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The special relativistic expressions for momentum and energy are obtained by requiring their
conservation in a totally inelastic variant of the Lewis–Tolman symmetric collision. The resulting
analysis is simpler and more straightforward than the usual textbook treatments of relativistic
dynamics. © 2008 American Association of Physics Teachers.
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I. INTRODUCTION

The Lewis–Tolman symmetric collision was introduced by
Lewis and Tolman in 19091 as a thought experiment useful
for obtaining the expression

m�v� = m��v� , �1�

for the “relativistic mass” m�v� in terms of the rest mass m
and ��v���1−v2 /c2. With the assumption that the momen-
tum m�v�v� is conserved in such a collision, they concluded
that the relativistic mass varies with speed according to Eq.
�1�. This collision has been used by many authors to derive
expressions for the relativistic mass and relativistic
momentum.2–13 We follow the same basic approach �al-
though we do not make use of the notion of relativistic
mass—in this paper mass means rest mass� and extend it to
obtain an expression for relativistic energy. We assume that
both the momentum and energy of an object are proportional
to the object’s mass, and that momentum is proportional to
the object’s velocity. That is, we assume that

p� = mv� f�v� , �2a�

E = mc2g�v� , �2b�

where f�v� and g�v� are dimensionless functions of the ob-
ject’s speed. The factor c2 in E ensures that g�v� is dimen-
sionless. We make the additional assumption that f�v� and
g�v� are continuous and smooth functions for 0�v�c. Fi-
nally, we assume that the relativistic momentum and energy
have appropriate non-relativistic limiting values. Specifi-
cally,

f�0� = 1, �3�

so that Eq. �2a� is consistent with the usual nonrelativistic
expression for momentum, and

g�v� = g�0� +
1

2
�v

c
�2

+ O�v3� , �4�

so that the energy

E = mc2g�0� +
1

2
mv2 + O�v3� �5�

contains the usual nonrelativistic kinetic energy. We make no
separate assumption about the value of g�0�. The value of
g�0� and thus the relation E0=mc2 relating the rest energy to

mass will be consequences of our reasoning. We assume that
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both relativistic momentum and energy, as calculated in any
Lorentz frame, are conserved in collisions.

As a final ingredient, we will make use of the relativistic
velocity transformation

v	 =
u + v	�

1 + uv	�/c2 , �6a�

v� =
v��

��u��1 + uv	�/c2�
, �6b�

which relates velocities as observed from two frames S and
S� where S� moves with velocity u� relative to S. Here v	 and
v	� are velocity components parallel to u� , and v� and v�� are
velocity components perpendicular to u� , as observed from S
and S�, respectively.

II. THE LEWIS–TOLMAN SYMMETRIC
COLLISION

A totally inelastic variant of the Lewis–Tolman symmetric
collision is shown in Fig. 1. Two identical particles, each of
mass m, collide and coalesce to form an object of mass M.
The same collision is pictured from two points of view: in
Fig. 1�a� as observed in frame S in which particle 1 moves in
the −y direction with speed w, and in Fig. 1�b� as observed in
frame S� in which particle 2 moves in the +y direction with
the same speed w. The frames S� and S are related by a boost
of speed u �with u�c� in the x direction as shown. The
velocities of particle 2 in frame S and of particle 1 in frame
S� are found by using the Lorentz velocity transformation
formulas.

One can imagine that such a collision could be brought
about by use of two identical particle launchers, one at rest in
S and pointing in the −y direction, and one at rest in S� and
pointing in the +y direction. If the particles are launched at
the proper instants they will collide.

The symmetry of the collision constrains the velocity of
the final-state particle. This particle will have no y velocity
because the launchers and initial particles are identical.14 So
this particle must move along the x axis, and its speed U
must the be same as observed in S as from S�.15 The velocity
transformation law constrains U according to

U =
u − U

1 − uU/c2 . �7�
The solution for U in terms of u is
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U =
c2

u
�1 − �1 − u2/c2� =

u

1 + �1 − u2/c2
. �8�

The requirement of momentum conservation in the y di-
rection leads to the expression for relativistic momentum.
Conservation of y momentum in frame S implies that

− mwf�w� + m� w

��u�
� f��u2 + w2/�2�u�� = 0, �9�

which must hold for all values of u and w. We divide by mw
and rearrange terms to find

f��u2 + w2/�2�u�� = ��u�f�w� . �10�

Because Eq. �10� holds for all w�0,16 we can take the w
→0 limit and use the assumed continuity of f�w� along with
the value f�0�=1 to arrive at the standard result

f�u� = ��u� . �11�

It is instructive to show that

���u2 + w2/�2�u�� = ��u���w� , �12�

so that Eqs. �9� and �10� hold for all values of u and w and
not just in the w→0 limit. We note that the final particle
mass M does not enter into our considerations because M has
no y velocity.

