulation presented in Example 2.2 to solve this problem.
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Solution

The only modification necessary is to add the contribution of bar 6 to the
stiffness matrix of the structure. Considering that for bar 6 we have � = a

√
5

and α = arctg(1/2) = 26.565◦, its stiffness matrix is given by

k(6) =
EA

√
5

25a

⎡⎢⎢⎢⎢⎢⎢⎣
4 2 −4 −2

2 1 −2 −1

−4 −2 4 2

−2 −1 2 1

⎤⎥⎥⎥⎥⎥⎥⎦
where we assume the bar orientation from node 1 to 4. The coefficients of the
upper diagonal part of the global stiffness matrix which should be updated
are

K6
11 = K5

11 + k
(6)
33 , K6

12 = K5
12 + k

(6)
34

K6
22 = K5

22 + k
(6)
44 , K6

17 = 0 + k
(6)
31

K6
18 = 0 + k

(6)
32 , K6

27 = 0 + k
(6)
41

K6
28 = 0 + k

(6)
42 , K6

77 = K5
77 + k

(6)
11

K6
78 = K5

78 + k
(6)
12 , K6

88 = K5
88 + k

(6)
22

where we have used K5
ij and K6

ij to represent the stiffness coefficient Kij

of the truss structure with 5 and 6 bars respectively. The solution is then
obtained, as for Example 2.2, by considering the updated stiffness matrix.

�
We emphasize that since equilibrium and compatibility are enforced si-

multaneously in the matrix method, there is no need to consider in the so-
lution procedure whether the truss is a statically determinate or a statically
indeterminate structure. Namely, adding bar 6 in Example 2.3, which makes
the structure statically indeterminate, has very little impact on the complete
solution effort. In fact, we only need to add the contribution of bar 6 to the
structure stiffness matrix and there is no increase in the order of the system
of linear algebraic equations to be solved. On the other hand, when we try
to use the elementary method, the addition of bar 6 significantly increases
the effort of solution because, since the structure becomes statically inde-
terminate, we can no longer determine the bar forces by nodal equilibrium
only.

These observations reinforce the earlier conclusion that the matrix method
is a very efficient method for the computerized analysis of complex truss
structures.
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2.3.6 Principle of superposition

We note that equation (2.48) establishes a linear relation between the applied
forces and the resulting displacements. Of course, this linear relation is a
direct consequence of the assumptions used in the formulation of the truss
mathematical model, which all together result into a constant stiffness matrix
K (that is independent of the nodal displacements). Such models are called
“linear (elastic) models” and for such models the principle of superposition
holds. Suppose that the total load R acting on a truss structure is decomposed
into n� load sets given by Ri, that is

R =
n�∑
i=1

Ri.

If we solve for each load set

KUi = Ri

then the solution for the total load R is

U =
n�∑
i=1

Ui.

Namely, we have

KU = K

(
n�∑
i=1

Ui

)
=

n�∑
i=1

(KUi) =
n�∑
i=1

Ri = R.

and these relations hold true because K is constant.
The principle of superposition is valid for all linear mathematical models

studied in this book. In practice, a structure may be analyzed for many dif-
ferent load cases (gravity, wind loading, snow loading, settlement of supports,
etc.) and the analyst/designer needs to seek the worst valid combination of
loads to identify the highest internal forces that the structure may possi-
bly experience. Then, of course, for each load combination the principle of
superposition is used to obtain the structural response.

To give a simple example, we mention that the three-bar structure de-
scribed in Figure 2.17 could have been solved considering only R1 and then
R2. Of course, the total response would be obtained by superimposing the
two resulting solutions. However, the maximum force in bar 2 is reached when
R2 acts alone leading to N2 = 47.71 kN (when R1 acts alone N2 = −16.37
kN).

