domenica, 30 giugno 2024, 16:22
Sito: Moodle USP: e-Disciplinas
Corso: RCG1002 - Genética - Fisioterapia e Terapia Ocupacional - 2024 (RCG1002 - Genética - 2024)
Glossario: Glossário - Temas de Genética (ATUALIZADO)
AF

Apoptose

di Alicia Franca - giovedì, 23 maggio 2024, 08:13
 

Apoptose é uma forma de morte celular programada, ou "suicídio celular". É diferente de necrose, na qual as células morrem por causa de uma lesão. A apoptose é um processo ordenado, no qual o conteúdo da célula é compactado em pequenos pacotes de membrana para a "coleta de lixo" pelas células do sistema imunológico.

Referência:

GRIVICICH, I. .; REGNER, A. .; ROCHA, A. B. da . Morte Celular por Apoptose. Revista Brasileira de Cancerologia, [S. l.], v. 53, n. 3, p. 335–343, 2007.

 
AF

Autossomo

di Alicia Franca - giovedì, 23 maggio 2024, 08:12
 

Autossomo ou cromossomos somáticos são cromossomos que não estão ligados ao sexo e fazem parte do patrimônio genético da espécie, junto com os cromossomas sexuais. O ser humano possui 22 pares de cromossomos autossomos e mais um par de cromossomos sexuais (alossomo), que determinam o sexo.

Referência: 

GRIFFITHS, Anthony J. F. et al. Introdução à genética. 11. ed., Rio de Janeiro, 2017.

 
Bianca Larissa Caetano Pinto

DNA ligase

di Bianca Larissa Caetano Pinto - giovedì, 23 maggio 2024, 08:39
 

DNA ligase é a enzima que une as extremidades de duas fitas de DNA por meio de uma ligação covalente, formando uma fita de DNA contínua.

fonte: 

ALBERTS, Bruce et al. Molecular biology of the cell. 6th ed. New York: Garland Science, 2015.

Diagrama de uma ligase unindo fragmentos de DNA.

(fonte imagem: Science Learning Hub)

 
Bianca Larissa Caetano Pinto

DNA mitocondrial

di Bianca Larissa Caetano Pinto - giovedì, 23 maggio 2024, 08:38
 

O DNA mitocondrial (mtDNA) é o material genético localizado nas mitocôndrias, organelas responsáveis pela produção de energia nas células eucarióticas. Diferente do DNA nuclear, o mtDNA é circular e herdado exclusivamente da mãe. Ele contém genes essenciais para a produção de ATP através da fosforilação oxidativa, além de codificar RNAs e proteínas necessários para a função mitocondrial.

fonte:

ALBERTS, Bruce et al. Molecular biology of the cell. 6th ed. New York: Garland Science, 2015.


Estrutura Do Dna Mitocondrial
(fonte imagem: Synergy Counselling and Therapy)

 
Carolina Attya

Dominância incompleta:

di Carolina Attya - giovedì, 23 maggio 2024, 09:56
 

A chamada dominância incompleta é aquela em que os alelos se expressam em heterozigose, no entanto, produzem fenótipo intermediário. 

Um bom exemplo para entender a dominância incompleta é a planta conhecida como boca de leão. Nela, o alelo “A” é responsável por determinar a cor vermelha, enquanto o alelo “a” é o responsável por determinar a cor branca. Indivíduos que possuem alelos “AA” são vermelhos e os indivíduos com alelos “aa” são brancos.

Já os indivíduos que possuem alelos “Aa” têm coloração rosa, ou seja, nem como os dominantes e nem como os recessivos, um meio-termo. Indivíduos com dominância incompleta têm menos pigmento em comparação com os homozigotos dominantes. 


yGkS7qtfQ_zchR8hvblP_SKJI3H7wxopEXloc04j3GW9dsJ0q0DKVB0mTGJJzjC8RAncmHix6Fqc-OYxPQRJnP9GCUJS8QyiDRDpKIaB51BHs-63pPqyWP_TcsZUajHx41-YY7jjSw27vcrAjcu9fwk





Referência bibliográfica: 

Genética Aplicada à Biotecnologia

Por CÉLIA APARECIDA MARQUES PIMENTA, JACQUELINE MIRANDA DE LIMA



 
Carolina Attya

Efeito aditivo:

di Carolina Attya - giovedì, 23 maggio 2024, 09:56
 

O efeito aditivo na genética é um fenômeno em que múltiplos genes contribuem de maneira independente para um determinado traço fenotípico, resultando em uma variação contínua desse traço na população. Cada gene contribui de forma aditiva para o fenótipo observado, sem interação significativa entre eles.

