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The Fraunhofer-Gesellschaft at a Glance

The Fraunhofer-Gesellschaft undertakes applied research of direct utility 
to private and public enterprise and of wide benefit to society. 

24,000 staff

More than 70%
is derived from contracts 
with industry and from 
publicly financed 
research projects.

Almost 30%
is contributed by the 
German federal and 
Länder Governments.
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€1.8 
billion

Major infrastructure 
capital expenditure and 
defense research
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Fraunhofer IESE 
The institute for software and systems engineering methods

 Founded in 1996, headquartered 
in Kaiserslautern

 Over 155 full-time equivalents (FTEs)

 Our solutions can be scaled flexibly 
and are suitable for companies of 
any size

 Our most important business areas: 

3

 Automotive and Transportation Systems

 Automation and Plant Engineering

 Health Care

 Information Systems

 Energy Management

 E-Government
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Our Competencies – for Your Benefit
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SOFTWARE-ENABLED INNOVATIONS

IS/MobileES/CPS Smart Ecosystems
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IESE Organizational Chart
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Top Industry Customers in 2015
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Hello, Architecture!



@ Jens Knodel
© Fraunhofer IESE

8

Foundations

Engineering Challenge: Large-Scale Systems

Lines of Code [kLOC]

t1970 1980 1990 2000 2010

1
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100

1000

 Examples

 Car window opener

 Car control unit

 Windows XP

10.000 LoC

15.000.000 LoC

40.000.000 LoC
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Foundations

Engineering Challenge: Large Development Teams

 Large teams have to collaborate.

 Teams 

 Distributed over buildings, countries, continents;

 Distributed over departments, organizations.

 Decomposition of work for parallelization is essential.
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Foundations

Engineering Challenge: High Quality

Quality is not only about correctness of functionality

Successful software systems have to assure additional properties

 Performance

 Security

 Safety

 Availability

 Maintainability

 …

These properties are the so-called Quality Attributes
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Foundations

Architecture as a Mediator and Communicator

Technology (-specific) Level

Business Level

Architecture

Software
Architect

Developers

Business
Managers
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Foundations

Architectures… 

 … provide guidance

 Plan for constructing a system

 Technical leadership and 
coordination

 Standards and consistency

 … balance technical risks

 Identification and mitigation

 Anticipation (preparation) for 
changes

 … enable communication

 Clear technical vision and roadmap

 Explicit documentation for 
communication

 … manage the inherent 
complexity

 Products to be built

 Increasing interconnection of 
systems

 Integration with legacy systems

 Collaboration of organizational 
units
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Foundations

AssetsInitiatives

Lifecycle

Present

Future
(Anticipation)

Past
(Debt)

Resources Budget

Schedule Value

Quantity Quality

Architecting

The Bermuda Triangle 
of Architecting

Don’t get lost &
Don’t loose your 
investments!

Balance the 
architecture 
equilibrium!

Note: a change in any triangle
dimension affects the others!
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Foundations

What do We Need in Terms of Architecture?

Implicit

Explicit

Problem Space Solution Space

Explicit architecture needed to 
benefit from architecture!

 Implicit architecture
 Fuzzy ideas in minds of engineers;

 Only exists at implementation level;

 Can only be communicated verbally.

 Explicit architecture
 Modeled / documented;

 Contains the information needed;

 Can be intended or implemented 
architecture (“real world”).
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Architecture Design

Context Specification

Functions Networks 
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies

Architecture Drivers

driveBusiness Driver

Functional
Requirements

Constraints

Quality 
Requirements

Architecture Drivers and Architecture Design
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Architecture Drivers
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Foundations

What Drives my Architecture?