Also, to obtain insight into the structural behavior, the principle of super-
position is sometimes used to break up the structural response for complex
loading, allowing the analyst/designer to examine the contribution of each
load case to the total response.
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2.3.7 Remarks about the structure stiffness matrix

We gave already a physical explanation of the stiffness coefficients of a bar
element, see Figure 2.22. The same discussion also applies to the stiffness
coefficients in K. The element Kii gives the force that should be applied to
the degree of freedom i to impose a unit displacement at this same degree of
freedom, when all other structural degrees of freedom are fixed. The stiffness
coefficients Kji for j �= i give the reaction forces associated with the degrees of
freedom that have been fixed. Based on this property, the stiffness matrix can
be constructed column by column. For example, referring to Example 2.2, the
first column of the global stiffness matrix can be obtained by imposing a unit
displacement at the degree of freedom 1, i.e., for the horizontal displacement
of node 4, and fixing all other degrees of freedom.

We can also interpret the contributions of the bar stiffness coefficients to
the global stiffness matrix coefficients for such column. In fact, to impose
U1 = 1 we need to impose a unit displacement at the end sections of bars 4
and 5 which couple into node 4. Therefore

K11 = k
(4)
33 + k

(5)
33

since k
(4)
33 and k

(5)
33 give the horizontal forces that should be imposed at the

end sections of bars 4 and 5, respectively, for a unit end displacement when all
the remaining bar degrees of freedom are fixed. By an analogous reasoning,
the reactions at the fixed degrees of freedom can also be obtained as

K21 = k
(4)
43 + k

(5)
43 , K31 = k

(4)
13

K41 = k
(4)
23 , K51 = k

(5)
13 , K61 = k

(5)
23 .

In addition, K71 = K81 = 0 since there are no bars connecting nodes 1 and
4.

The above discussion also shows that the equation KU = R represents a
linear system of N algebraic equilibrium equations. The ith equation of the
system given by

N∑
j=1

KijUj = Ri

reflects the equilibrium at the ith degree of freedom. In other words, KijUj

gives the internal force contribution associated with the displacement Uj to
the equilibrium at the ith degree of freedom.

2.3.8 Strain energy of a truss structure

In this section we introduce the strain energy concept for truss structures.



74 2. Fundamental steps in structural mechanics

Elastic solids when subjected to external loading deform and store energy
associated with the deformation like a spring which is called strain energy.
We detail below this concept for a truss bar and then for truss structures.

The truss bar of linear elastic material shown in Figure 2.34a is subjected
to a slowly increasing external load up to the value R. The final configuration
is shown in Figure 2.34b.

Fig. 2.34. Deformation of single bar structure

Let We be the external work done by the applied load. The differential
external work dWe associated with an induced differential displacement is
given by the shaded area in Figure 2.35a, i.e.,

dWe = Ru duu

and, therefore,

We =
∫ R

0

Ru duu =
1
2
Ru.

Let Wi be the internal work. The differential increment of internal work
associated with an induced increment in strain is given by the shaded area
in Figure 2.35b, multiplied by the differential volume element dxdA, i.e.,

dWi = τudεudx dA

and, therefore7,

Wi =
∫

V

(∫ τ

0

τu dεu

)
dxdA =

1
2
τεA�.

Since

τ =
R

A
, ε =

Δ�

�
=

u

�
7 Note that although the bar will change its thickness (cross-sectional area) as

indicated in Figure 2.35b, we are integrating over the original volume, in corre-
spondence with the linear analysis assumptions (see Section 2.1.5)
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Fig. 2.35. a) Load displacement diagram for a truss bar; b) Stress-strain diagram
for a generic point of a truss bar and side view of a differential volume element of
the truss bar

we obviously have

Wi = We.

This is an important result that shows that the work done by the external
force is equal to the work done by the internal forces/stresses.

