
Safety Architectures Competence @ Fraunhofer IESE

Pablo Oliveira Antonino
April 11, 2016

© Fraunhofer IESE

2

The Fraunhofer-Gesellschaft at a Glance

The Fraunhofer-Gesellschaft undertakes applied research of direct utility
to private and public enterprise and of wide benefit to society.

24,000 staff

More than 70%
is derived from contracts
with industry and from
publicly financed
research projects.

Almost 30%
is contributed by the
German federal and
Länder Governments.

67 institutes and research units Fi
n

an
ce

 v
o

lu
m

e

€2.1 billion

2015

C
o

n
tr

ac
t

R
es

ea
rc

h

€1.8
billion

Major infrastructure
capital expenditure and
defense research

© Fraunhofer IESE

Fraunhofer IESE
The institute for software and systems engineering methods

 Founded in 1996, headquartered
in Kaiserslautern

 Over 155 full-time equivalents (FTEs)

 Our solutions can be scaled flexibly
and are suitable for companies of
any size

 Our most important business areas:

3

 Automotive and Transportation Systems

 Automation and Plant Engineering

 Health Care

 Information Systems

 Energy Management

 E-Government

© Fraunhofer IESE

4

Our Competencies – for Your Benefit

4

SOFTWARE-ENABLED INNOVATIONS

IS/MobileES/CPS Smart Ecosystems

© Fraunhofer IESE

5

IESE Organizational Chart

© Fraunhofer IESE

6

Top Industry Customers in 2015

6

© Fraunhofer IESE

7

Hello, Architecture!

@ Jens Knodel
© Fraunhofer IESE

8

Foundations

Engineering Challenge: Large-Scale Systems

Lines of Code [kLOC]

t1970 1980 1990 2000 2010

1

10

100

1000

 Examples

 Car window opener

 Car control unit

 Windows XP

10.000 LoC

15.000.000 LoC

40.000.000 LoC

@ Jens Knodel
© Fraunhofer IESE

9

Foundations

Engineering Challenge: Large Development Teams

 Large teams have to collaborate.

 Teams

 Distributed over buildings, countries, continents;

 Distributed over departments, organizations.

 Decomposition of work for parallelization is essential.

@ Jens Knodel
© Fraunhofer IESE

10

Foundations

Engineering Challenge: High Quality

Quality is not only about correctness of functionality

Successful software systems have to assure additional properties

 Performance

 Security

 Safety

 Availability

 Maintainability

 …

These properties are the so-called Quality Attributes

© Fraunhofer IESE

11

Foundations

Architecture as a Mediator and Communicator

Technology (-specific) Level

Business Level

Architecture

Software
Architect

Developers

Business
Managers

Lan
g

u
ag

e

V
alu

e

R
isks

Lan
g

u
ag

e

C
red

ib
ility

© Fraunhofer IESE

12

Foundations

Architectures…

 … provide guidance

 Plan for constructing a system

 Technical leadership and
coordination

 Standards and consistency

 … balance technical risks

 Identification and mitigation

 Anticipation (preparation) for
changes

 … enable communication

 Clear technical vision and roadmap

 Explicit documentation for
communication

 … manage the inherent
complexity

 Products to be built

 Increasing interconnection of
systems

 Integration with legacy systems

 Collaboration of organizational
units

@ Jens Knodel
© Fraunhofer IESE

13

Foundations

AssetsInitiatives

Lifecycle

Present

Future
(Anticipation)

Past
(Debt)

Resources Budget

Schedule Value

Quantity Quality

Architecting

The Bermuda Triangle
of Architecting

Don’t get lost &
Don’t loose your
investments!

Balance the
architecture
equilibrium!

Note: a change in any triangle
dimension affects the others!

© Fraunhofer IESE

14

Foundations

What do We Need in Terms of Architecture?

Implicit

Explicit

Problem Space Solution Space

Explicit architecture needed to
benefit from architecture!

