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Fluid Pressure, Fluid Flow in the Body,
and Motion in Fluids

In the following two chapters we will examine the flow of two fluids in the body:
blood in the heart and circulatory system, and air in the lungs and respiratory
system. Flow of fluids elsewhere in the body is also important, such as in the
urinary system (urine, liquids through the kidneys, etc.). Such directed flow
of material in the body occurs predominantly by fluid flow in systems of
vessels. Directed transport also occurs on microtubules in the body by motor
proteins, such as kinesin and dynein, as described in Chap. 5. Undirected
motion occurs by diffusion. Over “longer” distances such direct transport is
preferred to diffusion because it provides a directed motion and a motion that
is faster than diffusion. Diffusion is important in the body only over very short
distances, up to ∼100 µm.

In this chapter we will discuss the concept of pressure as it relates to
fluids in the body. For example, the pressure of the vitreous humor in the
eyeball serves several functions, including maintaining the shape of the eye-
ball. This pressure is similar to the stress we examined in Chap. 4, such as
that in our long bones when we walk. They both describe a force per unit
area. The pressure in the fluid is hydrostatic, i.e., the force per unit area is
the same stress in all directions. In solids the stress is often anisotropic. We
will review the basic physics of pressure and fluid flow, including the relation-
ship of pressure and fluid flow, and diffusion [353]. We will also examine the
flow of humans in fluids, i.e., swimming, along with the possibility of human
flight.

7.1 Characteristic Pressures in the Body

7.1.1 Definition and Units

The pressure of a fluid column is given by (2.48), P = ρgh, where ρ is the
fluid density, g is the gravitational constant, and h is the height of the column.
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For mercury ρ is 13.6 g/cm3. For water ρ = 1.00 g/cm3 at 4◦C. The density
of whole blood is a bit higher, 1.06 g/cm3 at 37◦C. The units of pressure are
presented in Table 2.6.

So far we have been discussing absolute pressure, Pabs, which is the total
force per unit area. In discussions concerning the body it is very common to
cite the gauge pressure, Pgauge, which is the pressure relative to a standard,
which is usually atmospheric pressure, and so Pgauge = Pabs − 1 atm. This
is helpful because it is the difference in pressure that is the net force that
acts on a unit area. In discussing blood pressure and the pressure of air in
the lungs, it is assumed that the term pressure P refers to the gauge pressure
relative to the local atmospheric pressure. During breathing in (which is called
inspiration), the pressure in the lungs is lower than that outside the body and
so the internal (gauge) pressure is <0. Table 7.1 gives typical pressures in the
body.

Table 7.1. Typical (gauge) pressures in the body (in mmHg). (Using data from
[345])

arterial blood pressure
maximum (systolic) 100–140
minimum (diastolic) 60–90

capillary blood pressure
arterial end 30
venous end 10

venous blood pressure
typical 3–7
great veins <1

middle ear pressure
typical <1
eardrum rupture threshold 120

eye pressure
humors 20 (12–23)
glaucoma threshold range ∼21–30

cerebrospinal fluid pressure
in brain – lying down 5–12

gastrointestinal 10–12

skeleton
long leg bones, standing ∼7,600 (10 atm.)

urinary bladder pressure
voiding pressure 15–30 (20–40 cmH2O)
momentary, up to 120 (150 cmH2O)

intrathoracic
between lung and chest wall −10
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Fig. 7.1. Manometer

7.1.2 Measuring Pressure

One way of directly measuring pressure is with a manometer (Fig. 7.1). The
measured pressure is that corresponding to the height of the fluid column plus
the reference pressure, so

P = Pref + ρgh. (7.1)

The most common way to measure blood pressure is with a sphygmo-
manometer (sfig-muh-ma-nah’-mee-ter), which consists of a cuff, a squeeze
bulb, and a meter that measures the pressure in the cuff (Fig. 7.2). The cuff
is the balloon-like jacket placed about the upper arm above the elbow; this

Fig. 7.2. Measuring blood pressure with a sphygmomanometer, listening to
Korotkoff sounds (of varying levels during the turbulent flow shown in A–C). (Lis-
tening to sounds is called auscultation). (From [364])



408 7 Fluid Pressure, Fluid Flow in the Body, and Motion in Fluids

Fig. 7.3. Variation of blood pressure with time, for blood leaving the left heart for
the systemic system, with the systolic and diastolic pressures shown

encircles the brachial artery. The cup of a stethoscope is placed on the lower
arm, just below the elbow, to listen for the flow of blood. With no pressure in
the cuff, there is normal blood flow and sounds are heard through the stetho-
scope. Gurgling sounds are heard after the cuff is pressurized with the squeeze
bulb and then depressurized by releasing this pressure with a release valve in
this bulb.

To understand when these sounds occur and their significance, we need
to understand how the pressure in the main arteries varies with time. (This
will be detailed in Chap. 8.) In every heart beat cycle (roughly 1/s), the blood
pressure in the major arteries, such as the brachial artery, varies between
the systolic pressure (∼120 mmHg) and the diastolic pressure (∼80 mmHg),
as is depicted in Fig. 7.3. (The units of these cited gauge pressures are in
mmHg – see (7.1) and Chap. 2.) When the pressure in the cuff exceeds the
systolic pressure, there is no blood flow to the lower arm and consequently
there are no sounds. When the pressure in the cuff is lowered with the release
bulb to just below the systolic pressure, there is intermittent flow. During
the part of the cycle when the arterial blood pressure is lower than the cuff
pressure there is no flow; when it is greater, there is flow. This intermittent flow
is turbulent and produces gurgling sounds. These sounds, the Korotkoff or K
sounds, are heard by the stethoscope. As the cuff pressure is lowered further,
the K sounds get louder and then lower, and are heard until the cuff pressure
decreases to the diastolic pressure. Blood flow is not interrupted when the cuff
pressure is less than the diastolic pressure and the K sounds cease because
the blood flow is no longer turbulent. Therefore, the onset and end of the K
sounds, respectively, denote the systolic and diastolic blood pressures. (This
auscultatory method of Korotkoff was introduced by Russian army physician
Korotkoff [362] who discovered a century ago that sound can be heard distally
from a partially occluded limb [349].)

7.2 Basic Physics of Pressure and Flow of Fluids

In this section we overview the basics of fluids. Some of this will be a review
for most. Some of the more advanced results are derived, while others are
merely presented. These basics will be used in subsequent chapters.
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Both gas and liquid fluids are important in the body. Gases will be treated
by the ideal gas law

P = nRT, (7.2)

where P is the pressure, n is the gas density, R is the gas constant
(= 8.31 J/mol-K), and T is the temperature (in K). The gas density n = N/V ,
where N is the total number of molecules in a volume V . The gas constant
R = NAkB, where NA is Avogadro’s number, 6.02 × 1023, and kB is Boltz-
mann’s constant, 1.381 × 10−23 J/K.

One guiding principle is Pascal’s Principle: the pressure applied to a con-
fined fluid increases the pressure throughout by the same amount. Also quite
important is Archimedes’ Principle: the buoyant force on a body immersed
in a fluid is equal to the weight of the fluid displaced by that object. Another
important relation is the Law of Laplace, which relates the difference of pres-
sures inside and outside a thin-walled object – of a given shape – to the tension
in the walls of the object. We will also need to understand the properties of
flowing fluids to be able to analyze the physics of the circulatory system.

7.2.1 Law of Laplace

The pressure inside blood vessel walls, P , exceeds that outside, Pext, by ∆P =
P −Pext. How large of a tension should the vessel walls be able to withstand to
support this positive pressure difference in equilibrium? The answer is provided
by the Law of Laplace for hollow cylinders. It is derived here and then used
in Chap. 8.

Consider a tube of radius R and length L. Figure 7.4a shows a section of
this tube with angle θ $ 1. The outward force (upward in the diagram) on this

Fig. 7.4. Derivation of the Law of Laplace for the cylinder in (a), with the force
diagram for a section of a cylinder in (b), leading to the force diagram in (c), and
the resolution of pressures for analysis of a half cylinder in (d)
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area is the pressure difference, ∆P , times the area, (Rθ)L. The circumferential
tension T is the force per unit length (along the tube length). (Note that this
use of the word “tension” has a different meaning than in earlier chapters,
where it meant a force, often used to pull things apart.) This film tension
has units of force/length or energy/area. It is equal to a circumferential stress
σ = T/w, where w is the cylinder thickness (with w $ R). These forces can
be those within the blood vessel walls (Chap. 8). The horizontal components
of the film tension to the left and right cancel. The vertical components are
inward and each equal to T sin(θ/2) % T (θ/2) for small angles. With both of
these tension components multiplied by L, in static equilibrium force balance
gives

∆P (Rθ)L = 2
(

T
θ

2

)
L. (7.3)

This means

∆P =
T

R
or T = R(∆P ). (7.4)

This is a differential method. Alternatively we could integrate the forces
over a half cylinder, as shown in Fig. 7.4d. The total downward force is the
area of the walls, 2wL, times the stress, σ, or 2wLσ. The total upward force is
the cross-sectional area, 2RL, times the pressure difference, ∆P , or 2RL(∆P ).
In equilibrium

2RL(∆P ) = 2wLσ (7.5)

∆P =
wσ

R
=

T

R
, (7.6)

which is the same as (7.4). (Figure 7.4d shows that the total upward force is
really the integral of the upward force component, ∆P cos θ, times the area
element, RLdθ, integrated from −90◦ to 90◦ or

(∆P )RL

∫ 90◦

−90◦
cos θdθ = (∆P )RL(sin(90◦) − sin(−90◦)) = 2(∆P )RL, (7.7)

which turns out to be the same as (∆P )2RL.)
The Law of Laplace is also important in spheres, such as soap bubbles and

the alveoli in the lungs. For a sphere of radius R and wall thickness w, we can
balance the forces in the half sphere. The total downward force is the area of
the walls, 2πRw, times the stress, σ, or 2πRwσ. The total upward force is the
cross-sectional area, πR2, times the pressure difference, ∆P , or πR2(∆P ). In
equilibrium

πR2(∆P ) = 2πRwσ (7.8)

∆P =
2wσ

R
=

2T

R
. (7.9)
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Table 7.2. Surface tension (γ) for several liquids. (Using data from [351, 358, 363])

liquid T (◦C) γ (10−4 N/m)

water 0 7.56
20 7.28
60 6.62
100 5.89

whole blood 20 5.5–6.1
blood plasma 20 5.0–5.6
lung surfactant 20 0.1
cerebrospinal fluid 20 6.0–6.3
saliva 20 1.5–2.1
benzene 20 2.89
mercury 20 46.4

This is the Law of Laplace for a sphere. We will use it in Chap. 9. (It is derived
in more detail in Problem 7.12.)

For a spheroid with different radii of curvature, R1 and R2, (7.4) and (7.9)
generalize to

∆P =
T

R1
+

T

R2
. (7.10)

For a cylinder, R1 = R and R2 = ∞ and this reduces to (7.4). For a sphere,
R1 = R and R2 = R and it reduces to (7.9).

Our force balance arguments have made a direct connection between this
tension, or really surface tension, and its units of force/length. Surface tension
also has the same units as energy/area. This is reasonable because it is also the
energy “cost” of making a unit area of a surface (or interface). Representative
values of surface tension are given in Table 7.2.

7.2.2 Fluids in Motion

There are five attributes of the flow of fluids:

1. Flow can be laminar/streamline/steady or turbulent/unsteady. In laminar
flow, a particle in the flow moves in a smooth manner along well-defined
streamlines. In contrast, the motion is very random locally in turbulent
flow. The Reynolds number Re is a dimensionless figure of merit that
crudely divides the regimes of laminar and turbulent flow. It is the ratio
between inertial force (ρu2/2; ρu2 is used here) and viscous force (ρηu/d)
per unit volume on the fluid, where ρ is the fluid density, u is the average
speed of flow, d is the tube diameter, and η is the fluid coefficient of
viscosity or the dynamic or absolute viscosity, which is defined later. This
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Fig. 7.5. Motion of a filament of dye in a straight pipe, showing (a) steady, laminar
flow at low Re, (b) short bursts of turbulence for Re above the critical value, and
(c) fully turbulent flow with random motion of the dye streak for higher Re. (From
[346]. Used with permission of Oxford University Press)

gives

Re =
ρu2

ρηu/d
=

ρud

η
=

ud

υ
, (7.11)

where υ = η/ρ is the coefficient of kinematic viscosity.
Although this dividing line is not hard and fast, generally, flow in a rigid
tube with Re < 2,000 is laminar and that with Re > 2,000 is turbulent.
This dividing region is often cited as being between 1,200–2,500, and in
the higher range for smoother-walled tubes. Figure 7.5 shows flow in the
laminar and turbulent regimes, and in the transition region between them.

2. Flow can be compressible or incompressible. Gases, such as air, are very
compressible. Liquids are less compressible, and are often approximated
as being incompressible.

3. Flow can be viscous or nonviscous. Fluids (other than superfluids) always
have some viscosity, but in some cases it can be ignored totally, or first
ignored and then considered as a perturbation.

4. Flow can be rotational or irrotational. In the cases we will consider there
is no local rotation (such as vortices), so the flow will be irrotational.

5. Flow can be steady (constant in time) or pulsatile (with pulsing changes).
Blood flow in the body is pulsatile, but is commonly treated as being
in steady state in simple models. We will use both steady and pulsatile
models in Chap. 8.
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Fig. 7.6. Continuity of flow when the tube cross-sectional area changes

7.2.3 Equation of Continuity

The equation of continuity is a statement of the conservation of mass during
flow. As seen in Fig. 7.6, when a fluid of a given mass density ρ moves with
average speed u in a tube of cross-sectional area A, the product ρAu is constant
(i.e., it is conserved). Because the speed is a longitudinal distance per unit
time, Au is the volume flow per unit time (because A × distance = volume).
Consequently, ρAu is the mass per unit time. In steady state, the same mass
flows into a volume and leaves it. For the regions marked 1 and 2 in Fig. 7.6,
this means that

ρ1A1u1 = ρ2A2u2. (7.12)

If the fluid is incompressible, the density in ρ1A1u1 = ρ2A2u2 does not
change with pressure and is the same everywhere. With ρ1 = ρ2, we follow the
volume or volumetric flow rate Q, which is now a constant. This means Q1 =
A1u1 and Q2 = A2u2, and so the continuity equation becomes Q = Q1 = Q2

with

Q = A1u1 = A2u2. (7.13)

7.2.4 Bernoulli’s Equation

Bernoulli’s Principle (or equation) relates the average flow speed u, pressure
P , and height y of an incompressible, nonviscous fluid in laminar, irrotational
flow (Fig. 7.7). At any two points

P1 +
1
2
ρu2

1 + ρgy1 = P2 +
1
2
ρu2

2 + ρgy2. (7.14)

The densities ρ1 = ρ2 = ρ for this incompressible fluid. (Bernoulli’s equation
actually applies to any two points along a streamline.)

There are three special cases of Bernoulli flow. (1) For static fluids (u = 0),
and Bernoulli equation’s reduces to P1 + ρgy1 = P2 + ρgy2. (2) It reduces to
Torricelli’s theorem when P1 = P2, namely ρu2

1/2 + ρgy1 = ρu2
2/2 + ρgy2.
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Fig. 7.7. For irrotational and nonviscous flow, the pressure, flow speed, and height
are related by Bernoulli’s equation along any streamline

(3) It reduces to the Venturi flow regime when y1 = y2 (Fig. 7.8), so

P1 +
1
2
ρu2

1 = P2 +
1
2
ρu2

2. (7.15)

Because the continuity of flow in such a Venturi tube is A1u1 = A2u2

u2 =
A1

A2
u1. (7.16)

Therefore we find

P1 +
1
2
ρu2

1 = P2 +
1
2
ρ

(
A1

A2
u1

)2

(7.17)

and

P2 − P1 =
1
2
ρu2

1

(
1 −

(
A1

A2

)2
)

. (7.18)

With A2 < A1, we see that u2 > u1 and P2 < P1. This shows that the flow
becomes faster and the pressure becomes lower in clogged blood vessels.

Fig. 7.8. Flow in a tube when the tube cross-sectional area changes. This is a
Venturi tube, for which pressure and flow speed are related by Bernoulli’s equation
in the limit of constant height
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7.2.5 Interactions among the Flow Parameters

Pressure P , volume V , and flow rate Q are all interrelated in flow through
vessels, be it blood flow in the circulatory system or air flow in breathing.
Resistance Rflow is the pressure difference ∆P needed to cause a given flow
rate Q

Rflow =
∆P

Q
. (7.19)

Compliance Cflow is the change in volume caused by a change in pressure in
a vessel

Cflow =
∆V

∆P
. (7.20)

Occasionally, the inertance Lflow is also defined. It is the change in pressure
caused by a change in flow rate

Lflow =
∆P

∆Q
. (7.21)

See Appendix D for an analog to electrical circuits.

7.2.6 Viscous Flow and Poiseuille’s Law

Bernoulli’s equation would predict that the pressure does not change during
flow if the tube cross-section and height do not change. This is true for an
ideal, nonviscous fluid. Viscosity is the friction during flow. It is always present
and causes the pressure to drop during flow.

The coefficient of (dynamic or absolute) viscosity η is formally defined in
(7.22), which gives the tangential or shear force F required to move a fluid
layer of area A at a constant speed v, in the x direction, when that layer is a
distance y from a stationary plate (Fig. 7.9) [350, 354]

F = η
A

y
v. (7.22)

Fig. 7.9. Viscous fluid flow, with a linear gradient of fluid speed with position
between a fixed and moving plate. This is shown for Newtonian flow
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This equation is also written as

τ = η
dv

dy
, (7.23)

where τ = F/A is the shear stress, as in (4.5) and Figs. 4.10 and 4.11, and
dv/dy is called the shear rate. (Check that the units of the shear rate are
those that a rate should have, 1/s.) Fluids that are characterized by (7.22)
and (7.23) are called “Newtonian fluids” and are said to undergo “Newtonian
flow.”

The SI units of η are (N/m2)s, which is equal to kg/m-s and Pa-s; this
is called a Poiseuille (PI), but this unit is not often used. More commonly
used than this last unit is the poise (P) which is 10× smaller. It is a natural
unit in the CGS units system with 1 poise = 1 g/cm-s = 0.1 (N/m2)s =
0.1 kg/m-s = 0.1 Pa-s. Also common is the centipoise (cP), with 1 cP =
0.01 poise = 0.001 Pa-s, because the viscosity of water at 20◦C is almost equal
to 1 cP (and is actually 1.002 cP). We will usually use the units of Pa-s. Also,
this viscosity coefficient is often called η by physicists (and is used as such
here), whereas it is often called µ by biomedical engineers. It is also related to,
but different from the viscosity damping constant for the dashpot c in (4.48).

Because of this drag, there must be a pressure difference (gradient) to
maintain fluid flow in a tube. The relation between this pressure drop and
the volumetric flow rate Q is given by Poiseuille’s Law (or Hagen-Poiseuille’s
Law)

Q =
πR4

8ηL
(P1 − P2), (7.24)

where R is the radius of the tube and L is its length (Fig. 7.10). This relation
can be viewed as the flow rate for a given pressure drop. Alternatively, it can
be viewed as the pressure drop when there is a flow Q in the tube

P1 − P2 = ∆P =
8ηL

πR4
Q. (7.25)

We will use this expression in Chap. 8 to determine the pressure drops in blood
vessels during circulation. It is derived later as an advanced topic.

Equation (7.25) is formally analogous to Ohm’s Law for resistors, V =
IRelect (or in a manner more parallel to this equation, V = RelectI), where
V is the voltage or potential difference across the resistor and is the driving
term (which is analogous to ∆P ), Relect is the electrical resistance (analogous
to the resistance of flow 8ηL/πR4 here, which we will call Rflow), and I is the
electrical current, which is the flow resulting from the driving term (analogous
to the volumetric flow Q here).