Using Hooke’s law, we can write

Wi =
ε2

2
EA�.

Note that Wi depends only on the current strain and gives the work stored
in the truss bar as elastic deformation. Therefore, we define

U(ε) = Wi(ε) =
ε2

2
EA�

as the strain energy of the truss bar. Of course, the strain energy per unit of
volume is given by

W (ε) =
Eε2

2
=

1
2
τε.

It is usual to express the strain energy of a bar in terms of the axial force
carried, then

U =
N2�

2EA
.

Since the strain energy is a scalar, we can evaluate the strain energy of an
assemblage of bars by adding up the contribution of every bar. For a generic
bar m of the assemblage, since u(m) and f (m) are end displacements and
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forces and the external work W
(m)
e done by the forces f (m) is equal to the

bar strain energy U (m), we have

U (m) =
1
2
u(m)T

f (m) =
1
2
u(m)T

k(m)u(m) =
1
2
UTK(m)U.

Hence, for a complete truss structure the strain energy is

U =
ne∑

m=1

U (m) =
1
2
UT

(
ne∑

m=1

K(m)

)
U =

1
2
UT KU.

Note that since R = KU, we also have

U =
1
2
UT R.

2.3.9 Properly supported truss structures in the context of the
matrix method

In Section 2.1.2 we discussed the concept of a properly supported deformable
body and later we applied this concept to a truss structure. Recall that when
a truss is properly supported and without an internal mechanism, any motion
of its bars requires some bar to shorten or to extend.

Therefore, the strain energy associated with any motion of a properly
supported truss structure, that is, corresponding to any non-trivial nodal
displacements U, will be positive

U(U) =
1
2
UT KU >0 for any U �= 0. (2.56)

Here “non-trivial U” means U �= 0.
Mathematically, condition (2.56) defines K to be a positive definite ma-

trix.
It is a mathematical property that a positive definite matrix has always an

inverse, i.e., it is not singular (Bathe, 1996). This leads to a very important
result: for any given nodal load R acting on a truss structure which is properly
supported and without an internal mechanism we can always find a unique
nodal displacement U such that

KU = R.

Now we would like to show that when a truss structure is not properly sup-
ported and/or has an internal mechanism the K matrix is singular and, there-
fore, there is no unique solution U for any R. Before we do so, we note that:

• If the truss structure is not properly supported a global rigid motion of the
complete structure is possible (see Figure 2.36).
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Fig. 2.36. Not properly supported truss structure: Rigid body motion of complete
structure is possible

Fig. 2.37. Truss structure with an internal mechanism. Rigid body motion of some
bars is possible, i.e., there is a mechanism. Here bars 1, 3, 4 undergo a rigid body
motion

• If the truss structure has an internal mechanism, a rigid motion of one or
more of its parts without any motion of the remaining parts is possible
(see Figure 2.37).

Note that the bars 1, 3 and 4 of the truss of Figure 2.37 display, individ-
ually, rigid motions but bar 2 displays no motion and hence does not strain.
On the other hand, Figure 2.38 illustrates that for a properly supported truss
structure without an internal mechanism parts of the structure may undergo
rigid motion but then always cause straining in (some) other bars.

Consider a generic truss structure which either is not properly supported
or has an internal mechanism (or both). Let us choose U �= 0 for which

U(U) =
1
2
UT KU =0.

Of course, this choice of U is always possible since there is always a motion
for which each bar (m) either displays a rigid motion or does not move.
Therefore, the stiffness matrix is positive semidefinite and, hence, singular.
Since the K matrix is singular we can not find a unique nodal displacement
solution U for any given load R.
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Fig. 2.38. a) Problem definition; b) Schematic and magnified deformed configura-
tion

Summarizing, through the use of the strain energy concept, we arrived at
two important results:

• For a truss structure which is properly supported and does not have an
internal mechanism, given any loading R, there exists a unique nodal dis-
placement solution U.

• If the truss structure is not properly supported and/or has an internal
mechanism, then for any R there is no unique solution U.

Let us consider an example.