 Implicit architecture
 Fuzzy ideas in minds of engineers;

 Only exists at implementation level;

 Can only be communicated verbally.

 Explicit architecture
 Modeled / documented;

 Contains the information needed;

 Can be intended or implemented
architecture (“real world”).

© Fraunhofer IESE

15

Architecture Design

Context Specification

Functions Networks
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies

Architecture Drivers

driveBusiness Driver

Functional
Requirements

Constraints

Quality
Requirements

Architecture Drivers and Architecture Design

© Fraunhofer IESE

16

Architecture Drivers

© Fraunhofer IESE

17

© Fraunhofer IESE

17

Foundations

What Drives my Architecture?

 Whatever is…

 Costly to change

 Risky

 New

With respect to stakeholders’ concerns

© Fraunhofer IESE

18

© Fraunhofer IESE

18

Foundations

Architectural Drivers

 Business goals

 Customer organization

 Developing organization

 Key functional requirements

 Unique properties

 Make system viable

 Quality attributes

 System in use (runtime quality attributes)

 System under development (devtime quality attributes)

 Constraints

 Organizational, legal, and technical

 Cost and time

© Fraunhofer IESE

19

© Fraunhofer IESE

19

Foundations

Compensation of Architectural Drivers

What we typically find in practice as architects

 Business goals: often found, but not well understood

 Functional requirements: often found

 Runtime quality attributes: often found, but not specific enough

 Devtime quality attributes: rarely found, seldom specific

 Operation quality attributes: rarely found

 Constraints: often found, but not always really fix

 Architects have spend work for compensation of architectural drivers

© Fraunhofer IESE

20

© Fraunhofer IESE

20

Example

Architectural Drivers – Examples

 „A user wants to update the system. The update is triggered with a
maximum of 3 clicks. “

 „During operation, a single sensor fails. All ongoing operations are
unaffected by the failure“

 „Each user input generates a visual response within 0.2 s“

 „A new feature is to be implemented. A team of 5 people is able to
realize the feature within three days“

 „We are not allowed to use Open Source software at all“

 „All our components have to be AUTOSAR compliant“

© Fraunhofer IESE

21

Architecture Design

© Fraunhofer IESE

22

Things can be too complex to be understood
from a single perspective

© Fraunhofer IESE

23

But some try nevertheless …

© Fraunhofer IESE

24

© Fraunhofer IESE

24

… and fail

Dependency Graph
of just ONE subsystem (out of 20) of a real system

© Fraunhofer IESE

25

© Fraunhofer IESE

25

Foundations

“It is not possible to capture the functional
features and quality properties of a complex
system in a single comprehensible model that is
understandable by and of value to all
stakeholders”

[Rozanski, Woods, 2005]

© Fraunhofer IESE

26

© Fraunhofer IESE

26

Example

Analogy – Views on a Building

http://www.planungswerkstatt-bau.de

© Fraunhofer IESE

27

What Determines the Views in Building Architecture?

 3-dimensional world and metrics

 Physics

 Crafts (plumbing, electricity, …)

© Fraunhofer IESE

28

© Fraunhofer IESE

28

Exercise

What Determines the Views in Software Architecture?

© Fraunhofer IESE

29

Abstraction
In the end, it‘s about the Code… but

Im
p

le
m

en
ta

ti
o

n
A

rc
h

it
ec

tu
re

Investment

Model is
Abstraction

(easy to change)

Prediction
(early)

Governance
(late)