Consider a tube with cross-sectional area A. The net force on the fluid in
it is (∆P )A. If this force moves the fluid a distance L, the work done on it is
FL = (∆P )AL. If this volume AL is moved in a given time, the work needed
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Fig. 7.10. Calculation of Poiseuille’s Law for a tube in (a), using the cylindrical
shell in (b), and balancing forces between the hydrostatic flow pressure force and
the differential shear stress on the shell in (c)

to do this in this given time – the power – is

Ppower, flow = (∆P )Q, (7.26)

or Ppower, flow = Q2Rflow = (∆P )2/Rflow. These expressions are analogous to
those for the power dissipated by an electrical resistor: Ppower, elect = V I =
I2Relect = V 2/Relect.

The coefficient of viscosity for water is 1.78 × 10−3 Pa-s at 0◦C and
it decreases with temperature, dropping to 1.00 × 10−3 Pa-s at 20◦C and
0.65 × 10−3 Pa-s at 40◦C. At 37◦C, η is 1.5 × 10−3 Pa-s for blood plasma
and 4.0 × 10−3 Pa-s for whole blood, which are both higher than that for
water at the same temperature. (Blood is really thicker than water.) The co-
efficients of viscosity of common human body fluids and other materials are
listed in Table 7.3. As is clear from the table, the viscosity of liquids decreases
with increasing temperature T , because the kinetic energy of molecules in-
creases with T and this can overcome intermolecular forces that slow down
motion between the dense, adjacent layers. In contrast, viscosity increases
with temperature for gases, as T (in K)1/2, because diffusion between adjacent
layers increases with T .

Derivation of Poiseuille’s Law (Advanced Topic)

Now consider flow in a tube of radius R (Fig. 7.10). The distance radially from
the center line of the tube is r. Using (7.22) and (7.23), the shear force and
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Table 7.3. Coefficient of viscosity η of common materials, in Pa-s (1 poise =
0.1 Pa-s). (Using data from [351, 358, 363])

material T (◦C) η

water 0 1.78 × 10−3

20 1.00 × 10−3

37 0.69 × 10−3

50 0.55 × 10−3

100 0.28 × 10−3

blood plasma 37 1.5 × 10−3

whole blooda 37 ∼4.0 × 10−3

low shear rate, Hct = 45% ∼100 × 10−3

low shear rate, Hct = 90% ∼1,000 × 10−3

high shear rate, Hct = 45% ∼10 × 10−3

low shear rate, Hct = 90% ∼100 × 10−3

cerebrospinal fluid 20 1.02 × 10−3

interstitial fluid 37 1.0–1.1 × 10−3

human tears 37 0.73–0.97 × 10−3

synovial fluidb 20 >0.3
castor oil 20 1
motor oil, SAE 10 20 0.065
motor oil, SAE 50 20 0.54
machine oil, heavy 37 0.13
machine oil, light 37 0.035
ethylene glycol 37 0.011
mercury, liquid 37 1.465 × 10−3

methanol 37 0.47 × 10−3

ketchup 20 50
peanut butter 20 250
glass (anneal) 720–920K 2.5 × 1012

(blowing) ∼1,300 K ∼1 × 106

(furnace) 1,500–1,700 K ∼1 × 102

air 20 1.8 × 10−5

100 2.1 × 10−5

Hct is the hematocrit, which is the volume fraction of red blood cells in blood.
aSee Figs. 8.10 and 8.11.
bSee Fig. 7.14.

stress are

F = ηA
dv

dr
(7.27)

τ = η
dv

dr
. (7.28)

Imagine a series of concentric cylinders within this tube of thickness dr and
length L (centered about the center symmetry axis, Fig. 7.10b), with a pres-
sure drop ∆P along L. The force pushing one of these cylindrical shells forward
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is this pressure drop, ∆P , times the area of the front (and back) cylinder face,
2πrdr, or (∆P )2πrdr. The viscous drag force that the cylindrical shell feels
from the other shells (i.e., from the liquid) is the difference between the shear
stress felt on its inner and outer surfaces × its surface area, 2πrL. Using
(7.28), this difference is

d(2πrLτ)
dr

dr =
d

(
2πrLη dv

dr

)

dr
dr = 2πLη

d
(
r dv

dr

)

dr
dr (7.29)

assuming the viscosity does not depend on r.
In steady state, the force due to the pressure drop plus the drag force

equals zero, so

(∆P )2πrdr + 2πLη
d

(
r dv

dr

)

dr
dr = 0 (7.30)

or

d
(
r dv

dr

)

dr
= −∆P

ηL
r. (7.31)

Integrating gives

r
dv

dr
= −∆P

2ηL
r2 + C (7.32)

dv

dr
= −∆P

2ηL
r +

C

r
. (7.33)

The constant C must equal zero, because otherwise the second term would be
infinite at the center.

Integrating again gives

v(r) = −∆P

4ηL
r2 + D. (7.34)

(see Appendix C). Because at the tube radius the velocity is zero (v(R) = 0),
D is determined and this gives

v(r) = −∆P

4ηL
r2 +

∆P

4ηL
R2, (7.35)

so

v(r) =
∆P

4ηL

(
R2 − r2

)
=

R2∆P

4ηL

(
1 − r2

R2

)
. (7.36)

This speed is seen to be maximum in the center where r = 0. This maximum
value of R2∆P/(4ηL) decreases to 0 as r increases from 0 to R.

The flow rate in the tube Q equals uA when the speed is uniform across
the area A. When it is not, as here, Q is obtained by integrating v(r) across
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the cross-sectional area. This is done by multiplying v(r) by the area element
2πrdr (the circumference × the differential in r) and integrating r from 0 to
R, which gives

Q =
∫ R

0

∆P

4ηL

(
R2 − r2

)
2πrdr (7.37)

Q =
∫ R

0

π∆P

2ηL

(
rR2 − r3

)
dr =

π∆P

2ηL

(
R4

2
− R4

4

)
=

πR4∆P

8ηL
. (7.38)

This is Poiseuille’s Law ∆P =
(
8ηL/πR4

)
Q ((7.24) and (7.25)). Because Q

is also equal to the area × the average speed, this average speed is

u =
πR4∆P/8ηL

πR2
=

R2∆P

8ηL
(7.39)

and

v(r) = 2u
(

1 − r2

R2

)
. (7.40)

This is depicted in the rightmost profile shown in Fig. 7.11.
Many fluids are non-Newtonian fluids (Fig. 7.12), which means they are

not characterized by (7.22) and (7.23), but by other relations. We assumed
earlier that a fluid could generate no shear stress at any shear or strain
rate; this is a frictionless or nonviscous fluid, which is unrealistic except
for superfluids. (Note that such shear or strain “rates” are really gradi-
ents with respect to the direction normal to flow, i.e., y, and not with re-
spect to time t. However, this terminology is reasonable because they have
the same units as strain rates and because of the scaling argument given
in Problem 7.23.) In some real non-Newtonian fluids, the shear stress is
F/A = η(dv/dy)n, where n could be greater or less than 1, as in Fig. 7.12.
This is sometimes phrased as F/A = η′(dv/dy) where the effective viscos-
ity η′ = η(dv/dy)n−1 depends on the strain rate; as such a Newtonian fluid

Fig. 7.11. Establishment of steady-state Newtonian flow into the parabolic velocity
profile (in the fully developed flow). (From [351], based on [355]. Courtesy of Robert
A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.nanomedicine.com)
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Fig. 7.12. Newtonian and non-Newtonian fluid flow. (From [357])

would have an effective viscosity that is independent of the strain rate. A
dilatant or shear-thickening fluid has an effective viscosity that increases with
increasing stress. A plastic or shear-thinning fluid has an effective viscos-
ity that decreases with increasing stress. A Bingham plastic, such as tooth-
paste, has a finite yield stress even for dv/dy = 0, and above the yield
stress it has a linear relationship with strain rate, F/A = α + η(dv/dy).
The composition of blood makes it a non-Newtonian fluid; this is discussed
in Chap. 8. Consequently, the flow pattern of blood is decidedly nonparabolic
(Fig. 7.13).

Synovial fluid is one example of a non-Newtonian fluid. Figure 7.14 shows
that its coefficient of friction is high at low shear rates and much lower at
high shear rates. Figure 8.11 shows that whole blood is also a non-Newtonian
fluid.

The dependence of flow on pressure drop within the laminar, intermediate,
and turbulent regimes is shown in Fig. 7.15.
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Fig. 7.13. Velocity flow profile of whole blood is blunted relative to the ideal par-
abolic flow of a Newtonian fluid. (From [351], based on [355]. Courtesy of Robert A.
Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.nanomedicine.com)

Approach to Steady Flow

The results of Sect. 7.2.6 apply to steady, laminar flow. If a tube bifurcates –
such as in branching arteries, the velocity profile we derived with its boundary
layer at the tube circumference (where the flow velocity decreases to zero),
will not represent the flow distribution immediately after the bifurcation. It
will be valid only after a distance past the bifurcation called the entrance
length, X [346]. Experimentally

X = 0.03d(Re) (7.41)

Fig. 7.14. (a) Synovial fluid is a non-Newtonian fluid, with a coefficient of friction
that decreases with shear rate. (b) Another property of such a non-Newtonian fluid
is that it can create a normal stress that depends on shear rate. (From [361])
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Fig. 7.15. Pressure drop per unit length vs. log of the flow rate for a long tube,
showing a transition region between laminar and turbulent flow. (From [346]. Used
with permission of Oxford University Press)

for a straight pipe, where d is the diameter (d = 2R). For the laminar flow
regime with Re < 10, this is not valid and the entrance length is smaller;
when Re $ 1 and inertial forces can be ignored

X ∼ d. (7.42)

For Re > 2,500, the flow is likely turbulent and the entrance length (for steady
state turbulent flow) is shorter than that for fast laminar flow

X = 0.693d(Re)1/4. (7.43)

The development of parabolic flow for a Newtonian fluid in the laminar
flow region is illustrated in Fig. 7.11.

Flow in Curving Tubes such as Arteries

When you hold a hose with flowing water and try to change its direction you
feel a resistance. This resistance is the force you need to apply to change the
direction of the momentum of the water flow. This centripetal force becomes
larger with faster flow rates (i.e., for larger hose areas and faster water flow
speeds), as is well known to all firepersons. Curving arterial walls, such as
the aorta, feel a pressure due to the difference in hydrostatic pressure inside
and outside the vessel that arises from this force. This pressure is felt equally
around the wall.

Consider a tube or artery of inner radius R that is turning with a radius
R. Figure 7.16 shows an arc of angle θ (in radians) $ 1 of such a vessel. The
average speed of flow is u and the mass density of blood is ρ. The magnitude
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Fig. 7.16. Flow in a curved tube. (From [344])

of the momentum in the vessel per unit volume is ρu(AL), for a vessel with
cross-sectional area A = πR2 for a length L of blood flow. In traversing an
angle θ, the momentum vector changes by ∼(ρu)(AL)θ. This occurs when the
blood moves a distance Rθ, given by the arc length, with a speed u, so this
occurs in a time Rθ/u. Consequently, the force needed to do this is the change
of momentum per unit time, which is (ρuALθ)/(Rθ/u) = ρu2AL/R. Because
the mass of this volume of blood is m = ρAL, this looks like the centripetal
force mu2/R. (It looks like it, because that is what it is.)

This force is distributed across the outer half of the inner arterial wall,
which has a cross-sectional area πRL. Because the force is outward, there is a
larger load on the outermost portions shown in Fig. 7.16 and a smaller load on
the outer upper and lower regions. Therefore, the peak force per unit area is
more accurate when you use a smaller effective area, say πRL/2. Consequently,
the peak pressure is the force per unit area ρu2AL/R, with A = πR2, divided
by this area πRL/2, or

Pcent =
ρu2(πR2)L/R

πRL/2
= 2ρu2 R

R . (7.44)

Flow of Objects in Fluids: Drag and Lift

The viscosity of a fluid also creates a drag force on objects that move in the
fluid [343]. The reason for this is clear from (7.22); such objects are just like
the plate in Fig. 7.9 in this functional definition of viscosity. Viscosity causes
the boundary layer of the fluid near the ball (or plate) to move with it. If the
object is moving at a speed u relative to the fluid, this drag force on the object
is given by Stokes Law

Fdrag,Stokes = 6πRηu, (7.45)
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where R is the hydrodynamic radius of the object, which is about half the
typical lateral dimension D. This expression for Stokes friction is valid when
the flow speed is slow enough that the streamlines about it are laminar. Here
this means the Reynolds number Re = ρDu/η = 2ρRu/η is smaller than
∼100.

For Reynolds numbers much larger than 100, viscosity is no longer totally
dominant and the main drag force is due to the formation of vortices that
appear and trail the object, particularly as turbulent flow becomes important.
This hydrodynamic drag force is

Fdrag,hydrodyamnic =
1
2
CDAρu2, (7.46)

where A is the frontal surface area and CD is the drag coefficient. For 100 <
Re < 2× 105, CD % 1.0 for circular cylinders. For spheres, CD decreases from
1.0 to %0.5 as Re increases from 100 to 1,000 and it remains about 0.5 for
1, 000 < Re < 2 × 105. For both cylinders and spheres, CD becomes smaller
at somewhat higher Re. These vortices or eddies are produced at the Strouhal
frequency

fSt =
(St)u

D
, (7.47)

where St is the Strouhal number. St depends on CD and Re, and is typically
between 0.12 and 0.23.

Problem 7.39 examines which drag regime dominates for human motion
in fluids: walking and running in air and swimming in water.

Another source of drag that is present at all speeds is skin friction, which is
due to the acceleration of the initially still fluid to the object speed u, because
fluid in the boundary layer near the object sticks to it. This is different from
Stokes drag, which is due to frictional losses in the fluid. This skin friction is

Fdrag,skinfriction =
1
2
CsfSρu2, (7.48)

where Csf is the skin friction coefficient, which depends on the details of the
flow, and S is the wetted surface area. When you swim at or near the surface,
fluid builds up to a higher than ambient level in front of your head (as you
push the water forward). The water is depressed to a level lower than ambient
after your head, as it “ventilates.” This ventilation drag force varies as u4.

The power consumed by each of these drag forces is

P = Fdragu. (7.49)

When a foil that is tilted up at an angle β moves in a fluid, an upward
force is generated on it called lift, which is

Flift =
1
2
CliftSρu2. (7.50)
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Fig. 7.17. Schematic of how the locations of particles vary at successively later
times, from (a) to (c), as a result of diffusion

The lift coefficient, Clift, varies linearly with this angle of attack. For small
angles, it varies linearly from −0.4 to 1.2 for β varying from −4◦ to 12◦ (for
Re = 1.7 × 106). Of course, Clift = 0 for β = 0◦. For β much larger than 12◦,
the flow separates from the upper edge of the wing and there is stalling of the
lift.

Chapter 3 discussed the lift force on spinning objects, such as thrown base-
balls and such, which is commonly called the Magnus force.

7.3 Diffusion (Advanced Topic)

When the concentration of particles (or molecules) is not uniform, the random
particle thermal motion leads to a net movement (or diffusion) of particles
from regions of higher concentration to regions of lower concentration. The
net effect is to make the concentration more uniform (Fig. 7.17). This diffusion
flow rate increases with the nonuniformity or gradient of the concentration,
which is Fick’s First Law of Diffusion

J = −Ddiff
∂n

∂x
(7.51)

for flow in one-dimension, where J is the flux of particles (particle flow per unit
area per unit time), Ddiff is the diffusion coefficient, and n(x, t) is the concen-
tration of particles. (We must use partial derivatives here because everything
depends on x and t.) The diffusion coefficient depends on the background
medium, and is on the order of ∼10−1 cm2/s in gas, ∼10−5 cm2/s in liquid,
and ∼10−9 cm2/s in solid backgrounds.

During this flow the total number of particles must be conserved. Consider
the cylindrical volume construct in Fig. 7.18, with its axis along the x-axis, and
of length dx and cross-sectional area A. The total number of particles entering
from the left in a unit time dt is J(x)A(dt) and the number leaving from
the right in this same time is J(x + dx)A(dt) % (J(x) + (∂J/∂x)dx) A(dt).
Therefore the net increase in the number of particles in the cylinder is the
difference −(∂J/∂x)(dx)A(dt). This must be accounted for by the change in
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Fig. 7.18. Particles are conserved for any flow in and out of the cylinder through
a change in concentration inside of it, for any flow process and for diffusion

density in this time in the volume, which is [(∂n/∂t)dt][A(dx)]. This gives the
conservation of the number of particles

∂n

∂t
= −∂J

∂x
. (7.52)

These two equations can be combined by differentiating (7.51) in space
to get ∂J/∂x = −Ddiff ∂2n/∂x2 (assuming that Ddiff does not depend on x)
and replacing ∂J/∂x from (7.52). This gives the Diffusion equation (or Fick’s
Second Law of Diffusion)

Ddiff
∂2n

∂x2
=

∂n

∂t
. (7.53)

Such diffusion leads to a slow gaussian-like, undirected spreading of the
species over a distance x ∼

√
2Ddifft in a time t. (A gaussian profile is of

the general form exp
(
−x2/a2

)
.) For a total number of particles N initially at

x = 0 at t = 0, the concentration is approximately

n(x, t) ∼ N√
2πDdifft

exp
(
−x2/2Ddifft

)
. (7.54)

As presented, this solution is not valid for small times. The exact solution
is slightly more complicated in other ways as well, but it is essentially the
same result when the initial spread of particles is very small (Fig. 7.19) (see
Appendix C). If the initial distribution is gaussian, (7.54) becomes

n(x, t) =
N√

2πσ2(t)
exp

(
−x2/2σ2(t)

)
, (7.55)

where

σ2(t) = σ2(0) + 2Ddifft (7.56)

and σ(0) is the initial spread.
In three-dimensions, the spreading of particles by diffusion is described by

n(x, t) =
N

(2πσ2(t))3/2
exp

(
−r2/2σ2(t)

)
, (7.57)
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Fig. 7.19. Diffusion in one dimension, with gaussian spreading, with the initial
distribution (σ(0)), one at time t during which σ2 has tripled (in this particular
example) (σ(t)), and one at time 2t (σ(2t)). (From [360])

with

σ2(t) = σ2(0) + 6Ddifft, (7.58)

where r2 = x2 + y2 + z2.
Diffusion can be very important in the body over very small distances, on

the order of 1–100 µm (∼100 µm for oxygen diffusion), but is not very useful
over much longer distances. The amount of material that can be transported
from one place to another is limited by the lack of directionality of diffusion
(Problem 7.26). It leads to an increase in disorder, whereas a functioning
organism requires careful control and regulation within characteristic time
frames. (The level or disorder is known as entropy, which is discussed in more
detail in discussions of thermodynamics, statistical mechanics, and in several
areas of biophysics.) Smelling object depends on the diffusion of molecules to
your nose (Problem 7.30).

Diffusion is also important in flowing systems. This is illustrated in
Fig. 7.20 for an artery.

7.4 Pressure and Flow in the Body

Table 7.1 gives characteristic pressures in the body. The blood pressure
ranges from ∼1–140 mmHg in different vessels and the speed of blood flow
in these vessels ranges from ∼0.05–50 cm/s. The overall volumetric flow rate
is ∼5 L/min. The relationship between pressure and flow in the circulatory
system is detailed in Chap. 8. The characteristic pressure difference between
the lungs and surrounding media is several mmHg and the volumetric flow
rate of air into the lungs is ∼6 L/min; this is discussed further in Chap. 9.
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Fig. 7.20. Diffusion of an injected impulse, such as a dye, in an artery, with the
shown line source initial distribution. The profile of the injection distorts as it adopts
the velocity profile of the flow and it also diffuses. (From [353])

The flow rates in much of the human alimentary (digestive) system are
quite slow (Table 7.4). Propulsive movements in this system are due to peri-
staltic action, with muscular contraction of the contractile ring around the gut
sliding food forward, as diagrammed in Fig. 7.21. When there is a large amount
of food in it, the gut stretches or distends and through sensors and feedback
this stimulates a contractile ring 2–3 cm upstream. Mixing movements in the
gut are caused by these peristaltic actions and by local constrictive contrac-
tions that occur every few cm in the gut and last for several seconds.