Example 2.4
Show using a purely kinematic approach that the stiffness matrix of a bar

is singular whenever the bar can display rigid motions.

Solution
Let us consider a structure composed of a single truss bar as described in

Figure 2.39.
Since there are no supports, this bar can display rigid body motions. In

fact, there are three linearly independent rigid body motions: a translation
along the X direction, a translation along the Y direction and a rigid body
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Fig. 2.39. One bar truss structure in X-Y plane

rotation in the XY plane. Any combination of these three rigid body motions
also constitutes a rigid body motion.

Let us show that for each set of nodal displacements corresponding to a
rigid body motion, we have

ku = 0. (2.57)

For a rigid body mode translation along the X direction

uT = uT
x =

[
Cx 0 Cx 0

]
where Cx is an arbitrary constant. Clearly (2.57) is satisfied when we use the
stiffness matrix given by equation (2.13) . An analogous result is found for a
rigid body mode translation along the Y direction, which can be defined by

uT = uT
y =

[
0 Cy 0 Cy

]
where Cy is also an arbitrary constant.

Next we find the bar nodal displacements for an infinitesimally small rigid
body rotation about the Z axis, as shown in Figure 2.40.

Referring to Figure 2.40 we can write

−u1 = r1dϕ sin θ1

u2 = r1dϕ cos θ1

and since

X1 = r1 cos θ1

Y1 = r1 sin θ1

we obtain

u1 = −dϕY1

u2 = dϕX1

Considering a similar derivation for node 2, we obtain
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Fig. 2.40. Rigid rotation of the bar of an infinitesimally small angle dϕ. Nodal
coordinates are X1, Y1 and X2, Y2

uT
ϕ =

[
−dϕY1 dϕX1 −dϕY2 dϕX2

]
.

Since Y1 = Y2, we also obtain (2.57) . Furthermore, we note that for a dis-
placement u which is any linear combination of ux, uy and uϕ, the relation
(2.57) also holds.

Of course, when equation (2.57) holds, k is singular. Equation (2.57) also
means that there are no bar end forces associated with a rigid motion.

We note that the choice of a bar which is aligned with the X axis does not
imply lack of generality, since, if (2.57) holds for a given coordinate system,
it is also satisfied for any other coordinate system.

Note that for the one bar structure of Figure 2.39 three restraints are nec-
essary to kinematically suppress the three rigid body motions. For example,
the restraints shown in Figure 2.22.

�

2.4 Modeling considerations for truss structures

While reading this chapter, the reader might have thought of the real physical
truss structures that are part of the every day environment, for example, the
structures that are frequently encountered in bridges and roofs. Possibly the
joints of these “real” trusses are different from the joint described in Figure
2.5, in particular, there might not be an actual pin. In fact, in most truss
structures, there are no pins and different joint options are used to connect
the bars.

We need to resort to the hierarchical modeling approach to properly ad-
dress this apparent inconsistency. The truss model with the pin joints is
an adequate low-order mathematical model to represent the behavior of bar
structures which are not pinned, as long as:
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• The structure can not display either local or global rigid motions when
its joints are considered as pin-type joints (the truss model is properly
supported and does not have an internal mechanism).

• All external loads can be assumed to be introduced at the nodes as point
forces only (no moments).

• The bars are long (typically the thickness/length ratio is smaller than 1/10)
and have similar magnitudes of cross-sectional areas.

• The bar axes always intersect at unique geometric points (at the joints).

In such cases, the truss model provides a good description of the structure
and, in general, it represents a reliable model for most analysis purposes.

The analysis and design of truss structures represent a very broad subject.
While we did not discuss issues related to the design of engineering trusses,
the analysis of truss structures is important in mechanics and, in our discus-
sion, provided a convenient setting to introduce and explore the fundamental
facts of structural mechanics.

In the next chapter we extend the ideas studied in this chapter to model
2-D and 3-D deformable solids.
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