© Fraunhofer IESE

30

Architectural Scope

Context

System

© Fraunhofer IESE

31

Architecture Design

Context Specification

Functions Networks
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies

Architecture Drivers

driveBusiness Driver

Functional
Requirements

Constraints

Quality
Requirements

Legend

Inter-artifact traceability

Intra-artifact traceability

Refine and specify the decomposition by addressing different aspects

© Fraunhofer IESE

32

The Embedded Modeling Profile

© Fraunhofer IESE

33

Tailoring of UML/SysML

 Add support for modeling of system concepts for embedded systems

 Based on results of SPES 2020 and SPES XT project

SPES

 Innovation alliance with 21 Partners from Industry and academia

 Development of Software Development Platform for Embedded Systems

Modelling Profile for Embedded Systems Development

© Fraunhofer IESE

34

Architecture Drivers

© Fraunhofer IESE

35

Function Networks

© Fraunhofer IESE

36

Software Entities

© Fraunhofer IESE

37

Hardware and Network Entities

© Fraunhofer IESE

38

Data Model

© Fraunhofer IESE

39

Data Model

© Fraunhofer IESE

40

Architecture and Safety

© Fraunhofer IESE

41

What is so special about safety?

© Fraunhofer IESE

42

 “For the 34 (safety) incidents analyzed,
44% had inadequate specification as
their primary cause.”

Out of Control: Why Control Systems Go Wrong and How
to Prevent Failure.

Health and Safety Executive (HSE), 2015.

 “Almost all accidents related to software
components in the past 20 years can be
traced to flaws in the requirements
specifications, such as unhandled cases.”

Safety-Critical Requirements Specification and Analysis using
SpecTRM.

Safeware Engineering, 2014.

© Fraunhofer IESE

43

© Fraunhofer IESE

44

Component Fault Trees - CFTs

© Fraunhofer IESE

45

Failure Modes and Effect Analysis - FMEA

© Fraunhofer IESE

46

Markov Chains

© Fraunhofer IESE

47

© Fraunhofer IESE

48

 IEC 61508 – Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems;

 ISO 26262 – Road vehicles -- Functional safety;

 IEC 62061, ISO 13849, ISO 15998 (Earth-moving Machinary), ISO
25119 (Agriculture Vehicles) – Machinery Safety;

 EN 50126/8/9 – Railway;

 DO-254, DO-178C, ARP 4754, ARP 4761 – Aerospace.

© Fraunhofer IESE

49

 “None of the existing traceability
approaches described in the literature
are appropriate to meet this demand of
the safety-critical domain .”

CoEST - Center of Excellence for Software Traceability, 2012.

 Traceability among hazards, safety
requirements, and architecture of
equipments submitted to FDA are usually
incomplete, incorrect, and conflicting.

FDA, 2014.

 Creating and documenting traceability
immediately prior to certification is a
common proceeding.

Mäder et al., 2014.

© Fraunhofer IESE

50

Architecture Design

Context Specification

Functions Networks
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies

Architecture Drivers

driveBusiness Driver

Functional
Requirements

Constraints

Quality
Requirements

Legend

Inter-artifact traceability

Intra-artifact traceability

© Fraunhofer IESE

51

Legend

Inter-artifacts traceability

Intra-artifacts traceability

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Failure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models

Architecture Design

Context Specification

Functions Networks
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies

© Fraunhofer IESE

52

Legend

Inter-artifacts traceability

Intra-artifacts traceability

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Failure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models

Safety Engineer

Architect

Requirements/
Safety Engineer

Analyze

Architecture Design

Context Specification

Functions Networks
(Structure and Behavior)

Software Entities
(Structure and Behavior)

Hardware and Network Entities
(Structure and Behavior)

Data Model

Technologies

© Fraunhofer IESE

53

Goal
Improving completeness and consistency of architecture with respect to safety requirements and

failure propagation models

Analytical Constituent

Completeness and Consistency Checks

Constructive Constituent

Safety Requirements Specification Support

contributes for achieving

Fraunhofer IESE Approach to deal with Safety
Architectures

© Fraunhofer IESE

54

Designing the Automated Completeness and
Consistency Checks

© Fraunhofer IESE

55

Meet Safety Engineering Goals

 All failures described in the failure propagation models are covered by
safety requirements;

 All safety-related requirements are satisfied by elements of the
architecture;

 Determine the potential impact of changing a requirement on its
associated safety-related artifacts.