Table 7.4. Approximate flow rates and other properties of the human alimentary
system, estimated for a 70 kg male. (Using data from [351])

component length external internal luminal contents contents
(cm) dimension volume area passage speed

or width (cm3) (cm2) time (cm/s)
(cm)

mouth and pharynx 8 2–5 ∼50 ∼80 1–10 s 1–8
esophagus 25 1.3–2.5 ∼100 ∼200 5–20 s 3–5
stomach 12 8 230–1,000 ∼600 2–6 h ∼0.001
small intestine 400 3–6 1,100 ∼3,500 3–5 h 0.03
large intestine ∼150 5.0–7.5 300 ∼2,000 10–20 h 0.004–0.008
rectum 16–20 2.5–3.8 40 ∼100 ∼1 h 0.006
total, average,
or range ∼600 ∼3.5 1,800–2,600 ∼6,500 16–32 h ∼0.01
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Fig. 7.21. Peristaltic action in the gut. (See Fig. 8.14 for peristaltic assistance in
the return of venous blood to the heart). (Based on [356])

The relationship between volume and pressure is important in this diges-
tive system. Pressure (tension) in the walls of the stomach increases during
eating. The volume of the stomach of radius R increases as R3. (This models
the stomach as a sphere of volume V and ignores its finite radius with no
food contents.) From (7.9), σ = R(∆P )/2w = ((∆P )/2w)(3V/4π)1/3, so the
tension in the stomach walls should increase, much slower, as R. Pressure in
the stomach can also increase because of air swallowed during eating, which
can lead to burping or belching. Bacterial action produces gas in the gut; at
high enough pressure this causes flatulence.

As with the stomach, the pressure within the bladder increases slower than
its volume, and this is seen in Fig. 7.22. The pressure rises to 5–10 cmH2O
when it is filled by 30–50 mL of urine. (The units of cmH2O are commonly
used in this area, with 1 cmH2O = 0.738 mmHg.) Much additional urine can
collect, 200–300 mL, with only a small rise in pressure. Above 300–400 mL
the pressure increases rapidly. At ∼30 cmH2O (3 kPa), there is an urge to
urinate. Muscle contraction in the bladder (micturition reflexes) momentarily

Fig. 7.22. Normal pressure–volume in the human urinary bladder (cystometro-
gram), also showing acute pressure waves (dashed spikes) caused by micturition
reflexes. (Based on [356])
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increases this pressure to 150 cmH2O (15 kPa), with the normal voiding pres-
sure being 20–40 cmH2O (2–4 kPa). The wall tension increases with the volume
of the bladder V 1/3

bladder, as seen from the Law of Laplace assuming a constant
wall thickness. Therefore, the sensors to signal the urge to urinate would seem
to be in the wall, sensing wall stress, and not sensing the pressure inside the
bladder, because the pressure is fairly constant.

7.5 Motion of Humans in Fluids

We have already encountered several examples of humans in fluids. One is
the loss of heat by thermal conduction and convection to the surrounding
air in Chap. 6. Drag is also important in walking, running, cycling, and so
forth, as is clear from how wind increases the metabolic needs during walking
and running (Table 6.25). Locomotion in water, i.e., swimming, and potential
human flight are examples in which the effects of the fluid are paramount
[384].

7.5.1 Swimming

We are fairly buoyant, but not all can float. To float we must have an average
density less than that of water (1.0 g/cm3). (Equivalently, we must have a
specific gravity (= density/water density) <1.) Those with relatively more
fat (with an endomorph body shape) can float, with face, chest, and toes
above the surface, because fat (%0.8 g/cm3) has a density lower than water.
Those who are relatively muscular or big-boned (a mesomorph) cannot float
because the densities of muscle (%1.0 g/cm3) and bone %1.5–2.0 g/cm3 are,
respectively, roughly equal to and larger that of water. People with an average
density a bit higher than that of water may be able to float after taking in a
deep breath because of the low density of air (0.0012 g/cm3). Most men and
women will float after taking in a deep breath, but most men will sink with
just residual air in their lungs (after an normal exhalation, see Chap. 9). Very
young and very old people are more likely to float because they have more
fat, less muscle mass, and (for old people) lower long bone density. (Measuring
body density and fat percentage is described in Problem 1.40.)

When floating (or almost floating) people push water parallel to the sur-
face, in the “backwards” direction, they are propelled forward by the reaction
force (Newton’s Third Law). In other words, they swim. Because the arm and
leg strokes are periodic, the forward propulsion is really periodic in theory,
much like the periodic nature of blood rhythmically pumped by the heart.
The net forward acceleration of the swimmer is due to the sum of this for-
ward reaction response of the backward pushing of water and drag. (We are
ignoring other lift forces [343, 347, 359].) For a person swimming with speed u

mb
du

dt
= Fforward propulsion − Fdrag (7.59)
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Fig. 7.23. Arm and leg motion during freestyle swimming (the crawl). Also see
Problem 7.36. (From [353])

(More rigorously, −Fdrag is really − | Fdrag |.) As is proved in Problem 7.39,
the main source of drag is hydrodynamic, which scales as u2, and not vis-
cous Stokes-type drag, which scales as u; consequently, Fdrag,hydrodynamic =
1
2CDA+wateru2 (7.46). Actually, there are three identifiable sources of drag
that scale as u2: that due to frontal resistance, eddy resistance (due to water
not filling in the body’s wake and forcing the body to drag along these eddies),
and surface drag. The first two types are sometimes collectively called hydro-
dynamic drag. Assuming now that this propulsion is continuous (as opposed
to cyclic), the left side of (7.59) is zero and the steady state speed is

u2 =
2Fforward propulsion

CDA+water
. (7.60)

For freestyle swimming (which is technically called the “crawl,” Fig. 7.23),
the propulsion force during a stroke can be estimated as the momentum gained
by the pushed water during the duration of the stroke Tstroke, divided by that
stroke time. (Remember, F = ma can be expressed in terms of the momentum
p = mv, as F = dp/dt or ∆p/∆t.) The momentum of the water is the mass
of water displaced, +waterVwater, times the final water speed, vwater (relative
to the swimmer), or +waterVwatervwater. Therefore we find

Fforward propulsion, stroke %
+waterVwatervwater

Tstroke
. (7.61)

Let us consider forward propulsion due to motion of the hands and arms
only and ignore leg motion. Let us also assume that the swimmer’s arm is
straight during the stroke and rotates about the shoulder in a cylindrical
sweeping motion with a radius of the arm length larm and a width equal to the
hand width whand (which we will say is also roughly equal to the arm width,
warm). Therefore, the volume of displaced water is Vwater = πl2armwhand/2.
(The factor of two accounts for the half of the cylindrical volume that is
in the water.) The speed of the end of the arm is roughly larm/Tstroke and
near the shoulder it approaches zero. Because the water is moved at the arm
speed, the average speed of the water is vwater % larm/2Tstroke. (Part of the
water is pushed downward during an ideal circular motion of the arm and this
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does not contribute to this forward propulsion; we will ignore this because the
stroke motion is not really circular.) Therefore, (7.61) becomes

Fforward propulsion,stroke %
+waterπl3armwhand

4T 2
stroke

. (7.62)

We can estimate the arm length as the sum of the lengths of the upper and
lower arms and half the length of the hand (because it is cupped), and so using
Table 1.6 we see that larm = 0.386H, where H is the body height. We estimate
that whand = 0.07H. Excellent swimmers make about 60 strokes a minute,
so Tstroke = 1 s. Using H = 1.8 m, we find that Fforward propulsion,stroke % 27 N.
This is what we would expect for an effective force from a muscle with a
cross-section of 1.3 cm2 going into this motion, which seems a bit low. The
steady state speed u is obtained from (7.60), using CD = 1.0 and the trans-
verse area A ∼ 0.076 m2 (from the shoulder width, 0.259H, times the chest
depth, 0.09H, using H = 1.8 m). The average speed during a stroke is then
u % 0.8 m/s.

The next stroke, with the other arm, starts when the previous one has
stopped. The arm of this previous stroke “recovers” to the forward position
above the water line and so it does not provide propulsion in reverse. There-
fore, the forward propulsion is really continuous and this average speed seems
reasonable. This speed of 0.7 m/s is not that different from typical swimming
speeds and is not that far from the speeds of world-class freestyle swimmers.
(The average speed for world-record men’s freestyle swimming (in 2006) is
∼2 m/s, decreasing from 2.3 m/s for 50 m distances to 1.8 m/s for 400 m.) Drag
may be less than estimated here – in particular CD and A may be smaller –
and more water is likely being pushed per stroke by good swimmers than we
estimated here. Remember that we totally ignored propulsion by the kick of
the feet and legs and any propulsion by the rest of the body. Also, our analysis
has ignored the complication of the initial dive into the pool and of reversing
directions at the ends of the pool, etc.

The stroke is not exactly as described here. Actually, the arm does not
pull straight in any stroke (freestyle (crawl), butterfly, breaststroke, and
backstroke); after starting straight, it bends midway through and then (ex-
cept for the breaststroke) straightens again for the crawl. This suggests
that good swimmers use their hands more like propellers than paddles and
that this type of motion can make lift significant, which we have ignored
here.

The allometric relation for the swimming speed u of aquatic animals is

u % 0.5m0.19
b , (7.63)

where u is in m/s and mb is in kg. This suggests that a 70 kg aquatic animal,
such as a common dolphin, would swim at about 1 m/s, which is not far off
from typical human performance. (Bottle nose dolphins have the same mass,
but swim several times faster.)
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What happens if a swimmer stops stroking and just glides? With no for-
ward propulsion, (7.46) and (7.59) combine to give

mb
du

dt
= −1

2
CDA+wateru

2. (7.64)

Bringing the velocity terms to the left gives

du

u2
= −CDA+water

2mb
dt (7.65)

and integrating from the initial speed ui at t = 0 to the speed at time t gives

− 1
u(t)

+
1
ui

= −CDA+water

2mb
t. (7.66)

Therefore the swimmer’s speed approaches zero as

u(t) =
ui

1 + CDA!waterui
2mb

t
(7.67)

with a characteristic time of say 18mb/CDA+waterui, at which time u = 0.1ui

(see Appendix C).
Because u = dx/dt, we find

dx =
ui

1 + CDA!waterui
2mb

t
dt (7.68)

Integrating from position x = 0 at t = 0 gives

x(t) =
2mb

CDA+water
ln

(
1 +

CDA+waterui

2mb
t

)
. (7.69)

7.5.2 Human Flight

Why cannot we fly? (That is, why cannot we fly without the assistance of a
jet or helicopter, or propulsion devices on our backs?) The answer is easy. We
cannot generate enough vertical force to counter our weight to enable us to
hover or fly. In principle, we could do this by pushing air down fast enough or
by generating a vertical force by aerodynamic lift – which could be possible
if we could propel ourselves forward fast enough.

What happens if we try to fly by pushing air down by flapping our arms up
and down? The volume of air we could push down per arm flap is the arm area,
which is length × width, times the distance pushed, which is approximately
the arm length. This is roughly 0.7 m × 0.1 m × 0.7 m per arm or ∼0.1 m3

for both arms. The mass density of air is 10−3 g/cm3 = 1 kg/m3, so the mass
displaced per flap is ∼0.1 kg. If the ends of our arms attained a speed of



7.5 Motion of Humans in Fluids 435

80 mph % 40 m/s (which is the speed of a fair major league fastball, and
is clearly an overestimate), our average arm speed would be about 20 m/s.
If we flapped our arms 3 times a second (which is also faster than ex-
pected), the change in momentum in the moved air per unit time would be
(0.1 kg)(20 m/s)(3/s) = 6 N (assuming no air is moved when our arms return
to their initial positions at the end of each flap). This is much less than the
weight of a 70 kg person, which is 700 N. Let us say we wear lightweight wings
that would increase the effective flapping area to 2 m2 (1 m2 per wing) and
the volume of the air we would move increases to 2 m3. We would then gen-
erate an upward force of 120 N from this downward draft, and so even with
our wildly high estimates of wing speed and flapping rate, we could not even
approach developing enough vertical force to counter gravity and fly (or at
least hover). (Because water has a density that is 1,000× that of air, we can
easily keep ourselves afloat by pushing water down, and this is also assisted
by buoyancy.) Such hovering, by the reaction force to the down draft in air,
is more difficult than flying because there is no upward lift. Perhaps we could
flap and propel ourselves forward and develop some lift.

Could we at least “takeoff” after running fast with our artificial wings in
place? Assume that a person accelerated to the world record speed of about
10 m/s and suddenly spread his or her 2 m2 area wings. Using (7.50) under op-
timal conditions, we find Flift = 1

2CliftSρu2 = (0.5)(1.2)(2 m2)(1 kg/m3)(100
m2/s2), or 120 N of lift, which is still not enough. (Of course, even if the lift
were enough and the person became airborne, forward deceleration due to
drag would lead to a landing (or a crash).)

Clearly, any combination of wing flapping, for forward and some upward
propulsion, and wing gliding for lift will also not lead to flight. The old saying,
“If man (or woman) were meant to fly, he (or she) would have wings.” is not
true, because we could not fly even if we had wings. Of course people can
hang glide with artificial wings; such gliding involves lift, drag, wind, and
gravity.

Human-powered flight has indeed been demonstrated in the bicycle-
powered aircraft built by the Paul MacCready team and cycled/flown by
Bryan Allen, a champion bicyclist. In this aircraft the pedaling pilot propelled
the propeller at the rear of the craft, which is connected to the cycle by a series
of gears. Consequently thrust is created in this craft, which was optimized for
lift, with minimal drag and weight. The “Gossamer Condor” flew for 7min,
2.7 s in a closed course, and then on June 12, 1979 the “Gossamer Albatross”
(with 30 m wingspan and 30 kg mass without the pilot) flew the first com-
pletely human-powered flight across the English Channel. It covered 35.6 km
in 2 h 49 min, and thereby won the Kremer Prize established in 1959. This
world-class cyclist provided 125 W of mechanical power, flew very close to the
surface to take advantage of the “ground effect” – which is a temperature
inversion near the surface – and was completely exhausted at the end of the
flight.
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7.6 Summary

The Law of Laplace, the equation of continuity and Bernoulli’s equation for
nonviscous flow, and Poiseuille’s Law of viscous flow can be used to model
the flows of fluids in the body, such as blood and air – which are described in
Chaps. 8 and 9, and the movement of the body in fluids, such as swimming
and flight, which is described in this chapter. The physics of pressure in fluids
and diffusion are also used in these models.

Problems

Basic Fluidics and Pressure

7.1. Your blood pressure is measured with a sphygmomanometer, however
with your upper arm pointed upward instead of downward. If your blood
pressure is really 120 mmHg/80 mmHg, approximately what pressure would
be measured?

7.2. The water level in a 4 m wide and 20 m long pool rises 0.75 mm when a
person enters it and floats. What is the mass of that person?

7.3. You want to measure the volume of your whole arm by sticking it in
an upright, long cylindrical tube with internal diameter of 15 cm, which is
partially filled with water. The water level rises by 12.7 cm when a 50 kg
female makes this measurement? What are the mass, weight, and volume of
her arm? (See Chap. 1.)

7.4. Who is more buoyant and consequently floats higher: a large-boned,
heavy muscled person with little body fat or a small-boned, lightly muscled
person with more body fat?

7.5. Will retaining water affect a person’s ability to float?

7.6. A 50 kg woman has a density of 1.01 g/cm3 after normal exhalation. Does
she float? Will she float after she inhales 2 L of air?

7.7. A 70 kg man with a density of 1.03 g/cm3 ages. He gains 5 kg of fat. Will
he float?

7.8. Will a person with an ectomorph shape float?

7.9. Why can all people float in the Dead Sea? (It has a specific gravity of
1.2–1.3. We have been assuming floating in water with no salt. Ocean water
has a density of 1.027 g/cm3.)

7.10. Three 50 kg women are airborne in a balloon filled with He. What is the
minimum diameter of the balloon? (What assumptions are you making about
the mass of the basket in which they are riding and the balloon itself?)
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Fig. 7.24. Palpation of a blood vessel. (From [352].) For Problem 7.14

7.11. The gauge pressure inside a cylindrical tube is 100 mmHg and its radius
is 1 mm, what is the tension in the tube wall at equilibrium (in SI units)?

7.12. (advanced problem) Derive the Law of Laplace for a sphere (7.9) by
careful integration of the normal force on a hemisphere, in a manner analogous
to the integration in (7.7) for a half-cylinder.

7.13. Over a large range of volumes, the pressure in the bladder is at a fairly
constant value near 8 mmHg. If the thickness of the bladder is 5 mm, show
that the wall tension is σ = 600 Pa/cm V 1/3

bladder where the bladder volume is
in cm3.

7.14. The internal pressure of an elastic vessel, such as an artery, vein, eyeball,
aneurysm, or balloon, can be estimated by pushing down on it with your finger;
this method is called palpation (Fig. 7.24):
(a) Show that the pressure felt by the finger is affected by the tension in the
vessel wall.
(b) Show that the pressure you feel equals the pressure internal to the vessel
when you push down on it so that the vessel wall is flat.

7.15. Assuming no viscosity and no changes in height, determine how the flow
speed in a vessel changes if its diameter decreases by a factor of 4.

Viscous Flow

7.16. Compare the SI units of dynamic viscosity, η in (7.23), with those of
the viscosity damping constant of the dashpot, c in (4.48).

7.17. One wants to use oil in car engines so the oil viscosity is a specific, opti-
mized value – especially when the engine is started cold. Usually a heavyweight
oil is used in very hot weather, such as SAE 50, and a lightweight oil in very
cold weather, such as SAE 10. Using Table 7.3, estimate the viscosity needed
at moderate temperature. Also estimate how the motor oil viscosity changes
with temperature. (Nowadays, multiviscosity oils, such as SAE 10W/40 are
used, which are suitable over a wide range of temperatures.)
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7.18. Viscous flow with flow rate Q in a big tube of diameter D and length
L, subdivides into N identical small tubes of length L with equal flow rates:
(a) What is the flow rate in each small tube?
(b) You are told that the pressure drops across the big tube and across the
small tubes are the same (and both equal to ∆P ). Find the diameter of the
small tubes and determine if this is possible.
(c) If instead, the diameters and lengths of the small tubes are α× and
β× that of the big tube, what is the resistance across each small tube and
across the whole small tube system in terms of the resistance across the big
tube?

7.19. We are very sensitive to even small changes in core body temperature.
Let us examine what happens when the viscosity of blood changes because of
such temperature changes. It is known that the dynamic viscosity of whole
blood decreases by 30% when temperature increases from 25◦C to 37◦C. What
is the increase in systolic blood pressure, from its normal value of 120 mmHg,
needed to pump blood throughout the body at the same rate if the core
body temperature decreased to 25◦C, with everything else being the same?
(This temperature change will affect the body in many other ways even more
dramatically; see Chap. 13.)

7.20. (a) How much force F (in N and lb) must be applied to a plunger
to inject 1.0 × 10−6 m3 of the solution in 3.0 s with a hypodermic syringe?
Apply Poiseuille’s Law for the pressure drop across the needle, as in Fig. 7.25
[348]. The needle is injected into a vein with a (gauge) pressure of 14 mmHg
(1,900 Pa). Assume the plunger has an area of 8.0 × 10−5 m2 and the syringe
is filled with a solution with viscosity of 1.5 × 10−3 Pa-s. The needle has an
internal radius of 4.0 × 10−4 m and a length of 0.025 m. Remember that you
want to apply a (gauge) pressure in excess of the venous pressure to achieve
the desired flow rate Q.
(b) Why are such injections performed intravenously and not intra-arterially?

Fig. 7.25. Intravenous injection by a hypodermic syringe. (Based on [348].) For
Problem 7.20
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7.21. Calculate the Reynolds number for each component of the alimentary
system. Assume the coefficient of viscosity is 1 N-m/s to the stomach and
10 N-m/s after the stomach. Is the flow streamline or turbulent?