 Whatever is…

 Costly to change

 Risky

 New

With respect to stakeholders’ concerns
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Foundations

Architectural Drivers

 Business goals

 Customer organization

 Developing organization

 Key functional requirements

 Unique properties

 Make system viable

 Quality attributes

 System in use (runtime quality attributes)

 System under development (devtime quality attributes)

 Constraints

 Organizational, legal, and technical

 Cost and time
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Foundations

Compensation of Architectural Drivers

What we typically find in practice as architects

 Business goals: often found, but not well understood

 Functional requirements: often found

 Runtime quality attributes: often found, but not specific enough

 Devtime quality attributes: rarely found, seldom specific

 Operation quality attributes: rarely found

 Constraints: often found, but not always really fix

 Architects have spend work for compensation of architectural drivers
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Example

Architectural Drivers – Examples

 „A user wants to update the system. The update is triggered with a 
maximum of 3 clicks. “ 

 „During operation, a single sensor fails. All ongoing operations are
unaffected by the failure“

 „Each user input generates a visual response within 0.2 s“

 „A new feature is to be implemented. A team of 5 people is able to
realize the feature within three days“

 „We are not allowed to use Open Source software at all“

 „All our components have to be AUTOSAR compliant“
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Architecture Design
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Things can be too complex to be understood 
from a single perspective
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But some try nevertheless …
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… and fail

Dependency Graph 
of just ONE subsystem (out of 20) of a real system
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Foundations

“It is not possible to capture the functional 
features and quality properties of a complex 
system in a single comprehensible model that is 
understandable by and of value to all 
stakeholders”

[Rozanski, Woods, 2005]
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Example

Analogy – Views on a Building

http://www.planungswerkstatt-bau.de
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What Determines the Views in Building Architecture?

 3-dimensional world and metrics

 Physics

 Crafts (plumbing, electricity, …)
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Exercise

What Determines the Views in Software Architecture?
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Abstraction
In the end, it‘s about the Code… but
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Investment

Model is 
Abstraction

(easy to change)

Prediction
(early)

Governance
(late)
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Architectural Scope

Context

System
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Architecture Design

Context Specification

Functions Networks 
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies

Architecture Drivers

driveBusiness Driver

Functional
Requirements

Constraints

Quality 
Requirements

Legend

Inter-artifact traceability

Intra-artifact traceability

Refine and specify the decomposition by addressing different aspects
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The Embedded Modeling Profile
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Tailoring of UML/SysML

 Add support for modeling of system concepts for embedded systems

 Based on results of SPES 2020 and SPES XT project

SPES

 Innovation alliance with 21 Partners from Industry and academia

 Development of Software Development Platform for Embedded Systems

Modelling Profile for Embedded Systems Development
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Architecture Drivers
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Function Networks
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Software Entities
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Hardware and Network Entities
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Data Model
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Data Model
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Architecture and Safety
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What is so special about safety?
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 “For the 34 (safety) incidents analyzed, 
44% had inadequate specification as 
their primary cause.”

Out of Control: Why Control Systems Go Wrong and How 
to Prevent Failure.

Health and Safety Executive (HSE), 2015.

 “Almost all accidents related to software 
components in the past 20 years can be 
traced to flaws in the requirements 
specifications, such as unhandled cases.”

Safety-Critical Requirements Specification and Analysis using
SpecTRM.

Safeware Engineering, 2014.
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Component Fault Trees - CFTs
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Failure Modes and Effect Analysis - FMEA
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Markov Chains
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 IEC 61508 – Functional Safety of Electrical/Electronic/Programmable Electronic 
Safety-related Systems;

 ISO 26262 – Road vehicles -- Functional safety;

 IEC 62061, ISO 13849, ISO 15998 (Earth-moving Machinary), ISO 
25119 (Agriculture Vehicles) – Machinery Safety;

 EN 50126/8/9 – Railway; 

 DO-254, DO-178C, ARP 4754, ARP 4761 – Aerospace.
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 “None of the existing traceability 
approaches described in the literature 
are appropriate to meet this demand of 
the safety-critical domain .”

CoEST - Center of Excellence for Software Traceability, 2012.

 Traceability among hazards, safety 
requirements, and architecture of 
equipments submitted to FDA are usually 
incomplete, incorrect, and conflicting.

FDA, 2014.

 Creating and documenting traceability 
immediately prior to certification is a 
common proceeding.