© Fraunhofer IESE

56

Automation and Instantiation by Different Technology
Platforms

 Non-automated approaches to dealing with large-scale software are
unpractical and unrealistic to be considered in industrial software
development environments.

 Basis for implementation with (i) formal proofs, (ii) model checking, (iii)
query languages, and (iv) specialists computer programs. .

© Fraunhofer IESE

57

Completeness Checks

© Fraunhofer IESE

58

Notion of Completeness

 Completeness is a quality attribute that is ensured when the definition
and justification of a problem is found within the specification.

© Fraunhofer IESE

59

Notion of Completeness

 Completeness is a quality attribute that is ensured when the definition
and justification of a problem is found within the specification.

 SRCompC3: Every safety requirement
describes failures mitigations
referencing, at least, one safety-critical
architecture element.

 TransSRCompC3: Every safety-critical
architecture element addresses, at least,
one safety requirement.

© Fraunhofer IESE

60

Example Completeness Check

Violation of the SRCompC3: Every safety requirement describes failures
mitigations referencing, at least, one safety-critical architecture element.

© Fraunhofer IESE

61

I-SafE Completeness Checks Output Example

© Fraunhofer IESE

62

Cosistency Checks

© Fraunhofer IESE

63

Notion of Consistency

 Consistency is achieved when two or more artifacts obey relationships
that should exist between them.

 A safety requirement is consistent as long as there are no contradictions
among safety requirements, safety-critical architecture elements, and
failure propagation models.

© Fraunhofer IESE

64

 SRConsC1: For every updated or deleted
safety requirement ,there are safety-critical
architecture elements failure propagation
models, and other safety requirements that
are impacted.

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Architecture Specification

System Overview

Functions Structure and Behaviour

Logical Structure and Behavior

Data Type and Flow

Deployment

Technologies

Change

Impact

Impact

Failure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models

© Fraunhofer IESE

65

Change

 SRConsC2: For every updated, deleted, or
substituted safety-critical architecture
element, there are safety requirements,
failure propagation models, and other
safety-critical architecture elements that are
impacted.

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements

Architecture Specification

System Overview

Functions Structure and Behaviour

Logical Structure and Behavior

Data Type and Flow

Deployment

Technologies

Impact

Impact

Failure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models

Impact

© Fraunhofer IESE

66

Change

 SRConsC3: For every updated or deleted
failure propagation model, there are safety
requirements and safety-critical architecture
elements that are impacted.

Safety
Requirements

Safety
Requirements

Safety
Requirements

Safety
Requirements Architecture Specification

System Overview

Functions Structure and Behaviour

Logical Structure and Behavior

Data Type and Flow

Deployment

TechnologiesFailure Propagation Models
Failure Propagation Models

Failure Propagation Models
Failure Propagation Models

Impact

Impact

© Fraunhofer IESE

67

 SRConsC4: The safety requirements are
addressed by safety-critical architecture
elements with an equal or more stringent
safety integrity level.

Safety
RequirementsSafety

RequirementsSafety
Requirements

Safety
Requirements

Architecture Specification

System Overview

Functions Structure and Behaviour

Logical Structure and Behavior

Data Type and Flow

Deployment

Technologies

has ≤ SIL

has ≥ SIL

 TransSRConsC4: Safety-critical architecture
elements address safety requirements that
have an equal or less stringent safety integrity
level.