7.22. (a) For Newtonian flow, calculate the shear stress on the wall of a tube
of radius R, for an average fluid speed u and fluid viscosity η.
(b) Estimate this (in SI units) for a typical human artery.

7.23. (advanced problem) Show that the strain rate dv/dy used in flow is
related to the time rate of change of strain dε/dt. (Hint: Express strain as
the partial derivative of a deformation u, ε = ∂u/∂y and speed as v = ∂u/∂t.
Then evaluate ∂ε/∂t, and switch the order of the y and t derivatives.)

Diffusion

7.24. Important molecules are formed in the middle of a 2 µm-diameter cell.
How long does it take for them to diffuse throughout the cell? (Assume the
cell contents are liquids and that the diffusion coefficient Ddiff = 10−5 cm2/s.)
Is this fast enough to achieve normal metabolic activity rates?

7.25. In one-dimension, estimate the characteristic distances for diffusion in
1 s in a gas, liquid, and solid.

7.26. A 1 mm3 volume of biological material must be transported 2 cm away
to another 1 mm3 region:
(a) If it flows in a vessel at a speed of 10 cm/s, how fast does it get there and
what fraction of it arrives there?
(b) If it diffuses in a liquid with Ddiff = 10−5 cm2/s, approximately when will
the maximum amount of it arrive and approximately what fraction of it will
arrive?
(c) Which mode of transport is preferred and why?

7.27. Refer to Fig. 7.19. If σ and the abscissa are in cm and t is in s, what is
Ddiff?

7.28. Use substitution to confirm that (7.55) and (7.56) are the solution to
the one-dimensional diffusion equation, (7.53).

7.29. (advanced problem) Use substitution to confirm that (7.57) and (7.58)
are the solution to the three-dimensional diffusion equation

Ddiff
1
r2

∂

∂r

(
r2 ∂n

∂r

)
=

∂n

∂t
. (7.70)

7.30. (a) You can detect 4× 108 molecules of ethyl mercaptan (which causes
the rotten fish smell) per cm3, which corresponds to one molecule per 1011

molecules in air (because the air density is 5 × 1019/ cm3). If 1 mm3 of this
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liquid is released 10 m away, how long will it take to notice this release?
(Ethyl mercaptan, C2H5SH has 62.1 g/mole and is a liquid with a density
of 1.01 g/cm3. It has an odor resembling that of rotten eggs, and is added to
natural gas and propane to give those normally odorless fuels a distinctive
smell.)
(b) If your dog’s nose is a thousand times more sensitive, when will she or he
smell it?

Swimming, Flying, and Drag Forces

7.31. Repeat the analysis that determines the speed of a swimmer, but now
assume that the effective force of 2 in diameter muscles is providing 405 N
continuously. (Why is this force reasonable?) Does your answer make sense?
Why?

7.32. Repeat the analysis of the speed of a swimmer, but now assume that
Stokes friction is the only dominant drag force. Does your answer make sense?
Why?

7.33. Go through all the steps in determining the position during gliding in
swimming, from (7.68) to (7.69).

7.34. Using the parameters in the text, estimate the characteristic time
needed for a world class freestyle swimmer who stops stroking and glides
to slow down. Also estimate the distance she travels in that time.

7.35. Repeat the analysis of gliding, (7.64)–(7.69), assuming only Stokes drag.

7.36. In Fig. 7.23, the lower leg of a swimmer is hinged at the knee (at x = 0)
and is acted on by forces that are normal to its axis with force per unit length
of p(x). Show that the work done by the leg, of length L, as is rotates by dθ
is [353]

dW =

(∫ L

0
p(x)xdx

)
dθ. (7.71)

7.37. Could people fly on another planet using artificial wings? How would g
and the mass density of the atmosphere ρ have to change? (Does a change in
g imply the same or an oppositely signed change in ρ?) Ignore the impact of
spacesuits, differences in temperature, changes in metabolism, muscle atrophy,
and so on.

7.38. What is the Reynolds number of a piece of matter 1 µm in diame-
ter, such as a cell in water or particulate in blood? Assume a density of
1 g/cm3, a speed of 4 mm/s, and the viscosity of blood. What type of drag
dominates?
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7.39. (a) Is Stokes friction or hydrodynamic drag dominant for people walking
and running in air?
(b) Which is dominant for people swimming in water?
(Make sure you calculate the Reynolds numbers in each case.)

7.40. (a) Estimate the hydrodynamic drag force on a very fast runner.
(b) How much power is lost to drag?
(c) How does this compare to the metabolic power needed for running?

7.41. Speed skaters often adopt a position with a nearly horizontal trunk and
downhill skiers adopt the “egg” position with a hunched-down body and skis
pointed backward when they are not maneuvering. Why?

7.42. A person without a parachute is dropped from a plane at an altitude of
1,000 m. Determine the “terminal” speed of the person by equating the forces
of gravity and drag. (Which drag limit is appropriate? Is there enough time
for a constant final speed to be attained?)

7.43. (a) A person with a parachute is dropped from a plane at an altitude of
1,000 m. Determine the final steady state speed of the person by equating the
forces of gravity and drag. (Which drag limit is appropriate? Is there enough
time for a constant final speed to be attained?) Assume the person has a mass
of 70 kg and the parachute has a negligible mass and is 7 m across when it is
open.
(b) What is the minimum height above ground that the parachute should be
opened so the person lands with a speed no greater than 1.5 m/s? Assume it
takes 2.5 s for the parachute to deploy fully.
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Cardiovascular System

There are three components of the cardiovascular system. (a) Blood is the
vehicle for transport. It transports fuel from the digested food to the cells,
transports oxygen from the air in the lungs so it can combine with fuel to
release energy, and it disposes of waste products – such as carbon dioxide
from the fuel engine and other metabolic wastes. (b) The circulatory system
is the distribution system, and consists of a series of branched blood vessels.
(c) The heart is the four-chambered pump composed mostly of cardiac muscle
that enables this circulatory flow. General descriptions of the cardiovascular
system can be found in [368, 369, 372, 373, 376, 378, 384, 385, 388, 390, 395,
396, 402, 410, 417].

8.1 Overview of the Circulatory System
and Cardiac Cycle

8.1.1 Circulation

Blood flow from the heart branches into two separate systems (Fig. 8.1). In the
pulmonary circulation system, the right side of the heart pumps oxygen-poor
(“blue”) blood to the lungs to be oxygenated; oxygen-rich (“red”) blood then
returns to the left side of the heart. In the systemic circulation system, the
left side of the heart pumps this oxygen-rich (“red”) blood to the rest of the
body where it is used; oxygen-poor (“blue”) blood then returns to the right
side of the heart. This occurs in a system of arteries that conducts the blood
from the heart to the lungs and other organs and components, and a system
of veins that returns the blood to the heart.

In the pulmonary system (Fig. 8.1), blood enters the right atrium (RA) of
the heart (Fig. 8.2) through the inferior and superior vena cava(e) (vee’-na
cae’vuh). The blood passes through the right atrioventricular (or tricuspid)
valve to enter the right ventricle (RV). Blood is first pumped through the
pulmonary semilunar valve to the pulmonary arteries, which branch out into
a series of more minor arteries and arterioles, and then into capillaries in the
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Fig. 8.1. Blood circulation system, and labeled within the heart: the (a) right
atrium, (b) right ventricle, (c) left atrium, (d) left ventricle, (1) right atrioventricular
(tricuspid) valve, (2) pulmonary semilunar valve, (3) aortic semilunar valve, (4) left
atrioventricular (bicuspid, mitral) valve. (From [416])

lungs. These pulmonary capillaries combine into venules (veen’-yools), then
into more major veins, and finally into the pulmonary veins.

In the systemic system (Fig. 8.1), blood enters the left atrium (LA) of
the heart through the pulmonary veins. The blood passes through the left
atrioventricular (or bicuspid or mitral) valve to enter the left ventricle (LV).
Blood is pumped through the aortic semilunar valve to the aorta, which first
branches out into a series of major and then minor arteries (with smaller
diameters, the arterioles), and finally into a series of capillaries in the systems
where gas exchange and diffusion occur. These systemic capillaries combine
into venules, then more major veins, and finally into the superior (from above
the heart) and inferior (from below the heart) vena cavae.
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Fig. 8.2. Diagram of the heart, with its principle chambers, valves, and vessels.
(From [367])

(A useful mnemonic for the flow of blood in the heart comes from knowing
that the author once lived on Rahlves Drive in Castro Valley, California – a
town approximately 20 miles south of Berkeley. The whole heart cycle starts
with blood flowing into the right atrium (RA) and then getting oxygenated
in the lungs, returning to the heart (H), and then continuing with the blood
leaving the left ventricle (LV) and exiting (E) for the systems (S). Put together
this spells RAHLVES. The most important concept here is that deoxygenated
blood enters the heart through the right atrium (RA) and eventually oxy-
genated blood leaves through the left ventricle (LV) of the heart to be used
by the body for metabolism. For some, it may be easier to remember that
an American Daron Rahlves was the winner of the super-G downhill skiing
competition in the 2001 World Championships.)

The systemic and pulmonary systems have similarities and differences.
They have the same volumetric flow rate Q. (If they were not equal, blood
would have to pile up somewhere.) In the systemic system the blood disposes
of oxygen and receives carbon dioxide, while in the pulmonary system the
blood disposes of carbon dioxide and receives oxygen. Table 8.1 shows that

Table 8.1. Normal resting values of blood pressure, with system volumes

P (mmHg) V (L)

systemic arteries 100 1.0
systemic veins 2 3.5
pulmonary arteries 15 0.1
pulmonary veins 5 0.4
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the systemic system has higher pressures (in the arteries) and larger volumes
than the pulmonary system (even with the same Q). This difference in pressure
makes sense because the blood vessels need to be longer to get to more distant
regions in the body in the systemic system. The left heart (LA + LV) is
bigger (and is a larger pump) than the right heart (RA + RV) because of
this need to generate higher pressure for systemic circulation. The heart walls
consist mostly of the thick middle muscle layer, the myocardium, which is
lined internally by a thin layer of tissue, the endocardium, and externally by
a membrane, the epicardium. The two sides of the heart are separated by a
wall called a septum. The difference in volume is due to the longer distance
of travel and the much higher number of systems that receive blood in the
systemic system. Table 8.1 also shows that arteries have higher pressure than
the corresponding veins, whereas the veins have larger volumes. The total
volume of blood is !5 L.

For a person at rest, 12% of the blood is in the heart chambers, 2% in the
aorta, 8% in the arteries, 1% in the arterioles, 5% in the capillaries, 50% in
the systemic veins, and 18% in the pulmonary circulation.

Major arteries and veins are shown in Figs. 8.3 and 8.4. Tables 8.2 and
8.3 provide a very approximate quantification of the vessels in the circulatory
system.

8.1.2 Cardiac Cycle

There is a highly controlled timing cycle in well-functioning hearts, the cardiac
cycle, which lasts a time τ (Fig. 8.5). In the first stage of diastole (die-as’-toe-
lee), the veins fill up both the right and left atria, while the right and left
ventricles are relaxed. In the second stage, the cardiac muscle (myocardium)
of the right and left atria contract and pump blood through the atrioventric-
ular valves, into the right and left ventricles, respectively, at the same time
t = 0. (This is actually a gross simplification of ventricular filling, because
∼75% of this blood flows into the ventricles from the atria before atrial con-
traction.) In the first step of systole (sis’-toe-lee, which has the same cadence
as Sicily), both ventricles contract (isovolumetrically) at the same time ∆. In
the second stage, they eject blood through the respective semilunar valves:
the right ventricle into the pulmonary arteries and the left ventricle into the
aorta. The systolic (sis-stah’-lic) blood pressure occurs in this second stage of
systole, while the diastolic (die-uh-stah’-lic) pressure is that during diastole.
(One way to measure the flow of blood ejected by the left ventricle is ballisto-
cardiography, which is described in Problem 8.47. Another method is Doppler
ultrasonography echocardiography, which is used more often clinically; it is
described in Problem 10.23.)

The right and left hearts must work at exactly the same time to keep
the flow rate Q the same in both systems. There is a timing mechanism
in place to do this and to set the contraction times 0 and ∆ for one
beat, followed by τ and τ + ∆ for the next, 2τ and 2τ + ∆ for the next,
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Fig. 8.3. Major arteries in the body. Arteries carry blood away from the heart in
the systemic and pulmonary system. Many come in pairs, such as the right and left
radial arteries. (From [408]. Used with permission)
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Fig. 8.4. Major veins in the body. Only the superficial veins are shown in the left
limbs and only the deep veins are shown in the right limbs. Veins carry blood back
to the heart in the systemic and pulmonary system. Many come in pairs, such as
the right and left radial veins. (From [408]. Used with permission)
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Table 8.2. Approximate quantification of individual vessels in the human circula-
tory system. (Using data from [382])

vessel diameter length wall thickness pressure
(mm) (mm) (µm) (mmHg)

aorta 25.0 400 1,500 100
large arteries 6.5 200 1,000 100
main artery branches 2.4 100 800 95
terminal artery branches 1.2 10 125 90
arterioles 0.1 2 20 60
capillaries 0.008 1 1 30
venules 0.15 2 2 20
terminal venules 1.5 10 40 15
main venous branches 5.0 100 500 15
large veins 14.0 200 800 10
vena cavaa 30.0 400 1,200 5
heart chambers – – – 120

This is for a 30-yr-old male, with mass 70 kg and 5.4 L blood volume.
aThere are really two vena cavae.

and so on. There is a heart pacemaker at the sinoatrial or sinus node
(see the conducting system in Fig. 8.6), which sends an electrical signal
to the atrial cardiac muscle of both atria for simultaneous atrial contrac-
tion. This electrical signal then travels to the atrioventricular or AV node,

Table 8.3. Approximate quantification of total vessel systems in the human circu-
latory system. (Using data from [382])

vessel number total
length
(mm)

total
surface area

(mm2)

total blood
volume
(mm3)

aorta 1 400 31,400 200,000
large arteries 40 8,000 163,000 260,000
main artery branches 500 50,000 377,000 220,000
terminal artery branches 11,000 110,000 415,000 120,000
arterioles 4,500,000 9,000,000 2,800,000 70,000
capillaries 19,000,000,000 19,000,000,000 298,000,000 375,000
venules 10,000,000 20,000,000 9,400,000 355,000
terminal venules 11,000 110,000 518,000 190,000
main venous branches 500 50,000 785,000 1,590,000
large veins 40 8,000 352,000 1,290,000
vena cavaa 1a 400 37,700 280,000
heart chambers – 450,000

Total ∼19,000 km 312,900,000 5,400,000

This is for a 30-yr-old male, with mass 70 kg and 5.4 L blood volume.
aThere are really two vena cavae.
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Fig. 8.5. The left ventricular and atrial pressures are plotted along with the left
ventricular volume, aortic pressure and flow rate, the electrocardiogram and the
phonocardiogram (which is the signal from heart sounds) in this Wiggers diagram.
The opening and closing times of the aortic semilunar and bicuspid (mitral) valves
are also shown. (Based on [390], [414], and [417])

is delayed there for a time ∆, and then the node sends a signal to the
ventricular cardiac muscle of both ventricles for simultaneous ventricular
contraction.

The electrocardiogram (EKG or ECG) is a measurement of these electrical
signals, and their timing, as measured by probes on the body [379, 386, 401].
Figure 8.6 shows the EKG during one ∼1 s long heart beat (also see Fig. 12.28).
The P wave is due to atrial depolarization (which is atrial contraction). The
QRS complex is due to ventricular depolarization (contraction). The T wave
is due to ventricular repolarization (relaxation). The atrial repolarization (re-
laxation) signal is masked by the larger QRS complex. Depolarization and
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Fig. 8.6. Conducting system of heart with the sinoatrial/sinus and atriventricu-
lar/AV nodes, along with the electrical waveforms of the activity of each – including
the EKG on the bottom. Also see Fig. 12.28. (From [404])

repolarization, and the electrical properties of the heart and the use of the
EKG are discussed more in Chap. 12.

There are several cardiac arrhythmias (i.e., timing irregularities) of varying
degrees of concern that affect this cardiac timing mechanism. In an atrioven-
tricular block, there is injury to the atrioventricular (AV) fibers from the AV
node to the ventricle or to the AV node itself (Fig. 8.6). In an incomplete
AV block, the conduction time through the AV junction increases from the
normal 0.16 s to 0.25–0.50 s and there are dropped ventricular beats; these
sometimes lead to 2:1, 3:2, or 3:1 rhythms of atrial to ventricular beats. In a
complete AV block, a person may faint until ventricular beats develop (with
40/min, compared to 100 beats/min in the atria). There can also be prema-
ture contractions of the atria or ventricles. In paroxysmal tachycardia, there are
sudden increases in the heart rate, say from 95 to 150 beats/min in the atria
or ventricles, which can cause serious ventricular (not atrial) damage. Ven-
tricular fibrillation is the most serious arrhythmia and is fatal if not treated
immediately. It can be caused by 60-cycle AC. There is uncoordinated muscle
contraction of the ventricles, and so parts of them contract while other parts
relax; this leads to little or no pumping of blood. Unconsciousness occurs
in 4–5 s and the death of tissues begins in a few minutes. Atrial fibrillation
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involves similar uncoordinated muscle contraction, but it is less serious be-
cause most blood flows passively from the atria to ventricles. Blood flow de-
creases by only ∼20–30%. Resuscitation after cardiac arrest can occur in many
cases by cardiac pulmonary resuscitation (CPR) [390].

Cardiac muscle is similar to the skeletal muscle described in Chap. 5
(Fig. 5.1b). In particular, the basic building block is the sarcomere with its
sliding actin and myosin filaments. There are some differences, however. At the
resting muscle length, the maximum tension for skeletal muscle is ∼20 N/cm2

or more, while it is only ∼7 N/cm2 for cardiac muscle. Also, the resting, pas-
sive tension is fairly large at the length of peak tension in cardiac muscle
(as is depicted in Fig. 5.25a). Both of these differences can be attributed in
part to the greater fraction of noncontractile tissue in heart muscle, which
contains collagen and other fibrotic tissue. The first difference also arises
from the nonparallel nature of cardiac muscle fibers. Another difference be-
tween skeletal and cardiac muscle is that it is usually not possible to tetanize
cardiac muscle. The twitches merge only partially at very high stimulation
frequency.

Echocardiography is the use of ultrasound to diagnose heart disorders and
blood flows. It and related methods are described briefly in Chap. 10 (and in
Problems 10.22 and 10.23).

8.1.3 Valves

There are four major valves in the heart (Fig. 8.7). The right atrioventricular
valve controls flow between the right atrium and right ventricle. It has three
flaps (or cusps) and is therefore also called the tricuspid valve. The pulmonary
semilunar valve controls blood flow from the right ventricle to the left and right
pulmonary arteries. The left atrioventricular valve controls flow from the left
atrium to the left ventricle. It has two flaps and is therefore also called the

Fig. 8.7. Drawing of the four major heart valves, showing the cusps (flaps). (From
[418])
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Fig. 8.8. Schematic of the unidirectional flow of an atrioventricular heart valve. (a)
The pressure in the atrium exceeds that in the corresponding ventricle and the valve
opens, with a jet of blood rushing in. Toward the end of diastole, the jet is broken.
The deceleration of the blood creates a pressure, which tends to close the valve. (b)
The valve is normally closed. (Based on [417])

bicuspid valve. Another name for this valve is the mitral valve, because it looks
like a miter. The aortic semilunar valve controls flow from the left ventricle
to the aorta.