Mäder et al., 2014.
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Architecture Design

Context Specification

Functions Networks 
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies

Architecture Drivers

driveBusiness Driver

Functional
Requirements

Constraints

Quality 
Requirements

Legend

Inter-artifact traceability

Intra-artifact traceability
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Legend

Inter-artifacts traceability

Intra-artifacts traceability

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Failure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models

Architecture Design

Context Specification

Functions Networks 
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies



© Fraunhofer IESE

52

Legend

Inter-artifacts traceability

Intra-artifacts traceability

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Failure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models

Safety Engineer

Architect

Requirements/
Safety Engineer

Analyze

Architecture Design

Context Specification

Functions Networks 
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies
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Goal
Improving completeness and consistency of architecture with respect to safety requirements and 

failure propagation models

Analytical Constituent

Completeness and Consistency Checks

Constructive Constituent

Safety Requirements Specification Support

contributes for achieving

Fraunhofer IESE Approach to deal with Safety
Architectures
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Designing the Automated Completeness and
Consistency Checks
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Meet Safety Engineering Goals

 All failures described in the failure propagation models are covered by 
safety requirements;

 All safety-related requirements are satisfied by elements of the 
architecture;

 Determine the potential impact of changing a requirement on its 
associated safety-related artifacts.
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Automation and Instantiation by Different Technology 
Platforms

 Non-automated approaches to dealing with large-scale software are 
unpractical and unrealistic to be considered in industrial software 
development environments.

 Basis for implementation with (i) formal proofs, (ii) model checking, (iii) 
query languages, and (iv) specialists computer programs. .
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Completeness Checks
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Notion of Completeness

 Completeness is a quality attribute that is ensured when the definition 
and justification of a problem is found within the specification.



© Fraunhofer IESE

59

Notion of Completeness

 Completeness is a quality attribute that is ensured when the definition 
and justification of a problem is found within the specification.

 SRCompC3: Every safety requirement 
describes failures mitigations 
referencing, at least, one safety-critical 
architecture element. 

 TransSRCompC3: Every safety-critical 
architecture element addresses, at least, 
one safety requirement.
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Example Completeness Check

Violation of the SRCompC3: Every safety requirement describes failures 
mitigations referencing, at least, one safety-critical architecture element.
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I-SafE Completeness Checks Output Example
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Cosistency Checks
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Notion of Consistency

 Consistency is achieved when two or more artifacts obey relationships 
that should exist between them.

 A safety requirement is consistent as long as there are no contradictions 
among safety requirements, safety-critical architecture elements, and 
failure propagation models. 
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 SRConsC1: For every updated or deleted 
safety requirement ,there are safety-critical 
architecture elements failure propagation 
models, and other safety requirements that 
are impacted.

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Architecture Specification

System Overview

Functions Structure and Behaviour

Logical Structure and Behavior

Data Type and Flow

Deployment

Technologies

Change

Impact

Impact

Failure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models
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Change

 SRConsC2: For every updated, deleted, or 
substituted safety-critical architecture 
element, there are safety requirements, 
failure propagation models, and other 
safety-critical architecture elements that are 
impacted.

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Architecture Specification

System Overview

Functions Structure and Behaviour

Logical Structure and Behavior

Data Type and Flow

Deployment

Technologies

Impact

Impact

Failure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models

Impact
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Change

 SRConsC3: For every updated or deleted 
failure propagation model, there are safety 
requirements and safety-critical architecture 
elements that are impacted.

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements Architecture Specification

System Overview

Functions Structure and Behaviour

Logical Structure and Behavior

Data Type and Flow

Deployment

TechnologiesFailure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models

Impact

Impact
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 SRConsC4: The safety requirements are 
addressed by safety-critical architecture 
elements with an equal or more stringent 
safety integrity level.

Safety
RequirementsSafety

RequirementsSafety
Requirements

Safety
Requirements

Architecture Specification

System Overview

Functions Structure and Behaviour

Logical Structure and Behavior

Data Type and Flow

Deployment

Technologies

has ≤ SIL

has ≥ SIL

 TransSRConsC4: Safety-critical architecture 
elements address safety requirements that 
have an equal or less stringent safety integrity 
level.
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I-SafE Consistency Checks Output Examples
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Goal
Improving completeness and consistency of architecture with respect to safety requirements and 

failure propagation models

Analytical Constituent

Completeness and Consistency Checks

Constructive Constituent

Safety Requirements Specification Support

contributes for achieving

Fraunhofer IESE Approach to deal with Safety
Architectures
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Safety Engineer