© Fraunhofer IESE

68

I-SafE Consistency Checks Output Examples

© Fraunhofer IESE

69

Goal
Improving completeness and consistency of architecture with respect to safety requirements and

failure propagation models

Analytical Constituent

Completeness and Consistency Checks

Constructive Constituent

Safety Requirements Specification Support

contributes for achieving

Fraunhofer IESE Approach to deal with Safety
Architectures

© Fraunhofer IESE

70

Safety Engineer

Architect

Failure propagation models

Safety Requirements
Specification Support

Safety Requirements
Decomposition Pattern

Parameterized Safety
Requirements Templates

Complete and Consistent
Safety Requirements

Specifications
lead to

Safety Requirements Specification Support

Input

Input

Requirements
Engineer

Architecture design

…

Software
Components

Hardware
Components

Function Networks

Fault Trees

CFTs

FMEA

Markov Chains

…

© Fraunhofer IESE

71

Safety Engineer

Architect

Failure propagation models

Safety Requirements
Specification Support

Safety Requirements
Decomposition Pattern

Parameterized Safety
Requirements Templates

Complete and Consistent
Safety Requirements

Specifications
lead to

Safety Requirements Specification Support

Input

Input

Requirements
Engineer

Architecture design

…

Software
Components

Hardware
Components

Function Networks

Fault Trees

CFTs

FMEA

Markov Chains

…

© Fraunhofer IESE

72

The Safety Requirements Decomposition Pattern

Safety Goals

Harm

Failure

Risk

Safety Analysis Safety Requirements Specification Architecture

Preliminary
Architecture

Functional Architecture

Top Level

Functional Safety
Requirements

Functional Level

Failure

Technical Safety
Requirements

Technical Level

Technical ArchitectureFailure

© Fraunhofer IESE

74

The Safety Requirements Decomposition Pattern
@ the Functional Level

© Fraunhofer IESE

75

Safety Requirements Decomposition Pattern @
Functional Level

© Fraunhofer IESE

76

Safety Requirements Decomposition Pattern @
Functional Level

© Fraunhofer IESE

77

Safety Requirements Decomposition Pattern @
Functional Level

© Fraunhofer IESE

78

Safety Requirements Decomposition Pattern @
Functional Level

© Fraunhofer IESE

79

Automated External Defibrillator

© Fraunhofer IESE

80

Traditional External Defibrillator Automated External Defibrillator (AED)

© Fraunhofer IESE

81

© Fraunhofer IESE

82

Traditional External Defibrillator Automated External Defibrillator (AED)

Overshocking!!

© Fraunhofer IESE

83

http://nutes.uepb.edu.br/

http://www.lifemed.com.br

© Fraunhofer IESE

84

http://nutes.uepb.edu.br/

http://www.lifemed.com.br

© Fraunhofer IESE

85

© Fraunhofer IESE

86

© Fraunhofer IESE

87

The Safety Requirements Decomposition Pattern
@ the Technical Level

© Fraunhofer IESE

88

Safety Requirements Decomposition Pattern @ Technical
Level

© Fraunhofer IESE

89

class Safety Decomposition

«technical safety requirement»
Detect and Handle <<charging rate less than n
%>> to mitigate <<wearing>> of <<electronic

components>> associated to the <<Shock
Generator>>

«technical safety requirement»
Detect and Handle <<peak v oltage higher than x

v olts>> to mitigate <<wearing> of <<eletronic
components>> associated to the <<Shock

Generator>>

«technical safety requirement»
Detect and Handle <<duration of the peak v oltage

higher than 120m seconds>> to mitigate <<v ariations
in the deliv ering time energy>> of <<electronic
components>> associated to the <<Discharge>>

«technical fault tolerance requirement»
Detect and treat the v iolation of the rate

limit of the capacitor charging

«technical fault tolerance requirement»
Detect and treat v iolation of the peak

v oltage limit.

«technical fault tolerance requirement»
Detect and treat Timing Violation of the

peak v oltage of the time limit.