These four valves share some common traits. They are one-way valves
(Fig. 8.8) that allow blood flow in the described direction under some con-
ditions, but never in the opposite direction (unless they are defective). We
can imagine a flapped unidirectional valve that will not allow any back flow.
With this type of valve we can see how the flaps will open, allowing this uni-
directional flow, when the pressure in front of the valve exceeds that on the
other side. In this way, the valve is closed until the pressure in the cham-
ber increases due to contraction to a value greater than that after the valve.
However, such a valve could not withstand very much back pressure. Back-
ward opening of the atrioventricular valves is also prevented by the papillary
muscles on the ventricular side that contract when the valve is closed, mak-
ing the chordae tendineae that are attached to the flaps taut (Fig. 8.9). This
prevents the flaps from bending backward, so there is no backward flow of
blood.

Let us consider the cycle for the aortic semilunar valve. During ventricular
relaxation the pressure in the left ventricle is ∼0 mmHg. In the aorta the pres-
sure is ∼120 mmHg during systole and then decreases to ∼80 mmHg during
diastole, just before ventricular contraction. The valve is still closed. During
ventricular contraction the pressure in the LV increases to 80 mmHg, contin-
uing up to ∼120 mmHg. Because the pressure in the aorta is ∼80 mmHg, the
aortic semilunar valve opens once the pressure in the LV exceeds 80 mmHg
and then remains open. During this flow, the pressure in the LV and aorta
become equal, ∼120 mmHg, and then the valve closes as the flow cycle comes
to an end.

The measurement of systolic and diastolic pressure by listening to
Korotkoff sounds is described in Chap. 7. This method is the standard way
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Fig. 8.9. The papillary muscles on the ventricular side of the atrioventricular valves
contract when the values are closed, making the chordae tendineae taut, as in (b).
The muscles and the chordae tendineae are relaxed when there is forward blood
flow, as in (a). (Based on [417])

of determining blood pressure even though it routinely underestimates systolic
pressure by 5–20 mmHg and overestimates diastolic pressure by 12–20 mmHg
[377].

Cardiac valve openings and closings and the flow of blood in the heart
create sounds that can be heard with a stethoscope, and are described in
Chap. 10. (Also see Fig. 8.5.)

8.2 Physics of the Circulation System

We now examine the circulation system in more detail. First, we will ex-
amine how the blood pressure varies with distance along the arteries and
veins, including within the capillaries. We then investigate the consequences
of nonuniformities in arteries, such as clogged arteries and aneurysms – in
the context of the strength of the artery walls. We next calculate the work
done by the heart, to see how this contributes to the metabolic needs of the
body. In the last section of this chapter we will develop a model of the entire
circulatory system and the heart.

8.2.1 Properties of Blood

Blood is a non-Newtonian fluid, in part because of its complex, inhomoge-
neous composition. The blood solution consists of plasma, red blood cells
(erythrocytes; 5 million/mm3; 45% of total blood volume), white blood cells
(leukocytes; 0.3%), and platelets (0.15%). (The red blood cell volume fraction
is called the hematocrit.) The red blood cells are biconcave disks that are
toroidal in shape with the center partially filled in, and have a diameter of
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Fig. 8.10. Blood viscosity vs. hematocrit. (Based on [390])

7.5 µm and maximum thickness of 2 µm. Their diameter is about the same
as the inner diameter of capillaries, but they can deform and flow in even
smaller tubes. White blood cells are spherical, with a diameter of 7 µm, while
the platelets are much smaller. The blood plasma is 90% water and behaves
like a Newtonian fluid with a viscosity of 0.0012 Pa-s. The blood rheology is
greatly altered by the red blood cells, and not much by the white blood cells
or platelets because they comprise very small fractions of the blood volume.
(Rheology is the study of the deformation and flow of materials, particularly
unusual materials.) The blood viscosity increases with the hematocrit, as seen
in Fig. 8.10.

The effective viscosity of blood decreases as the shear rate increases
(Fig. 8.11). For very slow shear rates, this viscosity is more than 100× that of
water, while at the high shear rates characteristic of flow in larger vessels it
is about 4× that of water, with a value of 0.004–0.005 Pa-s.

The viscosity of some fluids changes even while the strain rate is constant.
Blood is a thixotropic fluid, for which the shear stress decreases while the
strain rate is constant. Still, for our purposes it will be adequate to treat
blood as a Newtonian fluid, even though the velocity flow profile is not the
ideal parabolic form for a Newtonian fluid (Fig. 7.13).

8.2.2 Blood Pressure and Flow in Vessels

Structure of Blood Vessels

Arteries contain inner layers that are 1–2 endothelial (lining) cells thick – along
with elastic issue (composed of collagen and elastic proteins). This innermost
region surrounding the opening – the lumen – is known as the tunica intima.
Next in the wall comes a layer of circular, smooth muscle fibers interspersed
with elastic tissue (the tunica media) and finally connective tissue (the tunica
adventitia) (Fig. 8.12, also see Fig. 8.44). The walls of veins have a thickness
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Fig. 8.11. Blood viscosity vs. shear rate for a hematocrit of 45%, at 310K. (From
[382]. Courtesy of Robert A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.
nanomedicine.com, based on [375])

w that is typically ∼d/10, where d is the lumen diameter; they are thinner
than the walls in arteries of corresponding diameters, for which w ∼ d/5.
The aorta and other large arteries contain much elastic tissue and stretch
during systole and recoil during diastole. The walls of the arterioles contain

Fig. 8.12. Schematic of the walls of arteries and veins. (From [408]. Used with
permission)



8.2 Physics of the Circulation System 457

less elastic tissue and more smooth muscles, and stretch relatively little. The
walls of the capillaries are composed of a single layer of endothelial cells. The
diameters of the capillaries are so small that red blood cells can barely pass
through them.

Approximately 70% of the walls of arteries and veins is composed of wa-
ter, which is not elastic, except in how it withstands compression. The other
30% consists of the dry mass: elastin, collagen, and smooth muscle fibers,
each having different materials properties. As discussed in Chap. 4, elastin is
rubber-like and has a Young’s modulus of ∼3× 105 Pa; it can be stretched to
twice its relaxed length. Collagen is much stiffer, with a Young’s modulus of
∼1×108 Pa. Elastin has an ultimate tensile stress (UTS) less than 5% of that
of collagen. Smooth muscle has a Young’s modulus more like that of elastin,
with Y ∼ 1 × 105 Pa when relaxed and ∼2 × 106 Pa when active. About half
the dry mass in vessels is elastin and collagen, with more elastin than colla-
gen in the aorta (∼1.5×) and relatively less elastin in other arteries (∼0.5×)
and veins (∼0.3×). Veins contain less elastin than arteries. The fraction of
smooth muscle in the dry mass averages to ∼50%, and is ∼25% in the aorta,
and increases to ∼60% more peripherally in the arteries and arterioles. The
mechanical properties of these vessels (Chap. 4) also depend on the tissue to
which they are attached. This is particularly significant for capillaries, because
the vessel walls are essentially a single layer of endothelial cells.

Blood Pressure

Blood pressure is needed to push blood flow. Figure 8.13 is a schematic of
the mean arterial and venous blood pressure at different positions in the

Fig. 8.13. Blood pressure along the circulatory system for a person lying horizon-
tally. (Based on [371])
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circulation cycle, for a person lying horizontally. The oscillations in blood
pressure along the major arteries in systemic circulation reflect the oscillat-
ing pressure of this blood when it was leaving the aorta, at pressures be-
tween ∼80 mmHg (Pdiastole, at diastole) and ∼120 mmHg (Psystole, at systole)
(Fig. 8.13). Because systole lasts for about 1/3 of the cycle and diastole for
about 2/3, the mean blood pressure is a weighted sum,

Pmean =
Psystole + 2Pdiastole

3
, (8.1)

or (1/3)120 mmHg + (2/3)80 mmHg ∼ 94 mmHg in this example. This dif-
ference in pressure of 40 mmHg between systole and diastole is the arterial
pulse pressure Ppulse. We will see that blood flows at a speed of ∼20 cm/s in
these systemic arteries, so with a heart rate of about 1 Hz = 1 cycle/s it is
reasonable that there are quasiperiodic variations every 20 cm or so. Much of
the pressure drop in the arterial system is in the arterioles (small arteries) and
the capillaries. We will see that this can be attributed to viscous flow. There is
very low pressure in the veins. It is too little pressure to pump the blood back
to the heart – even with the large diameters of the veins and consequently
low resistance to flow (7.24). There is a peristaltic pumping mechanism by
muscles surrounding the large veins that assists the return of venous blood
to the heart, with one-way valves to prevent backflow (Fig. 8.14). (Similarly,
blood flow in the capillaries is usually not continuous, but is turned on and
off every few seconds or minutes, due to sphincter muscles that can contract
the feeding arterioles (vasomotion).) The pulmonary system mirrors this sys-
temic circulation, except the pressures are all lower. Figures 8.13, 8.15, and
8.16 show the blood pressure and flow speed at different points in the arterial
tree.

Fig. 8.14. Musculovenous pump of veins, with outward expansion of the bellies of
contracting muscles pumping the blood back to the heart against gravity and distal
valves closing to prevent backflow. (From [408]. Used with permission)
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Fig. 8.15. Simultaneous pressure and flow velocity at different points in the human
arterial tree for a person lying horizontally. All data were taken from one patient
except for the right renal artery and the right common iliac artery. (From [391].
Adapted from [407])

Fig. 8.16. Flow speed (solid curve) and total area (dashed curve) in the systemic
circulation system. (Based on [371])
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Fig. 8.17. Mean arterial and venous (gauge) pressures for a vertical person. (From
[372], after [412]. Used with permission of Oxford University Press)

The pumping cycle sets up a pressure pulse wave in addition to the hydro-
static pressure variation. This pulse wave is independent of the speed of blood
flow – and is faster than this blood flow speed: 4 m/s in the aorta, 8 m/s in
the large arteries, and 16 m/s in the small arteries of young adults.

When you stand upright vertically (Fig. 8.17) there is an additional pres-
sure ρgh, where h is the height relative to the heart. This is approximately
the height in the upper arm where blood pressure measurements are made.
For ρ = 1.06 g/cm3 = 1,060 kg/m3, g = 9.8 m/s2 and h = 1 m, this pressure is
10,400 N/m2 = 10,400 Pa = 79 mmHg (with 1 MPa = 7,600 mmHg). At any
given height, the driving pressure difference from the arteries to the veins
is unchanged. Also, this pressure change is not important when considering
pressure changes between the inside and outside of a vessel because ρgh is
added both inside and outside the vessel.

Still, this effect of gravity can be significant. The blood pressure at the
aorta has to be high enough to pump the blood to the top of your brain. This
distance is about h = 40 cm, so the pressure drop is about 30 mmHg (compared
to the diastolic pressure of ∼80 mmHg). Problems 8.1 and 8.2 explore what
happens to cranial blood circulation in humans in rapidly climbing jets and on
more massive planets with higher g, and also in giraffes. One manifestation of
this effect of gravity is potential fainting when you stand. When you stand up,
the volume of blood in the leg veins increases and the pressure in the veins
pumping blood back to the heart decreases. This can decrease the cardiac
output and the flow of blood to the brain. This rarely happens because there
is a reflex constriction of the veins in the legs (due to a contraction of the
skeletal muscle surrounding the veins, Fig. 8.14) that limits the blood pool
and an arteriolar constriction that increases flow resistance and lessens the
decrease in arterial blood pressure. The effect of gravity on humans – who
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Fig. 8.18. Measuring the mechanical properties of blood vessels by fixing the vessel
(a) length (which is called inflation) or (b) diameter (which is called extension).
Some investigators do combined loading, with combinations of inflation, extension,
and torsion

normally stand upright – also explains why standing on your head for long
periods is not advisable (Problem 8.3). The veins in your head are not designed
to pump blood back to the heart (as are those in the lower body). Also, your
feet would stop getting blood. It also explains why varicose veins are worse
when you stand upright, because blood then needs to be pumped up.

Body control of blood pressure is briefly described in Chap. 13.

Measuring Flow in Blood Vessels

The mechanical properties of blood vessels can be measured under two types
of conditions (1) The length of a given vessel can be kept constant, while
its diameter is measured as a function of the distending pressure. This leads
to a tensile stress on the wall, directed around the circumference, which is
called the circumferential or hoop stress. (2) The diameter of a vessel can be
kept constant, while its length is measured as it is stretched longitudinally.
Examples of both are shown in Fig. 8.18.

The flow of blood in arteries is affected by changes in the heart beat rate
and stroke volume (which is the volume pumped per beat), and also by changes
in the arteries themselves that control their diameters by chemical and neural
mechanisms.

Modeling Flow in Blood Vessels

Figure 8.19 is a schematic describing the flow in a vessel of length L, with a
volumetric flow rate Q1 in and Q2 out. In steady state Q1 = Q2 = Q. At the
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Fig. 8.19. Blood flow: general vessel

beginning of the vessel the pressure is P1 and at the end it is P2. The pressure
outside the vessel is Pext, which can be taken to be 0 when considering gauge
pressure. The volume of the vessel is V . The relation between these various
parameters depends on the properties of the vessels.

There are two physical attributes of blood vessels. (a) They have a resis-
tance to flow, and so they need a pressure difference along the length of the
vessel to drive the blood flow. (b) They have a compliance in response to a
distending pressure. This is much like a balloon expanding when the pressure
inside increases much above that outside.

One special case is a rigid vessel with constant volume V , which is called
a resistance vessel (Fig. 8.20). Equation (7.25) applies to this vessel, so

P1 − P2 = RflowQ (8.2)

or
Q =

1
Rflow

(P1 − P2), (8.3)

where the vascular resistance is Rflow = 8ηL/πr4 for a tube with radius r. The
former equation has the same form as Ohm’s Law Velect,1 − Velect,2 = RelectI,
which relates the drop in voltage, Velect, when a current of charges I traverses
a structure with electrical resistance Relect.

A second special case is an elastic vessel that has no noticeable resistance,
which is called a compliance vessel. There is no pressure drop, so P1 = P2 = P .
One model (Fig. 8.21) of the properties of such a vessel is

V (P ) = Cflow(P − Pext) = CflowP, (8.4)

where Cflow is the compliance and Pext is taken to be 0. Because the vessel
usually has a volume with no pressure, called the dead volume Vd, a better

Fig. 8.20. Blood flow: ideal resistance vessel
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Fig. 8.21. Blood flow: ideal compliance vessel

relation is

V (P ) = Vd + CflowP. (8.5)

Note that a property of the resistance vessel, namely the flow rate, is affected
by the pressure drop along (and inside the vessel), while a property of the
compliance vessel, its volume, is affected by the pressure difference between the
inside and outside of the vessel. We can also describe compliance by changes
in the radius r

r(P ) = rd +
C ′

flow

2
P, (8.6)

where rd is the radius with no pressure difference. Therefore

dr

dP
=

C ′
flow

2
. (8.7)

Because V = πr2 and Vd = πr2
d, these two formulations can be interrelated.

Real vessels have some attributes of both types of vessels. Still, the
aorta, large arteries and large veins are much like compliance vessels. We
will see that the pressure drops along them are relatively small. Arterioles,
capillaries, and venules act like resistance vessels. We will see that they,
and in particular the arterioles, are the main sites of the pressure drop,
and this is the reason why the heart needs to pump blood to such high
pressures.

Pressure Drops in Arteries and Resistive Vessels

We will use Poiseuille’s Law ∆P =
(
8ηL/πr4

)
Q (7.25) to estimate the pres-

sure drop ∆P = P1−P2 across the aorta, large arteries, arterioles, and capillar-
ies, and compare these results to the plot in Fig. 8.13 (also see Fig. 8.15). First
we calculate the resistance Rflow,0 = 8ηL0/πr4

0 for a standard radius r0 = 1 cm
and standard length L0 = 1 cm and scale the results for each specific case.
With the viscosity η = 4.0 × 10−3 Pa-s = 4.0 × 10−3 (N-s/m2) = 4.0 × 10−2
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poise for whole blood at 37◦C

Rflow,0 =
8 × (4.0 × 10−3 N-s/m2)(1 cm)

π(1 cm)4
=

1.02 × 10−2 N/m2

cm3/s
(8.8)

=
1.02 × 10−8 N/mm2

cm3/s
=

7.7 × 10−5 mmHg
cm3/s

, (8.9)

where we have used 0.1 N/mm2 = 1 atm. = 760 mmHg. The units in (8.9) are
mmHg-s/cm3. This is the resistance when the pressure difference is 1 mmHg
and the flow rate is 1 mL/s, and is also known as a PRU, a peripheral resistance
unit. This unit is commonly used in physiology.

The resistance of a vessel of an arbitrary length and radius is

Rflow = Rflow,0
L/L0

(r/r0)4
= Rflow,0

L(in cm)
r(in cm)4

(8.10)

and so

∆P = RflowQ = 7.7 × 10−5 mmHg
L(in cm)
r(in cm)4

Q (in cm3/s). (8.11)

The total flow rate, Qt, from the aorta, enters the large arteries, and the
whole flow from the large arteries enters the arterioles, and finally this whole
flow enters the capillaries. In each level of flow we will model the arteries as
n parallel vessels of roughly equivalent length and diameter carrying roughly
the same flow (Fig. 8.22), where n increases for each successive level of flow.
So in a given level of flow with n vessels, the flow rate in each vessel is
∼Qt/n.

Fig. 8.22. Schematic of blood flow in idealized branching vessels
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With Qt = 80 cm3/s and Q = Qt/n, we get

∆P = 7.7 × 10−5 mmHg
L(in cm)
r(in cm)4

80
n

(8.12)

=
0.0062mmHg

n

L(in cm)
r(in cm)4

. (8.13)

This is the pressure drop across any vessel in a given level of flow and, because
they are in parallel, it is the pressure drop across the entire given level of
arterial flow. We now determine this for the various levels of arteries.

Aorta. There is one aorta (n = 1) with r ∼ 1.25 cm and L ∼ 10 cm, and
so ∆P across the aorta is 0.025 mmHg, which is insignificant.

Largest arteries. There are about 200 large arteries with r ∼ 0.2 cm and
L ∼ 75 cm, and so ∆P is 1.4 mmHg, which is pretty insignificant.

Smallest arteries and arterioles. There are about 5 × 105 arterioles with
r ∼ 30 µm and L ∼ 0.6 cm = 6 mm, and so ∆P is 91 mmHg, which is very
significant.

Capillaries. There are about 1010 capillaries with r ∼ 3.5 µm and L ∼
0.2 cm = 2 mm, and so ∆P is 8.2 mmHg, which is fairly significant.

We could have just plugged the parameters for each vessel directly into
(7.25), without calculating Rflow,0, but our scaling approach does give some
new insight.

These estimates agree with what we would expect from Fig. 8.13. Also,
arterioles and capillaries are seen to be well modeled as resistance vessels.
The aorta and large arteries have very small pressure drops across them, and
behave more like compliance vessels. Veins have larger diameters than the
corresponding arteries, and consequently much lower resistances and pressure
drops across them.

Along any vessel there is obviously a linear pressure drop with distance
x along the vessel. This is seen from Poiseuille’s Law, (7.25), (∆P/L) =(
8η/πr4

)
Q or, recognizing that this change in pressure is negative,

dP

dx
= − 8η

πr4
Q. (8.14)

This represents a “distributed” or “transmission-line” view of blood flow,
in which flow is analyzed per unit length along the vessel, whereas in (8.2)
and (8.11) flow was analyzed with the vessel as a “lumped” parameter (see
Appendix D).

We can study the pressure drop in clogged arteries. There could be a larger
pressure drop for the same Q or a smaller Q for the same pressure drop if r
decreases, as occurs with clogged arteries, or with fewer vessels. This can
stimulate an increase in blood pressure to maintain the flow rate or lead to a
reduction in flow at a given inlet pressure, which is what actually happens in
coronary artery disease.