Architect

Failure propagation models

Safety Requirements
Specification Support

Safety Requirements
Decomposition Pattern

Parameterized Safety
Requirements Templates

Complete and Consistent
Safety Requirements

Specifications
lead to

Safety Requirements Specification Support

Input

Input

Requirements
Engineer

Architecture design

…

Software 
Components

Hardware 
Components

Function Networks

Fault Trees

CFTs

FMEA

Markov Chains

…
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Safety Engineer

Architect

Failure propagation models

Safety Requirements
Specification Support

Safety Requirements
Decomposition Pattern

Parameterized Safety
Requirements Templates

Complete and Consistent
Safety Requirements

Specifications
lead to

Safety Requirements Specification Support

Input

Input

Requirements
Engineer

Architecture design

…

Software 
Components

Hardware 
Components

Function Networks

Fault Trees

CFTs

FMEA

Markov Chains

…
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The Safety Requirements Decomposition Pattern



Safety Goals

Harm

Failure

Risk

Safety Analysis Safety Requirements Specification Architecture

Preliminary
Architecture

Functional Architecture

Top Level

Functional Safety
Requirements

Functional Level

Failure

Technical Safety
Requirements

Technical Level

Technical ArchitectureFailure
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The Safety Requirements Decomposition Pattern 
@ the Functional Level
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Safety Requirements Decomposition Pattern @ 
Functional Level
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Safety Requirements Decomposition Pattern @ 
Functional Level
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Safety Requirements Decomposition Pattern @ 
Functional Level
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Safety Requirements Decomposition Pattern @ 
Functional Level
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Automated External Defibrillator
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Traditional External Defibrillator Automated External Defibrillator (AED)
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Traditional External Defibrillator Automated External Defibrillator (AED)

Overshocking!!
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http://nutes.uepb.edu.br/

http://www.lifemed.com.br
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http://nutes.uepb.edu.br/

http://www.lifemed.com.br
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The Safety Requirements Decomposition Pattern 
@ the Technical Level
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Safety Requirements Decomposition Pattern @ Technical 
Level
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class Safety Decomposition

«technical safety requirement»
Detect and Handle <<charging rate less than n
%>> to mitigate <<wearing>> of <<electronic 

components>> associated to the <<Shock 
Generator>>

«technical safety requirement»
Detect and Handle <<peak v oltage higher than x 

v olts>> to mitigate <<wearing> of <<eletronic 
components>> associated to the <<Shock 

Generator>>

«technical safety requirement»
Detect and Handle <<duration of the peak v oltage 

higher than 120m seconds>> to mitigate <<v ariations 
in the deliv ering time energy>> of <<electronic 
components>> associated to the <<Discharge>>

«technical fault tolerance requirement»
Detect and treat the v iolation of the rate 

limit of the capacitor charging 

«technical fault tolerance requirement»
Detect and treat v iolation of the peak 

v oltage limit.

«technical fault tolerance requirement»
Detect and treat Timing Violation of the 

peak v oltage of the time limit.

«technical detection requirement»
<<Voltage Sensors>> shall <<detect>> if 

<<capacitor charging>> associated to 
the <<Shock Generator>> is <<out rate 

limit>>

«technical containment requirement»
if it is detected that <<charging 

capacitor>> <<is out rate limit >> then 
<<The activ ation of the step charging 

capacitor shall limit the capacitor 
charge rate>>

«technical detection requirement»
<<Voltage Sensors>> shall <<detect>> if 

<<eletronic components>> associated to the 
<<Shock Generator>> is <<out peak v oltage 

limit>>

«technical containment requirement»
if it is detected that <<eletronic components>> <<is out 
peak v oltage limit>> then <<the Activ ation of the step 
amplitude damping circuit shall treat the v iolation of 

the peak v oltage limit>>

«technical detection requirement»
<<Voltage Sensors and System Clock>> shall <<detect>> if 

<<eletronic components>> associated to the <<Shock 
Generator >> is <<out time limit of the peak v oltage>>

«technical containment requirement»
if it is detected that <<eletronic components>> <<is out the time 
limit v iolation of the peak v oltage>> then << The Snubber circuit 

shall mitigate the v iolation of time limit peak v oltage>>

Snubber

Voltage Sensor

Discharge Controller

Charge Controller

refers torefers to

refers to

is refined by

refers to

refers to

refers to

is refined byis refined by
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Safety Engineer