Exemplo 1: Altura em humanos

A altura é um traço fenotípico complexo influenciado por múltiplos genes. Vários genes contribuem independentemente para determinar a altura de um indivíduo. Por exemplo, suponha que os genes A, B e C estejam envolvidos na determinação da altura, e cada gene tenha duas variantes: uma que contribui para a altura e outra que não. Se um indivíduo tiver as variantes "altura" dos três genes (AaBbCc), ele provavelmente será mais alto do que alguém com apenas uma ou nenhuma dessas variantes.

Exemplo 2: Produção de leite em vacas

A produção de leite em vacas é outro exemplo de um traço influenciado por múltiplos genes com efeito aditivo. Vários genes que regulam a produção de leite podem contribuir de forma cumulativa para a quantidade de leite produzida por uma vaca. Por exemplo, os genes D, E e F podem influenciar a produção de leite, e cada gene pode ter variantes que aumentam ou diminuem a produção. Uma vaca com as variantes "alta produção de leite" desses genes produzirá mais leite do que uma vaca com menos dessas variantes.

Em ambos os exemplos, é possível observar como múltiplos genes contribuem de forma independente e aditiva para o fenótipo observado, resultando em uma variação contínua dos traços na população.



Referência bibliográfica: Thompson & Thompson - Genética Médica



 
Carolina Attya

Efeito gargalo

di Carolina Attya - giovedì, 23 maggio 2024, 09:58
 


O efeito gargalo é uma redução drástica no tamanho da população. Ocorre quando o tamanho da população é reduzido por pelo menos uma geração. Em consequência do efeito gargalo, a variação genética é reduzida. 

O efeito gargalo pode ser causado por desastres naturais, predação, caça humana, perda de habitats, redução de migração, entre outros. Esses eventos podem aleatoriamente eliminar muitos membros da população, independentemente de seus genótipos.

Os sobreviventes iniciam uma nova população, na maioria das vezes, na mesma área ocupada pela população original. A diferença principal entre o efeito gargalo e efeito fundador é a existência de migrantes no efeito fundador.

Exemplo de Efeito Gargalo: Imagine uma população de elefantes africanos que, devido à caça furtiva intensa, foi reduzida a apenas alguns indivíduos. Durante esse evento de redução drástica da população, muitos genes foram perdidos, e a diversidade genética diminuiu significativamente. Como resultado, a população restante pode ser mais vulnerável a doenças, ter uma capacidade reduzida de se adaptar a mudanças ambientais e até mesmo apresentar características genéticas indesejáveis, como maior predisposição a certas doenças genéticas.

Durante esse processo, muita diversidade genética é perdida, resultando em uma população menor e menos variada do outro lado do gargalo. Esta ilustração representa a redução na diversidade genética e os potenciais problemas que podem surgir como resultado do efeito gargalo. 

FIhJEzE1ET7m9xN--BnBeUC9s9mFnSoHQw2_keSDXE6ZPIPcGp8wxdXl57FW4RrFzib1U4Wgbd2wXVUaOs3wckaT3KmAMqlx_pvCEKdzq8YaWj_1p--PypYVahSic9AAG7hwavYcGO2ND1XHfiVphxs



Referência bibliográfica: Thompson & Thompson - Genética Médica










 
Carolina Attya

Elemento regulador:

di Carolina Attya - giovedì, 23 maggio 2024, 09:58
 

Um elemento regulador na genética é uma região específica do DNA que controla a expressão de um gene. Esses elementos desempenham um papel crucial na regulação da atividade gênica, determinando quando e onde um gene será ativado ou desativado dentro de uma célula ou organismo. Eles podem estar localizados próximos ao gene que regulam (como os promotores e enhancers) ou em locais mais distantes (como os silenciadores).

Exemplo 1: Promotores

Os promotores são elementos reguladores que ficam próximos ao início de um gene e são responsáveis por iniciar o processo de transcrição, no qual a informação contida no gene é copiada para uma molécula de RNA. Um exemplo é o promotor do gene da insulina, que é ativado em células pancreáticas quando há um aumento nos níveis de glicose no sangue, desencadeando a produção de insulina para regular o metabolismo da glicose.