How can we “optimize” the design of resistive vessels and how such vessels
bifurcate and otherwise branch into smaller vessels (and what does it really
mean to optimize the design)? See Problems 8.28–8.31.
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Radial Profile of Blood Flow

Blood flow in vessels is not uniform. We have implicitly been assuming that
the blood flow is parabolic (Fig. 7.11) because we are modeling blood as a
Newtonian fluid. However, the parabolic profile of blood flow speed in a resis-
tive vessel from (7.40) is not quite accurate. This assumes steady-state flow,
which begins only a certain distance from a bifurcation ((7.41)–(7.43)). This
approach to steady-state flow is depicted for a different initial condition in
Fig. 7.11. Furthermore, because whole blood is not a Newtonian fluid, the
steady-state profile is not parabolic, as is seen in Fig. 7.13.

Properties of a Compliance Vessel

We can show that (8.4) and (8.5) are reasonable models of an elastic compli-
ance vessel and determine the compliance Cflow by examining a thin-walled
cylindrical tube of inner radius r, thickness w, and length L, with a pressure
difference P between the inside and outside of the vessel (Fig. 8.23). The Law
of Laplace for cylinders (7.4) shows that the tension T in the walls of a cylin-
der in equilibrium is rP . We can conceptually slit the vessel along its length
and see that this tension (force per unit length along L) corresponds to a
force per unit area of T/w on the rectangular face with dimensions w and L.
The length of the rectangular solid is 2πr. Let us consider the stress–strain
relation σ = Y ε in the context of this unfolded vessel. The stress is σ = T/w.

Fig. 8.23. Compliance vessels: unfolding the vessel
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The strain is ε = d(2πr)/2πr = dr/r or really dr/r0, where r0 is the radius
with no pressure. The stress–strain relation is

T

w
= Y

dr

r0
(8.15)

or with T = rP

dr

r0
=

T

wY
=

rP

wY
=

r0

w

P

Y
. (8.16)

The internal volume of the vessel is V = πr2L. Therefore we see that dV =
2πr(dr)L and dV/V = 2dr/r = 2(r0/w)(P/Y ). For small changes in volume

V (P ) = Vd

(
1 +

dV

Vd

)
= Vd

(
1 + 2

r0

w

P

Y

)
(8.17)

= Vd + 2Vd
r0

w

P

Y
= Vd + 2(πr2

0L)
r0

wY
P, (8.18)

with Vd = πr2
0L. Using (8.5) the compliance is

Cflow =
2πr3

0L

wY
. (8.19)

How large is this expansion? The pressure in the aorta and large arteries
is 120 mmHg = 0.0158 MPa during systole. The value of Y for such vessels
is about 1 MPa (Table 4.2) and so P/Y = 0.0158 ∼ 1.6%. The thickness of
arterial walls is typically 1/5 of the radius, so r0/w = 5. This means that the
fractional increase in radius of these vessels due to this internal pressure is 8%
and the fractional increase in volume is 16% – both sizeable fractions. Also,
this predicts that the radius changes by ∼3% during each heart beat during
the changes between systolic (120 mmHg) and diastolic (80 mmHg) pressure.
Veins are also compliance vessels.

Distensibility

Such compliance changes are equally well described in terms of the disten-
sibility Dflow of the tube. The cross-sectional area A of a tube increases by
∆A when the pressure difference between the inside and outside of the tube
increases by ∆P . The distensibility is defined as the fractional change in area
for a change in pressure:

Dflow =
∆A/A

∆P
. (8.20)

With A = πr2 and ∆A = 2πr ∆r, we see that ∆A/A = 2∆r/r and using
(8.16),

Dflow =
2∆r/r

∆P
=

2(r/w)(∆P/Y )
∆P

=
2r

wY
=

1
Y (w/d)

, (8.21)

where d = 2r is the diameter, w is the wall thickness, and w/d (%1).
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A more exact analysis relates the Young’s modulus for circumferential
stretch, which we still call Y , to the external and internal diameters de and
di, the change in external diameter ∆de occurring with this change in pressure
difference, and Poisson’s ratio υ [372]. This gives

Y =
∆P

∆de

2ded2
i

d2
e − d2

i

(1 − υ2). (8.22)

For a thin-walled tube with wall thickness w = (de − di)/2 % di, and with
de ∼ d and di ∼ d − 2w, we find

Y =
∆P

∆d

d2

2w
(1 − υ2). (8.23)

With ∆A/A = 2∆d/d

Dflow =
∆A

A

1
∆P

=
2∆d

d

1
∆P

=
(1 − υ2)
Y (w/d)

. (8.24)

This reduces to (8.21) for small Poisson’s ratios.

Flow with Resistance and Compliance

If a vessel is resistive and compliant [405], the change in pressure with distance
is

dP

dx
=

dP

dr

dr

dx
=

2
C ′

flow

dr

dx
, (8.25)

using dP/dr = 2/C ′
flow from (8.7). Setting this equal to dP/dx from (8.14)

and bringing the r terms to the left and the x terms to the right, gives

r4dr = −4C ′
flowη

π
Qdx. (8.26)

After integrating over a vessel length from x = 0 to x = L, we get

(r(x = 0))5 − (r(x = L))5 =
20C ′

flowη

π
QL (8.27)

and after using (8.6)
(

rd +
C ′

flow

2
P (x = 0)

)5

−
(

rd +
C ′

flow

2
P (x = L)

)5

=
20C ′

flowη

π
QL. (8.28)

(See Appendix C.)
Both terms on the left side can be expanded to five terms. The first

terms are both r5
d, which cancel, and for relatively small compliance
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(C ′
flowP/2rd % 1) only the next two of the remaining four terms in each

need to be retained, giving

Q =
πr4

d

8ηL
(P (0) − P (L))

(
1 +

C ′
flow

rd
(P (0) − P (L))

)
. (8.29)

This is Poiseuille’s Law (7.24) with a correction for compliance. So, for a
rigid wall vessel (C ′

flow = 0) the flow rate Q is linear with the pressure drop,
but when compliance is included, the variation with pressure drop is between
linear and quadratic. This relation says that for a given pressure drop, the
flow rate is increased due to the compliant nature of the vessel.

The electrical analog of blood flow is described in Appendix D.

The Strength of Blood Vessel Walls

The pressure inside blood vessel walls P exceeds that outside Pext, by ∆P =
P − Pext. How large of a tension should the vessel walls be able to withstand
to support this positive pressure differential? Chapter 7 showed the answer is
provided by the Law of Laplace for hollow cylinders (7.4). For a cylinder of
radius of curvature R, this tension T is

∆P =
T

R
. (8.30)

Table 8.4 shows that the tension capillaries need to withstand is very small
because of their small radius. This circumferential stress, the tension (force

Table 8.4. Calculated tension in blood vessel walls. (Using data from [382] and
[391])

vessel diameter wall internal wall T/w
(mm) thickness, pressure, tension, (kPa)

w ∆P T
(mm) (mmHg) (dyne/cm)

aorta 24.0 3.0 100 160,000 53
large artery 8.0 1.0 97 52,000 52
medium artery 4.0 0.8 90 24,000 30
small artery 2.0 0.5 75 10,000 20
arteriole 0.3 0.02 60 1,200 60
capillary 0.008 0.001 30 16 16
venule 0.02 0.002 20 27 13
small vein 3.0 0.2 18 3,600 18
medium vein 5.0 0.5 15 5,000 10
large vein 15.0 0.8 10 10,000 12
vena cava 30.0 1.5 10 20,000 13

The wall thickness w is R/5 for arteries and R/10 for veins (where R is the vessel
radius) and 1 µm for capillaries. Also see Table 8.2.
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per tube length) divided by the vessel wall thickness w, is surprisingly similar
for these very different vessels. T/w can be compared to the UTS of such
vessels.

Flow in Curving Arteries

In Chap. 7 we showed that the arterial walls feel a pressure due to the differ-
ence in hydrostatic pressure inside and outside the vessel. This pressure is felt
equally around the wall. When blood flows in an artery that curves, a force
equal to the centripetal force is felt on the arterial wall on the outer surface of
the curve to change the direction (but not the magnitude) of the momentum
vector of blood flow. How large is this force? Is it comparable to the uniform
hydrostatic pressure? Does it constitute a significant extra load on the arterial
wall?

For an artery of internal radius R that is turning with a radius R
(Fig. 7.16), with blood of density ρ and average flow speed u, (7.44), this
peak pressure is

Pcent = 2ρu2 R

R . (8.31)

This is largest for the fastest blood flow, which is in the aorta. Using
ρ = 1 g/cm3, R = 1.25 cm, R = 2 cm, and u = 100 cm/s, we find Pcent =
4.7 mmHg. This ∼5 mmHg is the extra pressure that must be supplied by the
outer aorta wall to turn the blood around the aortic arch. This is small com-
pared to the typical average aorta pressure of 100 mmHg, and does not likely
promote pathological conditions such as aneurysms.

8.2.3 Capillaries and Osmotic Pressure

The purpose of systemic circulation is to supply blood to the capillary bed.
We have seen that pressure is needed to bring the blood to the capillaries.
There is diffusion and bulk flow between the blood in the capillaries and the
interstitial fluid. Diffusion across the capillary wall transports oxygen, which is
carried in red blood cells, and carbon dioxide, which is dissolved in the blood.
(Not enough oxygen can be directly dissolved in the blood for our metabolic
needs.) In the systemic capillaries there is net diffusion of oxygen out of the
capillaries and carbon dioxide into them. In the pulmonary capillaries there
is net diffusion of oxygen into the capillaries and carbon dioxide out of them.
There is also bulk flow of fluid across the capillary walls due to the net pressure
across the walls.

There are two forces driving this bulk transport: the force/area mechan-
ical pressure P we have been discussing, which we will call hydrostatic pres-
sure in this section, and a chemical driving force, called osmotic pressure,
Π. The osmotic pressure characterizes the flow across a semipermeable mem-
brane that occurs to equalize the concentrations of solutes on either side of



8.2 Physics of the Circulation System 471

the wall. This drives species that can permeate across the membrane, such
as water, across it from the side of low concentration of solute to the side of
high concentration. For low concentrations, the osmotic pressure is given by
the van’t Hoff equation

Π = nsRT, (8.32)

where ns is the density (or concentration) of the solute in solution in moles
per unit volume. This looks deceptively similar to the ideal gas law (7.2). It is
the difference in the sum of these on either side of the capillary walls, P + Π,
that drives the net transport across these walls.

As seen in Fig. 8.24, the hydrostatic force in the capillary is always greater
inside the vessel than outside, and it decreases from about 36 mmHg at the
arteriole side to 15 mmHg at the venule end because of viscosity. If this were

Fig. 8.24. Osmotic pressure in a capillary. (Based on [417])
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the only driving force, there would be a large net flow of fluid from inside
the capillary to the interstitial fluid! Small molecules, such as oxygen and car-
bon dioxide, are able to diffuse across the capillary wall, but larger molecules,
such as proteins, cannot. Because there is a much higher density of proteins
in the blood than in the interstitial fluid, there is a chemical driving force of
fluid into the capillary to try to equalize these densities. This leads to a net
osmotic pressure of about 25 mmHg into the capillary. In Fig. 8.24, the net
pressure is 36 mmHg − 25 mmHg = 11 mmHg outward at the arteriole end
and 15 mmHg − 25 mmHg = −10 mmHg inward at the venule end. Therefore,
there is net flow out of the capillary in the arteriole end and net flow into the
capillary in the venule end. There is a small imbalance in this and a small net
bulk flow out of the capillary.

We have assumed that the flow in all blood vessels, including the cap-
illaries, is laminar. This cannot be really true for capillaries because many
capillaries have an inner diameter of 5 or 6 µm and the red blood cells have
a diameter of about 7.5 µm. The red blood cells deform to pass through the
capillary and the resulting flow is called bolus flow. The red blood cells form
plugs and the blood plasma is trapped in the regions between these plugs and
moves in streamlines. Nowhere else in the body is the multicomponent nature
of blood more apparent.

One major function of this capillary blood flow is the transfer of oxygen
to the cells, leaving oxygen-depleted blood in the veins. As in (6.18), the rate
of body consumption of O2, dVO2/dt equals the product of the cardiac output
Qt (see below) and the difference in the oxygen partial pressure in the arteries
and veins, pa − pv

dVO2

dt
= Qt(pa − pv). (8.33)

If the lungs are bringing in air fast enough, then pa − pv is fixed, and during
aerobic exercise dVO2/dt increases linearly with Qt. For a person with average
fitness, the maximum blood flow rate is ≈19 L/min, for a highly fit person it
is ≈25 L/min, and for an elite athlete it can be 35 L/min.

Oxygen combines with hemoglobin in the red blood cells in the lungs
where the partial pressure of oxygen is high, about 100 mmHg. It is trans-
ported in the arteries to the tissues where it is released because the partial
pressure of oxygen is low – and it is then used. The blood in the veins is
then depleted in oxygen. Figure 8.25a shows the hemoglobin–oxygen disso-
ciation curve. Clearly, hemoglobin is over 90% saturated with O2 for partial
pressures above 60 mmHg O2. Increased CO2 levels, increased temperature,
and decreased pH all shift this curve to the right (Fig. 8.25b), which improves
body performance. In Fig. 8.25a the dissociation curve for the lung is seen to
be to the left of that in the tissues because the pH is higher and the CO2 level
is lower in the lung, increasing oxygen binding in the lungs relative to that
in the tissues. During exercise, the muscle tissue pH falls and the local par-
tial pressure of CO2 and the local temperature increase. All of these changes
move the curve to the right and this leads to more oxygen release (Fig. 8.25b).
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Fig. 8.25. (a) Hemoglobin–oxygen equilibrium in the lungs and tissue. During
exercise oxygen intake is improved by the lung curve moving to the left and the
tissue curve (exercising muscle) moving to the right due to increasing temperature,
CO2 partial pressure, and 2,3-diphosphoglycerate (DPG) (an end-product of red
blood cell metabolism), and decreasing pH. (b) The hemoglobin–oxygen equilibrium
shifts to the right with increasing temperature, increasing CO2 partial pressure, and
increasing DPG (not shown), and decreasing pH. (Based on [411] and [419])

During exercise pa − pv increases from the resting value of about 50 mL of
oxygen per L of blood to 150 mL/L in normal people at (dVO2/dt)max (and to
160–170 mL/L in very fit people), in part because blood flow is being diverted
from the organs to the muscles, where oxygen extraction is higher because of
the exercise (see Fig. 8.25).

8.2.4 Blood Flow Rates and Speeds

The heart pumps about 80 mL (= 80 cm3) of blood per contraction; this quan-
tity is called the stroke volume Vstroke. The pump rate is the heart beat rate
F of about 60/min or 1/s = 1 Hz. The cardiac output or total volumetric flow
rate Qt is the product of these two

Qt = FVstroke (8.34)

or about 80 cm3/s = 4.8 L/min. The total volume of blood is about 4.5–5.0 L,
so all the blood is pumped throughout the body every minute. The flow rate in
the arteries, arterioles, capillaries, venules, and veins are all the same because
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of the continuity of flow. (Qt is actually a little less in the venules and veins
because of the net fluid loss in the capillaries.)

The total flow in each of these vessel systems, Qt, equals the total cross-
sectional area A times the blood speed u, Qt = Au. The parameters A and
u are plotted in Fig. 8.16, which shows this inverse relationship for a flow
rate of 90 cm3/s. The cross-sectional area of the aorta is 3 cm2, so in the
aorta u = (90 cm3/s)/3 cm2 = 30 cm/s. In the capillaries the flow speed is
much slower, (90 cm3/s)/4,000 cm2 = 0.02 cm/s = 0.2 mm/s. The net cross-
sectional area in the capillaries is larger (∼4,000 cm2) even though they are
very small (∼3.5 µm in radius) because there are so many of them (∼1010). In
the vena cava the flow speed is relatively fast (90 cm3/s)/18 cm2 = 5 cm/s. In
the arterial and venous systems, the smaller the vessel radius, the larger the
total cross-section of all vessels in that order and the slower the blood speed.
These are actually average blood flows during each cycle.

The maximum Reynolds number (Re = ρud/η, (7.11)) over a cardiac cycle
ranges from ∼6,000 in the heart and aorta to <10−3 in the capillaries. The
nominal lower threshold for turbulent flow is Re ∼ 2, 000, so it is possible that
flow in the aorta is turbulent.

The overall flow in the systemic arterial system can be described by relating
the total cardiac output Qt to the systemic arterial pressure Psa, by

Psa = (TPVR)Qt, (8.35)

where TPVR is the total peripheral vascular resistance – which is due to the
combined effect of all the organ beds of systemic circulation (mostly arteri-
oles and capillaries). (Psa should really be replaced by the pressure drop in the
system. See Problem 8.20.) Normal values for the systemic system range from
700 to 1,600 dyne-s/cm5, and analogous normal values for the pulmonary sys-
tem range from 20 to 130 dyne-s/cm5. Equation (8.2) applies to an individual
vessel, while this describes the entire systemic system. The body regulates Psa

by controlling the cardiac output and this peripheral resistance. When we lie
down, a large volume of blood is transiently stored in the lower extremities
and abdomen, and so when we stand there is initially less flow of blood to the
heart and a drop in blood pressure, which can make you faint. Even though
Qt decreases, Psa drops only mildly because there is a prompt reflex that in-
creases the TPVR (vasoconstriction). In contrast, when blood pressure rises
suddenly, feedback tends to decrease the overall vascular resistance, to restore
a lower blood pressure. These are two examples of body feedback and control,
as described in Chap. 13.

We can also evaluate the overall compliances of the vascular systems, such
as those of the systemic arterial and venous systems. The compliance is the
reciprocal of the slope of a pressure–volume curve in Fig. 8.26. The smooth
muscles surrounding a large vessel can change the volume of the vessel at a
given pressure, either decreasing it (by stimulating the muscles) or increasing
it (by inhibiting the muscles).
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Fig. 8.26. Volume–pressure curves for the systemic arterial and venous systems, for
normal conditions and for sympathetic stimulation and inhibition. (Based on [390])

During even moderate exercise the blood flow rate increases substantially,
as seen in Fig. 8.27, and the absolute and relative distribution of blood to dif-
ferent parts of the body also changes radically. Figure 8.28 shows an example
in which the flow rate increases from 5 to 12.5 L/min during exercise. There
are extremely large increases of blood flowing to the skeletal muscle to sup-
ply oxygen for aerobic metabolism (up 1,066%), to the heart so it can pump
faster (up 367%), and to the skin (up 370%) to assist cooling (which increases

Fig. 8.27. Variation in cardiac output (and cardiac index) and oxygen consumption
needed during varying levels of exercise with work output. (The cardiac index is the
cardiac output divided by the person’s surface area.) (Based on [389] and [390])
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Fig. 8.28. Blood flow to different organs at rest and during moderate exercise,
showing no change to the brain, increases to the skin, heart, and skeletal muscles
(thick arrows), and less blood flow elsewhere (dashed arrows). (Based on [417])

the skin temperature, thus accelerating radiative and convection conduction
from the body). Blood flow to the brain is unchanged. In contrast, blood flow
to the digestive track, liver, and kidneys decrease by a factor of ∼2. These
changes are also seen in Tables 8.5 and 8.6. Figure 8.29 shows that the blood
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Table 8.5. Total cardiac flow (mL/min) for organs during exercise, including per-
centage of total flow. (Using data from [381])

organ rest light exercise heavy exercise maximal exercise

brain 750 (13%) 750 (8%) 750 (4%) 750 (3%)
heart 250 (4%) 350 (3.5%) 750 (4%) 1,000 (4%)
muscle 1,200 (21%) 4,500 (47%) 12,500 (72%) 22,000 (88%)
skin 500 (8.5%) 1,500 (16%) 1,900 (11%) 600 (2.5%)
kidney 1,100 (19%) 900 (9.5%) 600 (3.5%) 250 (1%)
abdomen 1,400 (24%) 1,100 (11.5%) 600 (3.5%) 300 (1.2%)
other 600 (10.5%) 400 (4%) 400 (2%) 100 (0.4%)

Total 5,800 (100%) 9,500 (100%) 17,500 (100%) 25,000 (100%)

flow to the calf during rhythmic exercise is higher than normal and it varies
with time.