The requirements of x momentum conservation and en-
ergy conservation lead to the expression for relativistic en-
ergy. Conservation of x momentum �in frame S� gives

muf��u2 + w2/�2�u�� = MUf�U� . �13�

We use Eqs. �11� and �12� in Eq. �13� to express the final
particle mass as

M = m��w�
u��u�
U��U�

. �14�

Conservation of energy �in frame S� gives

mc2g�w� + mc2g��u2 + w2/�2�u�� = Mc2g�U� . �15�

m

m

m

M M

(a) (b)

m

Fig. 1. The totally inelastic Lewis–Tolman symmetric collision in which
two identical particles of mass m collide and coalesce to form a particle of
mass M. �a� In frame S particle 1 approaches in the −y direction with speed
w. �b� In frame S� particle 2 approaches in the +y direction with the same
speed w. Frame S� moves in the x direction with velocity u with respect to
frame S.
We eliminate M by use of Eq. �14� to find
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g�w� + g��u2 + w2/�2�u�� = g�U���w�
u��u�
U��U�

. �16�

The functional relation for g given in Eq. �16� must hold for
all u and w. Specifically, we take the limit u→0 and divide
by two to find

g�w� = g�0���w� , �17�

because U→0 and u /U→2 as u→0. We can identify the
value of g�0� by expanding both sides of Eq. �17� to order
w2. The known expansion of g is given in Eq. �4�, and
��w�= �1−w2 /c2�−1/2=1+w2 /2c2+¯, and we find

g�0� +
1

2

w2

c2 + ¯ = g�0��1 +
1

2

w2

c2 + ¯ � . �18�

Upon matching the coefficients of w2 in Eq. �18� we see that
g�0�=1, and so

g�v� = ��v� . �19�

By making use of Eq. �8� and Eq. �12�, we can verify that the
functional relation Eq. �16� is solved by Eq. �19� for all
values of u and w.

Our consideration of the u→0 limit of Eq. �16� was useful
for two reasons: it led us to the solution Eq. �19� without
having to guess the solution or have prior knowledge, and it
showed that Eq. �19� is the only possible solution for
Eq. �16�.

III. DISCUSSION

We have shown that the Lewis–Tolman symmetrical col-
lision can be used to deduce the relativistic energy formula
E=mc2��v� and the expression p� =mv���v� for relativistic
momentum. In standard treatments the Lewis–Tolman colli-
sion is used for momentum alone, and the energy is handled
differently. A unified approach such as the one given here has
the advantage of treating the closely related concepts of mo-
mentum and energy in a parallel fashion. The intimate con-
nection between momentum and energy is also central to the
four-vector approach, but our method more directly illus-
trates the conservation of these quantities in collisions. Once
the Lewis–Tolman collision has been described in a discus-
sion of relativistic momentum, the expression for relativistic
energy can be easily obtained as well.

Many treatments of relativistic momentum use the concept
of relativistic mass m�v� and define a conserved momentum
p� =m�v�v� . This definition is equivalent to our Eq. �2a� with
m�v�=mf�v�. Many authors make the additional assumption
that the relativistic mass itself is conserved in collisions.
With this additional assumption, the expression m�v�
=m��v� can be obtained efficiently from a simple longitudi-
nal collision.5,17–22 In fact, conservation of relativistic mass is
not an independent assumption: it can be derived from mo-
mentum conservation for a longitudinal collision as observed
in a frame with an infinitesimal transverse velocity.23 Our
view is that the use of relativistic mass detracts from the
deep connection between momentum and energy that is evi-
dent in the parallel conservation laws and particularly in the
spacetime based four-vector formalism by unnecessarily in-
troducing yet another velocity-dependent conserved quantity.
Various views on the topic of relativistic mass are found in

Refs. 24–27.
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We have made the explicit assumption that the energy of
an object is proportional to its mass, where the mass param-
eter represents inertia and is measured by the usual nonrela-
tivistic techniques. More general assumptions can be
made,28–30 and it is found that the energy can have the more
general form E=���v�+q, where � is a constant, v the
speed, and q a conserved scalar. The choice q=0 is simplest
and is consistent with observation.
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