«technical detection requirement»
<<Voltage Sensors>> shall <<detect>> if

<<capacitor charging>> associated to
the <<Shock Generator>> is <<out rate

limit>>

«technical containment requirement»
if it is detected that <<charging

capacitor>> <<is out rate limit >> then
<<The activ ation of the step charging

capacitor shall limit the capacitor
charge rate>>

«technical detection requirement»
<<Voltage Sensors>> shall <<detect>> if

<<eletronic components>> associated to the
<<Shock Generator>> is <<out peak v oltage

limit>>

«technical containment requirement»
if it is detected that <<eletronic components>> <<is out
peak v oltage limit>> then <<the Activ ation of the step
amplitude damping circuit shall treat the v iolation of

the peak v oltage limit>>

«technical detection requirement»
<<Voltage Sensors and System Clock>> shall <<detect>> if

<<eletronic components>> associated to the <<Shock
Generator >> is <<out time limit of the peak v oltage>>

«technical containment requirement»
if it is detected that <<eletronic components>> <<is out the time
limit v iolation of the peak v oltage>> then << The Snubber circuit

shall mitigate the v iolation of time limit peak v oltage>>

Snubber

Voltage Sensor

Discharge Controller

Charge Controller

refers torefers to

refers to

is refined by

refers to

refers to

refers to

is refined byis refined by

© Fraunhofer IESE

90

© Fraunhofer IESE

91

Safety Engineer

Architect

Failure propagation models

Safety Requirements
Specification Support

Safety Requirements
Decomposition Pattern

Parameterized Safety
Requirements Templates

Complete and Consistent
Safety Requirements

Specifications
lead to

Safety Requirements Specification Support

Input

Input

Requirements
Engineer

Architecture design

…

Software
Components

Hardware
Components

Function Networks

Fault Trees

CFTs

FMEA

Markov Chains

…

© Fraunhofer IESE

92

Designing the Parameterized Safety
Requirements Templates

© Fraunhofer IESE

93

Designing the Parameterized Safety Requirements
Templates (1/3)

ISO/IEC/IEEE 29148:2011 Systems and software engineering - Life cycle processes -
Requirements engineering.

© Fraunhofer IESE

94

Designing the Parameterized Safety Requirements
Templates (2/3)

 Acceptable failure mode and rates;

 Qualitative requirements for failure modes;

 Elements of the architecture that address the safety requirements
demands.

© Fraunhofer IESE

95

Designing the Parameterized Safety Requirements
Templates (3/3)

 “Requirements are mandatory binding provisions and use 'shall'.”;

 “It is best to avoid using the term ‘must', due to potential
misinterpretation as a requirement.”;

 “Use positive statements and avoid negative requirements such as ‘shall
not'.”;

 “Use active voice: avoid using passive voice, such as 'shall be able to
select'.”;

 …

ISO/IEC/IEEE 29148:2011 Systems and software engineering - Life cycle processes -
Requirements engineering.

© Fraunhofer IESE

96

The Parameterized Safety Requirements
Templates

© Fraunhofer IESE

97

Safety Requirements Decomposition Pattern elements
with Templates

Top-level
• Top-level Safety Requirement

Functional
Level

• Functional Detection SR
• Functional Containment SR

Technical
Level

• Technical SR
• Technical Detection SR
• Technical Containment SR

© Fraunhofer IESE

98

Top Level Safety Requirement Template

The <<System || Component
|| Item || Unit of
Observation>>

shall
<<avoid || not cause ||

not allow || not be || not
|| no>>

<<harm>>

© Fraunhofer IESE

99

Functional Detection Requirements Template

© Fraunhofer IESE

100

Technical Safety Requirement

© Fraunhofer IESE

101

<<technical
element:
Logical

Component ||
Hardware

Unit>>

<<Failure
associated to the

technical
element>>

then

(optional)

<<timing threshold of
measurement: within ||

before || after || exactly at
|| no later than || every>>

(optional)

<<timing
constraint>>

(optional)

<<value
constraint>>

(optional)