This increase in cardiac output occurs because of increases in both the
heart rate and the stroke volume; the blood speed also increases because
Qt = Au. The faster the heart rate, the shorter is diastole, while the duration
of systole does not change. For short term (5–10 min) submaximal exercise, the
cardiac output increases from 5 L/min to a new steady-state value in about
2 min. For a steady-state cardiac output of 18 L/min, the stroke volume
increases from about 70 to 120 mL/beat and the heart rate F from about

Table 8.6. Approximate blood flow (perfusion) for tissues and organs, per gram.
(Using data from [382])

tissue type location or organ specific blood flow rate
(mm3/s-g)

adipose tissue abdomen, ∼20 mm thick 0.51
abdomen, >40 mm thick 0.31
thigh, ∼20 mm thick 0.33

bone humerus, marrow flow only 0.055

connective tissue typical basal (max) 0.50 (2.5)

muscle typical basal (max) 0.50 (10)

organ brain, basal (max) 9.1 (18.3)
gastrointestinal track, basal (max) 6.7 (26.7)
heart, basal (max) 13.7 (64.0)
kidney, basal (max) 68 (100)
liver, basal (max) 12 (54)
lung, basal (max) 90 (490)

skin typical resting flow (max) 1.7 (25.0)

In some cases the basal rate is given, along with the maximum rate in parentheses.
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Fig. 8.29. Blood flow to the calf during rhythmic contraction exercises, showing
less blood flow during contractions than between them. (Based on [366] and [390])

70 to 150 beats/min. The cardiac output returns to the resting value in 5–10
min after exercise.

For a longer submaximal workout (30–60 min), the new steady-state car-
diac output is maintained, but the stroke volume slowly decreases and the
heart rate gradually increases with time, particularly in warmer environments.
This cardiovascular drift is caused by a decrease in the venous return of blood
to the heart, which decreases the stroke volume and so the heart rate must
increase to maintain the same cardiac output. This decrease in venous return
is caused by two factors. (1) During such exercise more blood flows under the
skin to help lower the increase in body core temperature caused by the in-
creased metabolic activity (Chap. 6), and this lowers the steady-state flow of
blood back. (2) During exercise water flows from the blood to the surrounding
cells and tissues because of increased arterial pressure and the compression of
venules due to muscle action. This produces a steady-state decrease in blood
plasma and blood volume, and a steady-state decrease in blood returning to
the heart and the stroke volume.

Stroke volume and cardiac output are determined by the preload and af-
terload conditions (see later), contractility (ability to contract), and heart
rate. The cardiac output is not directly regulated, but there is a feedback and
control system that regulates arterial pressure that affects the heart rate and
contractility, as well as afterload and other factors that control the preload
[415].

The Frank–Starling mechanism (or Starling’s Law of the heart) states that
the larger the end-of-diastole volume or pressure (the preload), the larger
the stroke volume, as is seen in Fig. 8.30. Furthermore, the larger the aor-
tic pressure, the less blood can be ejected by the left ventricle (the after-
load), as is seen in Fig. 8.31. An increase in the heart rate also increases
cardiac output, however, the increase is sublinear because the stroke volume
decreases (Fig. 8.32) due to the above preload and postload factors. With
greater cardiac output there is less blood in the veins to return to the heart
for diastole (lower preload) and the arterial pressure is higher so the heart
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Fig. 8.30. The stroke volume increases with diastolic volume and pressure, as seen
with data for four heart beats. This dependence, along with the explanation of
it, is known as the Frank–Starling mechanism. (Reprinted from [415]. Used with
permission of Elsevier)

Fig. 8.31. The left ventricular output (the cardiac output) vs. left atrial pressure
for different aortic pressures. It increases with this atrial pressure and then levels
off, and decreases with increasing aortic pressure. (Reprinted from [415]. Used with
permission of Elsevier; adapted from [413])
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Fig. 8.32. Typical dependence of cardiac output and stroke volume on heart rate.
(Reprinted from [415]. Used with permission of Elsevier)

can eject less blood (higher afterload), assuming the peripheral resistance is
constant.

For the most part, these are changes in the systemic system. Similar in-
creases in cardiac output have to occur in the pulmonary system. (Why?)
This occurs by an increase in the number of open capillaries in the lung, by
up to a factor of three, and by a distending of all the pulmonary capillaries,
which increases the flow in each capillary by up to a factor of two, with very
little change in the pulmonary arterial pressure (Fig. 8.33).

The maximum heart rate Fmax (in beats/min) depends on age Y (in years)
as

Fmax = 220 − Y. (8.36)

The standard error in this relation is ±10 beats/min, which means 67% of
people have a maximum rate ±10 beats/min within the value predicted by

Fig. 8.33. The pulmonary arterial pressure vs. cardiac pressure, showing it does
not change much during exercise. (Based on [390])
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this relation and 95% of all people have a rate that is ±20 beats/min within
the predicted value. Because F does not depend on the level of fitness, athletes
increase their maximum cardiac output by increasing their stroke volumes.
Stroke volumes in untrained athletes are 50–70 mL at rest and reach 80–
110 mL during heavy activity. For trained and highly trained athletes these
stroke volumes increase to 70–90 mL and 90–110 mL at rest and 110–150 mL
and 150–220 mL during heavy activity.

In steady state, the cardiac output Qt must equal FVstroke (8.34), as well
as Psa/TPVR (8.35). During heavy exercise, Qt increases from 5 to 20 L/min,
so not only must F and Vstroke increase, as we have described, but Psa/TPVR
must increase accordingly. Diastolic pressure changes little during exercise,
remaining within ±10 mmHg of the resting value. The systolic pressure in-
creases to about 200 mmHg for men and 180 mmHg for women. Using (8.1),
the mean arterial pressure then increases only to 140–150 mmHg, which can-
not account for most of the increase in blood flow rate. During heavy exercise
the systemic vascular resistance TPVR decreases to about 40% of its resting
value because of the widening of muscular vascular beds that are normally
constricted at low levels of activity.

Figure 8.34 show that blood pressure typically increases with age. Hy-
pertension begins with systolic pressure ≥140 mmHg or diastolic pressure
≥90 mmHg. In essential hypertension this blood pressure is heightened for
no obvious reason. The average blood pressure is the product of the total pe-
ripheral vascular resistance and the cardiac output, Psa = (TPVR)Qt (8.35).
In people under 40 years of age, hypertension is driven by increased cardiac
output, with normal TPVR. In older people, the cardiac output is normal or
reduced, but the TPVR is high.

Fig. 8.34. Systolic and diastolic blood pressure is shown for males and females,
averaged over age groups. The trend is to increased blood pressure with age. (Based
on [400] and [403])
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Fig. 8.35. Cardiac output and arterial pressure with decreased blood volume from
hemorrhaging. (Based on [390])

Circulatory shock occurs when there is too little blood flowing generally
in the body, and this results in tissue damaged from the inadequate delivery
of oxygen and nutrients to the cells and the inadequate removal of waste
products. Such shock can occur from inadequate pumping of blood by the
heart or by inadequate venous return of blood to the heart, such as due
to diminished blood volume (hypovolemia), decreased capillary vasomotion,
or obstructed circulation. Hemorrhage is often the cause of the diminished
blood volume. Figure 8.35 shows that cardiac output and arterial pressure
can withstand a ∼10% blood loss – if this were not so you would not be
able to donate blood – but decrease for larger losses and approach zero with
35–45% blood loss. The localized loss of blood flow to the brain, strokes, is
discussed later. This occurs due to clogged arteries and hemorrhaging. The
localized loss of blood flow to the heart results in a myocardial infarction
(heart attack).

8.2.5 Consequences of Clogged Arteries

Atherosclerosis (a-thear-oh’-scler-oh-sis) occurs when a deposit or atheroma
(a-thear-oh’-ma) (or plaque) forms on an arterial wall (Fig. 8.36). The smaller

Fig. 8.36. Sketch of flow in a clogged artery
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Fig. 8.37. The flow is partially turbulent in clogged arteries. (From [382]. Adapted
from [398]. Courtesy of Robert A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://
www.nanomedicine.com)

cross-sectional area at this site, because A2/A1 < 1, leads to a faster flow
speed due to continuity of flow, with

u2 =
A1

A2
u1 (8.37)

from (7.16). For A2/A1 = 1/3, we find that u2 = 3u1. Also from Bernoulli’s
equation (7.18) we find that

P2 − P1 =
1
2
ρu2

1

(
1 −

(
A1

A2

)2
)

(8.38)

and so P2 < P1 and for A2/A1 = 1/3 we see that P2 − P1 = −4ρu2
1. This

pressure drop increases with blood speed and so it is expected to increase with
increased physical activity. This flow is not necessary laminar in the occluded
region, as is seen in Fig. 8.37.

In 1954 Arturo Toscanini was conducting the NBC Symphony Orchestra.
(This orchestra was pretty prestigious then, performing on radio and the then-
new television, but it does not exist now.) He was vigorously waving his arms,
as conductors often do, and he fainted. Why? Equation (8.38) contains the
answer and Fig. 8.38 illustrates why. He suffered a transient ischemic attack,
or TIA [387, 399]. Ischemia (iss-kee’-mee-uh) is the local decrease in blood
flow. TIA is the temporary loss of blood to the brain by the “subclavian steal
syndrome.” It results in temporary dizziness, double vision, headache, and
weakness in the limbs. By its nature it is only temporary, but it indicates a
more severe problem.

The left and right carotid arteries are two major arteries supplying blood
to the anterior brain. The left and right vertebral arteries supply blood to the
posterior part of the brain. They branch off from the subclavian arteries that
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Fig. 8.38. Anterior view of the blood flow to the brain with the subclavian steal
syndrome, resulting in a transient ischemic attack. Blood flow in the left vertebral
artery is shown by the unbroken line arrow. Without the constriction, the blood flow
in the right vertebral artery is normal, as shown by the dashed arrow, so there is
normal blood flow to the basilar artery. With the constriction, there can be blood
flow from the left vertebral artery to the right vertebral artery (dotted arrow), and
there is no blood flow into the basilar artery. (Based on [387])

also supply blood to the arms. The internal carotid and vertebral systems join
with each other at the base of the brain, forming the circle of Willis (Fig. 8.39,
also see Fig. 8.43). Posteriorly, the flow in the left and right vertebral arteries
merge to form a single basilar artery to the brain.

Say there is a constriction in the right subclavian artery near where the
vertebral artery branches off (Fig. 8.38). The pressure before the constriction

Fig. 8.39. Circle of Willis in the brain. (From [391])
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and in the same region in the normal right side is P1. Because of the con-
striction, the pressure on the left side is P2 < P1. This difference increases
with faster blood flow. With vigorous motion of the arms, there is a need for
greater blood flow in the subclavian arteries to supply more oxygen to the
skeletal muscle in the shoulder and arms, and the blood speed in these arter-
ies u1 increases. If u1 increases enough, P2 becomes so much smaller than P1

that flow in the left vertebral artery is diverted to the right vertebral artery –
and does not flow to the basilar artery to the brain. When this happened to
Toscanini, he fainted. He stopped waving his hands, of course. Blood flow to
his arms then slowed down. The difference in P1 and P2 decreased to its usual
smaller value (even with this constriction). Blood from both vertebral arteries
then flowed to his basilar artery. His brain started receiving a normal flow of
blood again, and he regained consciousness. All was fine – but this constric-
tion had to be removed. (Toscanini never conducted again. The underlying
reason for his fainting spell was not known in 1954; TIA was first explained in
1961.)

More examples of the effects of obstructions in arteries will be examined
later in this chapter.

8.2.6 Work Done by the Heart and the Metabolic Needs of
the Heart

How much work is done by the heart? Consider the left ventricle, which is a
pump during systole, as diagrammed in Fig. 8.40.

Fig. 8.40. (a) Schematic of the heart left ventricle as a pump, (b) and the pres-
sure and volume of the left ventricle during systolic contraction during systole
(from t1 to t2), showing the work done by the heart (shaded area). (Based on
[367])
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Work is done by this pump, with a force pushing the piston from the initial
to final positions Li to Lf to give

W =
∫ Lf

Li

F dL =
∫ Lf

Li

(F/A)(AdL) =
∫ Vf

Vi

P dV, (8.39)

where the force/area is the pressure, P , and the distance times the area is the
ventricular volume, V . During systole the ventricular pressure increases from
a very low value (that in the left atrium), to Pdiastole ∼ 80 mmHg (at time t1),
and then up to Psystole ∼ 120 mmHg, and it stays at this value until the end of
systole (at time t2). The aortic valve first opens when this pressure rises above
Pdiastole (at t1), and blood is pumped out until systole is over (at t2). At t1,
the volume of pumped blood is Ωi = 0 and at t2 it is Ωf = Vi−Vf . Figure 8.40
shows this evolution of the ventricular pressure and pumped volume from t1
to t2.

The area under this curve is the work done and so W = PavVstroke, where
Pav is average pressure during this cycle (averaged over the volume displaced
and which does not necessarily scale linearly with time), and Vstroke = Ωf , the
stroke volume. Clearly, Pdiastole < Pav < Psystole. For a linear variation, we
see that Pav = (Pdiastole + Psystole)/2 ∼ 100 mmHg = 1.3 × 104 N/m2. (This
averaging is different from that in (8.1) because of the simplicity of this model.
This leads to an ∼20% uncertainty.) We take Vstroke = 80 cm3 = 8× 10−5 m3,
so W = (1.3×104 N/m2)(8×10−5 m3) = 1.04 J per cycle. With a heart rate of
60/min = 1/s, the rate the left ventricle does work is Ppower,mech,av = (1.04 J
per cycle)(1 cycle/s) = 1.04 W.

The efficiency, ε, of converting metabolic energy into this mechanical work
is approximately 20% (and sometimes this range is given as 12–30%), and
so the metabolic power needed to run the left ventricle is Ppower,metab,av =
Ppower,mech,av/ε = 5 W.

The heart pumps for about 1/3 of the cardiac cycle and rests for the other
2/3 of the time. Therefore the peak powers are higher than these average
values by a factor of 3, with Ppower,mech,peak = 1.5 W and Ppower,metab,peak =
15 W.

The energy consumed to run the left ventricle is (86,400 s/day)(5 W) =
4.32 × 105 J/day = 104 kcal/day. So far we examined the work done by only
the left ventricle. The right ventricle pumps the same volume per cardiac cycle
(to maintain the steady-state flow throughout), but at a pressure 1/5 times
that of left ventricle, so the work and all of these powers are smaller by a
factor of five. This increases the required metabolic power by 20%. Similarly,
the pressures for the two atria are also relatively very small. Overall, with
20% muscle efficiency we expect to need ∼125 kcal/day to run the heart; with
10% muscle efficiency it would be ∼250 kcal/day.

The experimental value for the BMR contribution for the entire heart
is ∼117 kcal/day (Table 6.17), which is close to our estimate. The biggest
uncertainty here is the efficiency of the cardiac muscle.
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What happens with strenuous exercise? The blood pressure can increase
by 50% and the blood flow rate can increase by a factor of 5. Therefore, the
mechanical power exerted by the heart and the associated metabolic require-
ments can increase by a factor of 7.5.

8.3 Strokes and Aneurysms

Cerebral blood flows from the internal carotid and vertebral arteries and
through the circle of Willis at the base of the brain (Fig. 8.39), and then
permeates the brain through a complex series of capillaries.

Any severe restriction of blood to the brain is called a stroke [391, 393].
Ischemia means there is a lack of blood flow. The nearby tissue becomes defi-
cient in oxygen and metabolites, and has excessive metabolic waste products.
(We saw an example of ischemia earlier this chapter with the Toscanini TIA.
Because TIA is transient, there is an oxygen deficiency due to the stroke
but the patient can still recover with little or no brain damage.) Hypoxia
means a lack of oxygen, and it can result from ischemia or other causes, such
as high altitude (see Chap. 9) or CO poisoning. Infarction means that the
stroke causes permanent brain damage. (The terms ischemia and infarction
are actually more general and also apply to tissues outside the brain, with a
myocardial infarction in the heart as one example.) The transition from the
reversible event to the irreversible infarct with the formation of necrotic tissue
occurs when the stroke is particularly long or of particularly large magnitude.
(Necrotic tissue is dead tissue that did not die in a manner programmed by
the body, which is in contrast to apoptotic tissue which the body kills as part
of the life cycle.) The occurrence of a transient ischemic attack, or ministroke,
sometimes means a more damaging stroke is imminent.

Hemorrhagic strokes are due to a ruptured vasculature (blood vessels)
within the brain, attributed to an aneurysm or weakened blood vessel
(Fig. 8.41). An aneurysm is an enlarged blood vessel. In addition to the loss

Fig. 8.41. Fusiform and saccular/berry aneurysms, the latter in a vessel and for
bifurcated flow
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of blood to the targeted regions, during hemorrhages blood fills the surround-
ing spaces and compresses the surrounding tissues. This accumulating blood
compresses other blood vessels, decreasing their diameters and reducing the
flow of blood to other parts of the brain, and increases the intracranial pres-
sure, which leads to neurological complications. About 20% of all strokes are
hemorrhagic; they occur mostly in the young and middle-aged, due to vas-
cular lesions such as arteriovenous malformations and aneurysms. (Lesions
are entities of diseased or abnormal tissue.) In the elderly, blood vessels are
brittle and less distensible due to atherosclerotic deposits, and this can lead
to possible spontaneous rupture of these vessels in the brain and hemorrhagic
stroke. In atherosclerosis (“hardening of the arteries”) lipid or fatty deposits
in the blood accumulate on the inner vessel wall and eventually form hard
arterial plaques.

During an ischemic stroke there is cessation of blood flow in arteries trans-
porting blood to the brain due to a luminal obstruction or clogging. (As al-
luded to earlier, the lumen is the opening of a blood vessel.) About 80% of all
strokes are ischemic. An embolus is a gaseous (air bubble), particulate matter,
or blood clot that travels within a blood vessel and causes the obstruction of
blood flow. For example, artherosclerotic lesions (in the brain and elsewhere in
the body) cause an irregular inner vessel surface and blood platelet aggrega-
tion due to turbulence, that can produce emboli that are platelet aggregates.
Such emboli can be formed outside the brain, in the heart, lungs, and sys-
temic circulation, and travel to the brain until they reach vessels too small for
further travel; this prevents blood flow to more distal (downstream) regions
in the brain. A thrombus is blood coagulation that can produce a local fibrin
clot; this can also cause an ischemic stroke. (If the thrombus forms and moves
elsewhere, such as to a smaller diameter vessel or a partially occluded vessel,
it is an embolus.)

The majority of cerebral aneurysms are saccular (or berry) aneurysms
that most often occur where large cerebral arteries bifurcate (Figs. 8.42 and
8.43). In fusiform aneurysms there is uniform ballooning of the circumfer-
ence of the vessel walls, instead of in localized regions of the vessels as in
saccular aneurysms; this leads to ellipsoidal or football shaped aneurysms.
(Fusiform means tapering at each end. Here it indicates a cylindrically sym-
metric aneurysm that tapers to the normal vessel at either end, while for the
fusiform muscles in Chap. 5 it indicates a cylindrically symmetric muscle that
tapers to tendons on each end.) Fusiform aneurysms are less common in the
brain than are saccular aneurysms, but are common elsewhere in the body.
The abdominal aortic aneurysm, which develops along the aorta in the ab-
dominal or gut region, is the most common aneurysm found in the body and
is a fusiform aneurysm (Fig. 8.44).

