# Flood Monitoring System-of-System

**Overall Description** 

#### Carlos Diego N. Damasceno Milena Guessi

#### SCC5944 Software Architecture Prof: Elisa Nakagawa @ USP-ICMC April - 2016

## Summary

- 1. Context and Problem
- 2. Product Perspective
- 3. Product Functions
- 4. User Classes and Characteristics
- 5. Design and Implementation Constraints
- 6. Assumptions and Dependencies



#### flood noun (WATER)

a large amount of water covering an area that is usually dry



[1] Flooding near <u>Key West</u>, <u>Florida</u>, <u>United States</u> from <u>Hurricane Wilma's storm surge</u> in October 2005.



[3] Flooding in São Carlos - SP



[2] Flooding in a street of Natal. Rio Grande do Norte, Brazil in April 2013.

Flash floods are one of the most devastating natural hazards <sup>[1,2]</sup>

Fast-moving and generally violent

High threat to life and severe damage to property and infrastructure

| Floods affected many mc | Hazard type              | Deaths<br>(thousands) | % of total | Affected<br>(millions) | % of total | ird |
|-------------------------|--------------------------|-----------------------|------------|------------------------|------------|-----|
|                         | Drought/famine           | 276                   | 44%        | 734                    | 29%        | ]   |
|                         | Floods                   | 94                    | 15%        | 1,401                  | 56%        |     |
|                         | Windstorms               | 61                    | 10%        | 313                    | 13%        |     |
|                         | Earthquakes              | 75                    | 12%        | 35                     | 1%         |     |
|                         | All 'natural'<br>hazards | 531                   | 85%        | 2,496                  | 100%       |     |
|                         | Technological<br>hazards | 93                    | 15%        | 1                      | 0%         |     |
|                         | Total (10 years)         | 624                   | 100%       | 2,497                  | 100%       | ]   |
|                         |                          |                       |            |                        |            | -   |

Disaster impacts by hazard type, 1993–2002<sup>[3]</sup>

[1] Sene, Kevin, Flash Floods: Forecasting and Warning, Springer Netherlands, 2013, http://dx.doi.org/10.1007/978-94-007-5164-4\_1.

[2] Burrell E Montz, Eve Gruntfest, Flash flood mitigation: recommendations for research and applications, Environmental Hazards, Vol. 4, Issue 1, March 2002, Pages 15-22, ISSN 1464-2867, <a href="http://dx.doi.org/10.1016/S1464-2867(02)00011-6">http://dx.doi.org/10.1016/S1464-2867(02)00011-6</a>. [3] DFID, **Disaster risk reduction:** a development concern: a scoping study on links between disaster risk reduction, poverty and development. Department for International Development, London/Overseas Development Group, Norwich, 2004</a>

Flood Warning System [1]

Provide people and organisations with more time to prepare for flooding

Reduce the risk to life and the damage caused

Hydrometry  $\rightarrow$  The science of moni

"The development of flood w



vith river monitoring-based services"

Hydrometry in early days → Human observers + Manual recording<sup>[1]</sup>

Relays via telephone, radio or telegraph

Graduated painted metal 'staff gauges'

Hydrometry nowadays → Telen warning local villagers The science of electroni



Example of staff gauge [1]

mation about distant objects

Schematic layout of Flood warning system [4]

[1] USGS, Definition of "Streamgage", 2014, http://water.usgs.gov/nsip/definition9.html

[2] Sene, Kevin, Flash Floods: Forecasting and Warning, Springer Netherlands, 2013, http://dx.doi.org/10.1007/978-94-007-5164-4\_1.

[3] Telemetry definition: http://dictionary.cambridge.org/dictionary/english/telemetry

[4] http://www.dsd.gov.hk/EN/Flood Prevention/Keeping the Drainage System in Good Shape/Flood Warning Systems/index.html

#### **Product Perspective**

Flood Monitoring System of System (FMSoS)

Support disaster management-related tasks  $\rightarrow$  *River monitoring* 

Communication interface to a wireless sensor network (WSN) for monitoring river levels



A WSN with gateway node, enabling access to remote clients via the Internet

### **Product Functions**

Analyze Hydrological Conditions

Manage WSN Infrastructure

**Configure Alert Notification Policies** 



### **User Classes and Characteristics**

Hydrologists - domain stakeholders

Developers - technical stakeholders

Public authorities (Policy managers) - domain stakeholders

Operators - technical stakeholders

Managers - technical and/or domain stakeholders



#### **Design and Implementation Constraints**

Layer Architectural Style

 $\text{Goal} \rightarrow \text{FMSoS}$ 

Network → Gateway

 $Sensor \rightarrow Sensor \ node$ 

Service-Oriented Architectural Style

OGC Standards



Reference Architecture for Self-Adaptive Management in WSN

### **Assumptions and Dependencies**

Geographic distribution of constituents of FMSoS

Operational independence of Sensor Nodes and Gateway

Managerial independence of Sensor Nodes and Gateway

Evolutionary development of the FMSoS