Architect

Failure propagation models

Safety Requirements
Specification Support

Safety Requirements
Decomposition Pattern

Parameterized Safety
Requirements Templates

Complete and Consistent
Safety Requirements

Specifications
lead to

Safety Requirements Specification Support

Input

Input

Requirements
Engineer

Architecture design

…

Software 
Components

Hardware 
Components

Function Networks

Fault Trees

CFTs

FMEA

Markov Chains

…
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Designing the Parameterized Safety
Requirements Templates
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Designing the Parameterized Safety Requirements
Templates (1/3)

ISO/IEC/IEEE 29148:2011 Systems and software engineering - Life cycle processes -
Requirements engineering.
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Designing the Parameterized Safety Requirements
Templates (2/3)

 Acceptable failure mode and rates;

 Qualitative requirements for failure modes;

 Elements of the architecture that address the safety requirements 
demands.
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Designing the Parameterized Safety Requirements
Templates (3/3)

 “Requirements are mandatory binding provisions and use 'shall'.”;

 “It is best to avoid using the term ‘must', due to potential 
misinterpretation as a requirement.”;

 “Use positive statements and avoid negative requirements such as ‘shall 
not'.”;

 “Use active voice: avoid using passive voice, such as 'shall be able to 
select'.”;

 …

ISO/IEC/IEEE 29148:2011 Systems and software engineering - Life cycle processes -
Requirements engineering.
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The Parameterized Safety Requirements
Templates
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Safety Requirements Decomposition Pattern elements
with Templates

Top-level
• Top-level Safety Requirement

Functional
Level

• Functional Detection SR
• Functional Containment SR

Technical 
Level

• Technical SR
• Technical Detection SR
• Technical Containment SR
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Top Level Safety Requirement Template

The <<System || Component 
|| Item || Unit of 
Observation>> 

shall
<<avoid || not cause || 

not allow || not be || not 
|| no>>

<<harm>>
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Functional Detection Requirements Template
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Technical Safety Requirement
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<<technical 
element: 
Logical 

Component || 
Hardware 

Unit>>

<<Failure
associated to the

technical
element>>

then

(optional)

<<timing threshold of 
measurement: within || 

before || after || exactly at 
|| no later than || every>>

(optional)

<<timing 
constraint>>

(optional)

<<value 
constraint>>

(optional)

<<value threshold of 
measurement: within || 

exactly with || not exceed 
|| not less than || not 

greater than>>

If it is 
detected 

that

<<Action to 
contain the failure 
associated to the 

technical 
element>>

Technical Containment Safety Requirement Template

(optional)

<<timing threshold of measurement: within || before || 
after || exactly at || no later than || every>>

(optional)

<<timing constraint>>

(optional)

<<value constraint>>

(optional)

<<value threshold of measurement: within || exactly 
with || not exceed || not less than || not greater than>>
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Safety Patterns @ Functional and Technical Levels

• Sanity Check
•Watchdog
• Comparison

Detection Safety Patterns

• Redundancy
• Reconfiguration
•Degradation
• Firewall
• Interlock
• Voting

Containment Safety Patterns
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Watchdog

<<Whatchdog Element: 
functional element || 
logical component || 

hardware unit>>

Shall 
monitor 
whether

<<event associated to 
functional element || 
logical component || 

hardware unit>>

Does not 
occur

<<timing threshold of 
measurement: within || before || 
after || exactly at || no later than 

|| every>>

(optional)

<<timing constraint>>

(optional)

<<value constraint>>

<<value threshold of 
measurement: within || exactly 

with || not exceed || not less 
than || not greater than>>
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Comparator

<<Comparator element: 
functional element || 
logical component || 

hardware unit >>

shall check 
whether

<<1..* output data>>
<< functional element || 

logical component || 
hardware unit >>

of the

is/are equal to the <<1..* output data>> of the

<<1..* redundant element: 
functional element || 
logical component || 

hardware unit >>

Voting

<<Voter: functional element 
|| logical component || 

hardware unit >>
decides which <<output data>> of

<<1..* functional element || 
logical component || 

hardware unit >>

is correct, based on 
the reference value

<<reference value>>
(optional)

Which is computer by

<<functional element || 
logical component || 

hardware unit >>
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