Exemplo 2: Enhancers

Os enhancers são elementos reguladores que podem estar localizados a distâncias consideráveis do gene que controlam e aumentam a taxa de transcrição do gene quando se ligam a proteínas ativadoras específicas. Por exemplo, no desenvolvimento embrionário, os enhancers podem regular a expressão de genes responsáveis pela formação de estruturas anatômicas complexas. Um enhancer específico pode ativar genes necessários para o desenvolvimento de membros em um estágio particular do desenvolvimento.


Exemplo 3: Silenciadores

Os silenciadores são elementos reguladores que inibem a transcrição do gene quando se ligam a proteínas repressoras. Eles são importantes para controlar a expressão gênica em diferentes tecidos e estágios de desenvolvimento. Por exemplo, silenciadores podem desligar genes envolvidos no desenvolvimento de tecidos específicos que não são necessários em um estágio particular do desenvolvimento ou em um tecido específico.

4NKQ7UYAXLrsGen4oWdg2Ke1t7R04vmrprV7K2RK386LEMXJukGrLmLn4b6dalhTCJn4xpLXfNCDKw-0mdV5OjH8YtU3gbUOSJJfXl71GCvXh5NNCr3JhiSDLZOz7lRDoSOjbngAT1gYaMe4Iu8hMSA



Referência bibliográfica: Thompson & Thompson - Genética Médica



 
BB

DNase

di Bruna Borges Peixinho Ramos - giovedì, 23 maggio 2024, 13:31
 

A DNase, ou desoxirribonuclease, é uma enzima que catalisa a clivagem de ligações fosfodiéster no DNA de fita dupla ou fita simples. Essa clivagem resulta na degradação do DNA em fragmentos menores. As DNases desempenham um papel crucial em vários processos biológicos, incluindo replicação, reparo e recombinação do DNA, bem como na regulação da expressão gênica. Existem dois tipos de DNase sendo eles, Endonucleases que tua clivando o DNA internamente, gerando fragmentos menores. E o Exonucleases que Cliva o DNA a partir das extremidades, removendo nucleotídeos sequencialmente. Além disso o DNase apresenta algumas funções como, Replicação e Reparo do DNA, Regulação Gênica, Apoptose.

Uso em Laboratório:

Purificação de DNA: DNases são frequentemente utilizadas em protocolos de extração de DNA para remover contaminações por ácidos nucleicos.

Análise de Expressão Gênica: Em técnicas como PCR e RT-qPCR, a pré-tratamento com DNase evita a amplificação de DNA residual.

Referências:

Suck D, Oefner C. Structure of DNases. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry. Academic Press; 2004. p. 1-6.

Kornberg RD, Baker TA. DNA Replication. 2nd edition. University Science Books; 2005. Chapter 7, Nucleases and the Recombination of DNA.

Schär P, Fritsch O. DNA Repair Mechanisms. Molecular Biotechnology. 1998;9(1):73-82.


 
BP

Deriva genética

di Beatriz Pulicano Neves - giovedì, 23 maggio 2024, 10:52
 

41. Deriva genética

Eventos ao acaso podem ter um efeito muito maior sobre as frequências alélicas em uma população pequena do que em uma população grande. Por exemplo, quando uma mutação nova ocorre em uma pequena população, sua frequência é representada por apenas uma cópia entre todas as cópias desse gene na população. Efeitos aleatórios do ambiente ou outras ocorrências ao acaso que são independentes do genótipo (i.e., os eventos que ocorrem por motivos alheios a se um indivíduo está carregando o alelo mutante ou não) podem produzir mudanças significativas na frequência do alelo para a doença, quando a população é pequena. Tais ocorrências ao acaso alteram o equilíbrio de Hardy‑Weinberg e causam mudanças na frequência alélica de uma geração para outra. Esse fenômeno, conhecido como deriva genética, pode explicar como as frequências alélicas podem mudar como resultado do acaso. Durante as próximas poucas gerações, embora o tamanho da população do novo grupo permaneça pequeno, pode haver uma flutuação considerável na frequência gênica até que as frequências alélicas cheguem a um novo equilíbrio à medida que a população aumente de tamanho.

Referência: Thompson & Thompson Genética Médica - 8ª EDIÇÃO


             Imagem retirada de escolaeducacao.com.br