<<value threshold of
measurement: within ||

exactly with || not exceed
|| not less than || not

greater than>>

If it is
detected

that

<<Action to
contain the failure
associated to the

technical
element>>

Technical Containment Safety Requirement Template

(optional)

<<timing threshold of measurement: within || before ||
after || exactly at || no later than || every>>

(optional)

<<timing constraint>>

(optional)

<<value constraint>>

(optional)

<<value threshold of measurement: within || exactly
with || not exceed || not less than || not greater than>>

© Fraunhofer IESE

102

Safety Patterns @ Functional and Technical Levels

• Sanity Check
•Watchdog
• Comparison

Detection Safety Patterns

• Redundancy
• Reconfiguration
•Degradation
• Firewall
• Interlock
• Voting

Containment Safety Patterns

© Fraunhofer IESE

103

Watchdog

<<Whatchdog Element:
functional element ||
logical component ||

hardware unit>>

Shall
monitor
whether

<<event associated to
functional element ||
logical component ||

hardware unit>>

Does not
occur

<<timing threshold of
measurement: within || before ||
after || exactly at || no later than

|| every>>

(optional)

<<timing constraint>>

(optional)

<<value constraint>>

<<value threshold of
measurement: within || exactly

with || not exceed || not less
than || not greater than>>

© Fraunhofer IESE

104

Comparator

<<Comparator element:
functional element ||
logical component ||

hardware unit >>

shall check
whether

<<1..* output data>>
<< functional element ||

logical component ||
hardware unit >>

of the

is/are equal to the <<1..* output data>> of the

<<1..* redundant element:
functional element ||
logical component ||

hardware unit >>

Voting

<<Voter: functional element
|| logical component ||

hardware unit >>
decides which <<output data>> of

<<1..* functional element ||
logical component ||

hardware unit >>

is correct, based on
the reference value

<<reference value>>
(optional)

Which is computer by

<<functional element ||
logical component ||

hardware unit >>

© Fraunhofer IESE

105

© Fraunhofer IESE

106

Relevant Publications

 Pablo Oliveira Antonino, Mario Trapp. Improving Consistency Checks between Safety Concepts and
View Based Architecture Design. In Proceedings of the 12 Probabilistic Safety Assessment and
Management Conference (PSAM12), Honolulu, Hawaii, USA, 2014.

 Pablo Oliveira Antonino, Mario Trapp, Ashwin Venugopal. Automatic Detection of Incomplete and
Inconsistent Safety Requirements. SAE 2015 World Congress and Exhibition, Detroit, Michigan USA, 2015.

 Pablo Oliveira Antonino, Mario Trapp, Paulo Barbosa, Luana Sousa. The Parameterized Safety
Requirements Templates. 8th IEEE International Symposium on Software and Systems Traceability – an ICSE
2015 Symposium. Florence, Italy, 2015.

 Pablo Oliveira Antonino, David Santiago Velasco Moncada, Daniel Schneider, Mario Trapp, Jan Reich. I-SafE:
An integrated Safety Engineering Tool-Framework. The 5th International Workshop on Dependable
Control and Discrete Systems. Mexico, 2015.

 Pablo Oliveira Antonino, Mario Trapp, Paulo Barbosa, Edmar C. Gurjão, Jeferson Rosário. The Safety
Requirements Decomposition Pattern. SAFECOMP 2015. Delft, The Netherlands, 2015.

 Pablo Oliveira Antonino, D. S. Velasco Moncada, T. Kuhn, D. Schneider and M. Trapp, Integrated Model-
based Safety Engineering with I-SafE. Embedded Software Engineering Kongress 2015 (ESE 2015),
Sindelfingen, Germany, 2015.

 P. Barbosa, F. Leite, R. Mendonca, M. Andrade, L. Sousa and Pablo Oliveira Antonino. RAwTIM – Uma
Ferramenta para Rastreabilidade da Informação em Análises de Riscos. in Brazilian Conference on
Software: Theory and Practice – Tools Section, Belo Horizonte, Brazil, 2015.

 Thomas Kuhn, Pablo Oliveira Antonino. Model-Driven Development of Embedded Systems. Embedded
Software Engineering Congress 2014. Sindelfingen, Germany, December 2014.

Pablo Oliveira Antonino
Phone: +49 631 6800-2213
Mail: pablo.antonino@iese.fraunhofer.de

Fraunhofer IESE: http://www.iese.fraunhofer.de

	Safety Architectures Competence @ Fraunhofer IESE
	The Fraunhofer-Gesellschaft at a Glance
	Fraunhofer IESE �The institute for software and systems engineering methods�
	Our Competencies – for Your Benefit
	IESE Organizational Chart
	Top Industry Customers in 2015
	Hello, Architecture!
	Engineering Challenge: Large-Scale Systems
	Engineering Challenge: Large Development Teams
	Engineering Challenge: High Quality
	Architecture as a Mediator and Communicator
	Architectures…
	The Bermuda Triangle �of Architecting
	What do We Need in Terms of Architecture?
	Architecture Drivers and Architecture Design
	Architecture Drivers
	What Drives my Architecture?
	Architectural Drivers
	Compensation of Architectural Drivers
	Architectural Drivers – Examples
	Architecture Design
	Things can be too complex to be understood �from a single perspective
	But some try nevertheless …
	Slide Number 24
	Slide Number 25
	Analogy – Views on a Building
	What Determines the Views in Building Architecture?
	What Determines the Views in Software Architecture?
	Abstraction�In the end, it‘s about the Code… but
	Architectural Scope
	Slide Number 31
	The Embedded Modeling Profile
	Modelling Profile for Embedded Systems Development
	Architecture Drivers
	Function Networks
	Software Entities
	Hardware and Network Entities
	Data Model
	Data Model
	Architecture and Safety
	What is so special about safety?
	Slide Number 42
	Slide Number 43
	Component Fault Trees - CFTs
	Failure Modes and Effect Analysis - FMEA
	Markov Chains
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Fraunhofer IESE Approach to deal with Safety Architectures
	Designing the Automated Completeness and Consistency Checks
	Meet Safety Engineering Goals
	Automation and Instantiation by Different Technology Platforms
	Completeness Checks
	Notion of Completeness
	Notion of Completeness
	Example Completeness Check
	I-SafE Completeness Checks Output Example
	Cosistency Checks
	Notion of Consistency
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	I-SafE Consistency Checks Output Examples
	Fraunhofer IESE Approach to deal with Safety Architectures
	Safety Requirements Specification Support
	Safety Requirements Specification Support
	The Safety Requirements Decomposition Pattern
	Slide Number 73
	The Safety Requirements Decomposition Pattern @ the Functional Level
	Safety Requirements Decomposition Pattern @ Functional Level
	Safety Requirements Decomposition Pattern @ Functional Level
	Safety Requirements Decomposition Pattern @ Functional Level
	Safety Requirements Decomposition Pattern @ Functional Level
	Automated External Defibrillator
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	The Safety Requirements Decomposition Pattern @ the Technical Level
	Safety Requirements Decomposition Pattern @ Technical Level
	Slide Number 89
	Slide Number 90
	Safety Requirements Specification Support
	Designing the Parameterized Safety Requirements Templates
	Designing the Parameterized Safety Requirements Templates (1/3)
	Designing the Parameterized Safety Requirements Templates (2/3)
	Designing the Parameterized Safety Requirements Templates (3/3)
	The Parameterized Safety Requirements Templates
	Safety Requirements Decomposition Pattern elements with Templates
	Top Level Safety Requirement Template
	Functional Detection Requirements Template
	Technical Safety Requirement
	Slide Number 101
	Safety Patterns @ Functional and Technical Levels
	Watchdog
	Comparator
	Slide Number 105
	Relevant Publications
	Slide Number 107