Healthy arteries contain the structural proteins elastin and collagen. Col-
lagen has the larger Young’s modulus (Table 4.2) and is expected to dominate
the elastic properties of arteries. Still, the elastin contributes to the distensi-
bility of the artery. The resistance to stretching at low pressures seems to be
due to the elastin fibers, at normal physiological pressures it is due to elastin
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Fig. 8.42. Saccular (berry) aneurysm at an apex of a branching vessel, showing an
angiographic projectional image (top) and a model (bottom). (From [391])

Fig. 8.43. Photograph of an inferior view of an excised human circle of Willis.
Bilateral (i.e., on both sides) saccular aneurysms are seen near the junction between
the internal carotid artery and the circle; the larger lesion (the one on the left side
of the photograph) had ruptured. (From [395])
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Fig. 8.44. Schematic of an abdominal aortic aneurysm, showing an attenuated
media and an intraluminal thrombus. (From [395])

and collagen fibers, and at even higher pressures it is due to collagen. When
the artery wall balloons or sacculates (i.e., it balloons in one circumferential
part of the wall) as the aneurysm develops, the elastin becomes less effective
in maintaining structural integrity of the artery and the collagen takes on
most of the load. (The artery becomes less distensible and this translates to
greater stress for the same strain, thereby accelerating structural fatigue.)
This process accelerates the load on the arterial wall, and leads to rupture.
A possible scenario for the formation and rupture of a saccular aneurysm is
shown in Fig. 8.45. Figure 8.46 shows the equilibrium circumferential tension
for a vessel assuming the Law of Laplace, for a normal artery, and one with
an aneurysm. Figure 7.11 shows that the maximum blood flow velocity is in
the center, where the wall shear stress is minimum. The minimum blood flow
velocity is near the wall, where the wall shear stress is maximum.

Fig. 8.45. A possible natural history for the development of a saccular aneurysm.
A local weakening of the vessel wall, leading to a mild dilatation, can be caused by
an initial “insult” from one of several causes. (From [395])
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Fig. 8.46. Circumferential tension needed for equilibrium as a function of vessel ra-
dius, assuming the Law of Laplace, a normal artery, and an artery with an aneurysm.
(From [391, 392])

There are (at least) four physical reasons why the larger radius of a
fusiform aneurysm can lead to rupture. All are related to the stress rela-
tion T/w = r(∆P )/w, where w = wall thickness and r is local vessel radius.
(1) r is larger so more tension is needed to withstand even an unchanged
pressure difference (because T = r(∆P )). (2) This increase in vessel radius
can be accompanied by thinning walls (if the volume of vessel wall per unit
length, ∼ 2πrw, is relatively unchanged by the aneurysm), so the stress T/w
increases even more. (3) With this wall thinning there may be damage that
lowers the UTS locally, and the UTS needs to be (T/w to avoid rupture.
(4) A larger r, and the concomitant larger cross-sectional area A, leads to a
slower blood speed u, through volumetric continuity (7.16). This in turn leads
to a larger pressure P , through Bernoulli’s equation (7.18). This increases the
tension that the vessel must withstand. The magnitudes of several of these
effects are evaluated in Problem 8.32.

8.3.1 Arterial Bifurcations and Saccular Aneurysms

Two of the reasons for the formation of saccular aneurysms are the forces
on the arterial walls caused by the change of momentum (like the fire hose
effect in curving arteries) and shear stress. Figure 8.47 depicts a “parent”
artery with cross-sectional area A1 in which blood flows at an average speed
u1, which divides into two “daughter” vessels at an angle θ to the parent
(and 2θ to each other). (The half-angle is shown as θ2 in the figure.) Each
daughter vessel has cross-sectional area A2 and blood speed u2. The angle
2θ usually ranges from 30 to 120◦ (also see Problems 8.28–8.31). The apex
of the bifurcation (Fig. 8.47) is the site of maximum stress due to the im-
pact, deflection, and separation of the flow, and possible turbulence and vor-
tex formation (Fig. 8.48). Conservation of flow rate Q (volume flow/time)
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Fig. 8.47. Diagram of asymmetric bifurcation in vessel, with bifurcation angle
θ2a +θ2b. For the symmetric bifurcation described in the text the “a” and “b” labels
can be ignored, and the half-angle is called θ. (See Problems 8.28–8.31)

means
Q = u1A1 = 2u2A2. (8.40)

In these vessels, usually 2A2 > A1, so u2 < u1.
How large is the force on the arterial wall at the apex? The linear momen-

tum per unit volume of blood in the parent artery (which we will say is in
the x direction) is ρu1, where ρ is the blood mass density. The momentum
per unit volume carried in each daughter artery is ρu2, of which ρu2 cos θ is
along the x direction. This change in momentum causes a force on the arterial
wall. The force this flow exerts on an imaginary screen across the vessel in
the parent artery is the change of this momentum per unit time, which equals
this linear momentum per unit volume × the flow rate

Fz,parent = ρu1Q. (8.41)

Because the flow rate in each vessel is Q/2 and there are two of them, the
force of the flow in the daughter arteries is

Fz,daughters = 2
ρu2 cos θ Q

2
= ρu2 cos θ Q. (8.42)

The difference of these forces is

Farterial wall = Fz,daughters − Fz,parent

= ρu2 cos θ Q − ρu1Q = ρQ(u2 cos θ − u1) (8.43)

or with (8.40)

Farterial wall = ρQu1

(
A1

2A2
cos θ − 1

)
= ρA1u

2
1

(
A1

2A2
cos θ − 1

)
. (8.44)
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Fig. 8.48. Disturbed flow streamlines for progressively large angle bifurcations at
bifurcations, and approach to steady flow afterward. (From [382], based on (a) [409],
(b) [397], and (c) [398]. Courtesy of Robert A. Freitas Jr., Nanomedicine, Vol. 1
(1999), http://www.nanomedicine.com)
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This has a maximum negative value of −ρQu1 = −ρA1u2
2 when θ = 90◦

(which is a bit larger than the typical maximum angles). Because pressure is
force/area, if this force is exerted on the vessel wall of cross-sectional area A1,
as in Fig. 8.42, there is a pressure on the arterial wall of

Parterial wall =
ρQu1

A1
=

ρA1u2
1

A1
= ρu2

1 (8.45)

(which is also the kinetic energy per unit volume). This can lead to the forma-
tion of an aneurysm there. This mechanism of momentum change is the same
as that causing a force on an arterial wall during flow in a curving artery. The
saccular aneurysm gets larger and larger until it ruptures.

The shear stress near the bifurcation apex due to viscosity is another
factor in the formation of a saccular aneurysm. Figure 8.47 shows that
in steady flow the velocity is small near the walls and the velocity gradi-
ent and consequently the shear stress is large near the walls. After bifurcation
and momentum transfer to the apex, the blood velocity, velocity gradient, and
shear are larger near the vessel walls after the apex. The shear stress is large,
until the flow pattern rearranges to give (7.40) (Fig. 7.11). This is also seen in
Fig. 8.48 for bifurcations at increasingly large angles. Equation (7.41) can be
used to estimate the distance from the apex for steady-state flow. Note that
the Law of Laplace for spheres applies to saccular aneurysms.

8.3.2 Stenosis and Ischemic Strokes

Strokes can also occur by stenosis (narrowing or closure of lumens) or occlu-
sions (closures or obstructions) (Fig. 8.49). They are most commonly due to
artherosclerotic lesions. Such lesions are irregularly distributed masses of calci-
fied fatty deposits that narrow the arterial lumen. If the normal inner diameter
of the vessel is dnorm and the minimum diameter due to the stenotic lesion
is dsten, then the % stenosis is defined as: ((dnorm − dsten)/dnorm) × 100%.
They are characterized as being mild (1–39%), moderate (40–59%), severe
(60–79%), critical (80–99%), and occluded (100%). Poiseuille’s Law (7.24)
shows that the flow decreases with decreasing lumen diameter for a given ini-
tial pressure. Flow decreases dramatically above the onset of critical stenosis,
and the pressure drop across the stenosis increases, resulting in a need for a
greater blood pressure to maintain the same flow rate.

This calcified lesion stiffens the vessel and abruptly changes the flow pat-
tern as the blood flows from an elastic, distensible region of a vessel to this
rigid and narrower region and back to a distensible vessel. Overall blood flow
is slower because of the stenosis (unless the pressure increases), which can
lead to clotting. The resulting clot (or thrombus) does not adhere well to
the vessel wall and can move to elsewhere in the flow stream and this em-
bolus can lead to a stroke. Within the stenosis itself, the blood flow is faster
than just before it, from Bernoulli’s Principle. This increased blood flow has
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Fig. 8.49. Clogging of arteries by plaque. A schematic of the atherosclerosis is
shown, along with some of the preferred sites of atherosclerosis in the vasculature
(blood vessels). (From [395])

several negative consequences. As this increased kinetic energy (per unit vol-
ume) in the stenotic region decreases in the poststenotic normal vessel (due to
Bernoulli’s Principle), there can be structural fatigue in this latter region lead-
ing to distention and this possible dilatation can lead to a fusiform aneurysm.
The increased stenotic flow speed and irregular geometry can increase the
Reynolds number, resulting in turbulent flow and the eventual disengaging
of arterial plaque, which then becomes a particulate embolus. The increased
speed also leads to higher shear stresses on the lesion.

8.3.3 Equation of Motion of Arteries and Aneurysms during
Pulsatile Flow (Advanced Topic)

For steady flow, the tension in the arterial wall balances the pressure difference
inside and outside the artery, as described by the Law of Laplace. Because the
pressure inside the artery really varies within every cycle (during the arterial
pulse), this balance needs to be evaluated to account for these cyclic pressure
variations. Let us model a saccular aneurysm as a sphere of radius R, with a
thin wall of thickness w. (We could similarly model a fusiform aneurysm as a
cylinder of radius R.)

If the change in radius due to this time-varying pressure is r, then the cir-
cumference of the sphere changes from 2πR to 2π(R+ r). The circumferential
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strain ε is (2π(R + r)− 2πR)/2πR = r/R, and the circumferential stress σ is
related to this strain by

σ = Y ε = Y
r(t)
R

. (8.46)

The response of the arterial wall has a component that balances the average
pressure Pav – which is a time-weighted average of the systolic and diastolic
pressures for larger arteries – and a time varying component – due to the
pulse Ppulse(t) = Pp cos ωpt, where Pp is a time-weighted difference of the
systolic and diastolic pressures for larger arteries and ωp is the pulse (radial)
frequency. This time-varying pressure is P (t) = Pss + Pp cos ωpt.

The inertial response force ma, per unit area on the sphere is the mass
per unit area of the spherical shell, ρw, where ρ is the mass density, times the
radial acceleration, d2r/dt2, or ρw d2r/dt2. The hydrostatic pressure term
P (t) tends to increase the radius, while the stress due to the wall resists this
change, so the inertial response is

ρw
d2rp (t)

dt2
= Pav + Pp cos ωpt − Y

r(t)
R

(8.47)

because d2rav/dt2 = 0.
The perturbation r(t) has a component in response to the average pressure

Pav and a time-varying part in response to the pulse pressure Pp cos ωpt.
Substituting r(t) = rav + rp(t) into (8.47), we get

ρw
d2rp (t)

dt2
= Pav + Pp cos ωpt − Y

rav + rp(t)
R

. (8.48)

Equating the time-varying terms to give one equation and the average terms
to give another leads to

ρw
d2rp (t)

dt2
= Pp cos ωpt − Y

rp(t)
R

(8.49)

and

0 = Pav − Y
rav

R
. (8.50)

Equation (8.50) is related to the Law of Laplace for a sphere (7.9) (∆P =
2T/R). Equation (8.49) can be rewritten as

d2rp (t)
dt2

+ ω2
0rp(t) =

Pp

ρw
cos ωpt, (8.51)

where ω2
0 = Y/Rρw. This looks like the equation of motion for a simple

harmonic oscillator of frequency ω0 plus an extra term (the last one), which
is due to the pulse driving force at frequency ωp. The steady-state solution to
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this equation is

rp(t) =
Pp/ρw

ω2
0 − ω2

p

cos(ωpt), (8.52)

which can be verified by substitution (see Appendix C). If rp is large, it could
lead to rupture. In principle, rp can become larger as the aneurysm develops
because Y , R, ρ, or w change (in ω2

0 = Y/Rρw). Without the driving term
(Pp = 0), the solution is the usual harmonic solution: rp(t) = A cos(ω0t + φ).

If ω0 were to approach ωp, (8.52) indicates that the change in radius would
become very large because of this resonance. If this were to occur (and it does
in some examples of driven oscillators but it really does not for aneurysms), the
viscous (or damping) properties of the vessel wall would have to be included
through a term −γ drp/dt, leading to the new equation of motion

d2rp (t)
dt2

+ γ
drp (t)

dt
+ ω2

0rp(t) =
Pp

ρw
cos ωpt (8.53)

with steady-state solution

rp(t) =
(
ω2

0 − ω2
p

)
Pp/ρw

(
ω2

0 − ω2
p

)2 + (γωp)2
cos(ωpt). (8.54)

(See Appendix C.) This now includes the viscoelastic properties of the arterial
wall, which dampens the resonance a bit.

Far above the ω0 ! ωp resonance (with ω0 ( ωp), (8.52) and (8.54) give

rp(t) ! Pp

ρwω2
0

cos(ωpt). (8.55)

Without the driving term (Pp = 0), the solution is that of a damped
harmonic oscillator: rp(t) = A exp(−γt/2) cos(ω0t + φ), for ω0 ( γ. This har-
monic oscillation damps in a time ∼1/γ, which corresponds to about ω0/(2πγ)
cycles; this last number is often called the quality factor Q of the system, as is
discussed in the Chap. 10 discussion of acoustic resonances and in Appendices
C and D.

8.4 Modeling the Circulatory System and the Heart

The branching in the circulatory system is very complex. Still, there is an
orderly transition from larger to smaller arteries and then from smaller to
larger veins, and so we can imagine an overall model of the circulation with
all arteries or veins of a given diameter combining to form a subsystem. We
have seen that larger vessels can be modeled quite well as ideal compliance
vessels, while smaller vessels can be modeled as resistance vessels. We will now
use these models to develop a comprehensive model of circulation, which can
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handle steady-state flow and changes that depend on time, like the arterial
pulse. It can be used to understand the control of circulation. For a complete
circulation model, we need to include the action of the heart, which is really
two separate pumps: the right heart for the pulmonary system and the left
heart for the systemic system. We first develop static and dynamic models of
the left and right hearts.

8.4.1 Model of the Heart

Let us consider the left ventricle, which is the major pump in the left heart;
the treatment of the right heart is analogous. During systole, the mitral valve
is closed and the aortic valve is open. The pressure that develops is essentially
that in the systemic arteries (sa) Psa because of the very small pressure drop.
During diastole the aortic valve is closed and the mitral valve is open. The left
ventricle receives blood from the left atrium at a pressure that is pretty low,
and is essentially equal to that in the pulmonary veins (pv), Ppv ∼ 5 mmHg,
that feeds the left atrium.

Static Model of the Ventricles

We will model the left (or right) ventricle as a hemispherical shell, with an
inner radius ri and outer radius ro, with a very thick wall of thickness ro − ri.
Assume the open side is facing upward, as in Fig. 8.50. The (gauge) pressure
inside Pi pushes the ventricle down and reaches a maximum during systole of
120 mmHg. The pressure outside (acting on the round bottom surface) Po is
from the pericardium and pushes the ventricle up and is approximately the
pleural pressure, which can be negative (i.e., less than an atmosphere). The
circumferential wall stress σ acts vertically and pushes the ventricle up. These
arguments are the same as those for the Law of Laplace for a sphere (7.9),
except we are now assuming the wall has finite thickness.

Fig. 8.50. Model of the left ventricle. (Based on [405])
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Force balance in the vertical direction gives

(πr2
i )Pi = (πr2

o)Po +
(
π(r2

o − r2
i )

)
σ (8.56)

and so the circumferential wall stress is

σ =
Pir2

i − Por2
o

r2
o − r2

i

. (8.57)

The first two terms in (8.56) are not just the surface areas of the respective
areas, 2πr2

i,o, times the hydrostatic pressure, Pi,o, but half of that, because
only part of the force due to the pressure is in the vertical direction (as in the
Law or Laplace for spheres and Problem 7.12). Because Pi ( Po

σ ! Pi

(ro/ri)
2 − 1

. (8.58)

Because the material in the heart wall is incompressible, the volume of
the heart wall Vwall does not change with pressure. From the difference of the
volumes of the outer and inner hemispherical shells, we know that Vwall =
2π(r3

o − r3
i )/3 and so (ro/ri)

2 = (1 + Vwall/Vi)2/3, where the inner volume of
the left ventricle is Vi = 2πr3

i /3. Therefore we see

σ ! Pi

(1 + Vwall/Vi)2/3 − 1
. (8.59)

Using the expansion (1 + x)n ! 1 + nx for | x |% 1 and the fact that the
internal volume of the left ventricle is much larger than the volume of the
heart wall, we find

σ ! 3Vi

2Vwall
Pi. (8.60)

This shows how excessive systolic pressure or the enlargement of the left ven-
tricle (and of the heart) will lead to excessive cardiac wall stress (for a constant
wall thickness).

Dynamic Model of the Ventricles

We will now model a ventricle as a compliance vessel with a compliance that
changes with time [394], so we use (8.5)

V (t) = Vd + C(t)P (t). (8.61)

(We will simply call the flow resistance Rflow and compliance Cflow, respec-
tively R and C in this section.) Figure 8.51 shows how the compliance of
the ventricle changes during a cardiac cycle. During systole the compliance
becomes low, which causes a high pressure to develop because the volume
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Fig. 8.51. Changes in ventricle compliance during the cardiac cycle, from a small
value while it is contracting during systole to a large value when it is relaxing during
diastole. (From [394])

remains pretty constant. In diastole the ventricle relaxes, which is associated
with a large compliance that induces a low pressure.

The changes of volume and pressure in the ventricle during a cardiac cy-
cle are modeled in Fig. 8.52. Stage A is when the inflow valve (which is the
mitral valve for the LV) closes, which marks the end of diastole (ED) and the
beginning of systole. The ventricle volume is a maximum

VED = Vd + CdiastolePpv. (8.62)

Fig. 8.52. Cycle of pressure and volume in either ventricle is given by the ABCD
rectangle in this simplified model. The slanting lines radiating from the dead volume
are the ventricle pressure–volume relationships at the end of systole and diastole.
(Similar slanting lines with different slopes (not shown) characterize the ventricle
at other times.) The venous pressure is the same as the inflow atrial and venous
pressures during diastole. The arterial pressure is the outflow ventricle pressure
during systole. (From [394])
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During systole, the compliance decreases isovolumetrically, so the pressure
increases. At Stage B, the outflow valve (which is the aortic valve for the
LV) opens; the pressure remains constant as blood leaves the ventricle and
concomitantly the volume of the ventricle decreases. Stage C is when the
outflow valve closes, which marks the end of systole (ES) and the beginning
of diastole. The ventricle volume is a minimum:

VES = Vd + CsystolePsa. (8.63)

During diastole, the compliance increases isovolumetrically, so the pressure de-
creases. At Stage D, the inflow valve opens; the pressure then remains constant
as blood enters the ventricle and concomitantly the volume of the ventricle
increases – until the end of diastole is reached, Stage A again.

The stroke volume is

Vstroke = VED − VES = CdiastolePpv − CsystolePsa. (8.64)

Because Csystole ∼ 0, we can take

Vstroke = CdiastolePpv. (8.65)

With a heart rate F , the volumetric flow is

Q = FVstroke = FCdiastolePpv. (8.66)

Calling K = FCdiastole the pump coefficient, we can model the left ventricle
by

QL = KLPpv. (8.67)

Analogously for the right heart, the right ventricle, which is fed by the systemic
veins (sv), is modeled by

QR = KRPsv. (8.68)

8.4.2 Model of the Overall Flow in the Circulatory System

We will model the eight subsystems shown in Fig. 8.53, two hearts (L and R),
large arteries in the systemic and pulmonary systems (sa and pa), large veins
in the systemic and pulmonary systems (sv and pv), and the small vessels
(arterioles/capillaries/venules) in the systemic and pulmonary systems [394].
Blood flows from the left ventricle successively through the systemic large
arteries, small vessels, and large veins, and to the right ventricle. Then blood
goes from the right ventricle successively through the pulmonary large arteries,
small vessels, and large veins, and to the left ventricle.

The flows through the ventricles are determined by the pressures in the
veins feeding them (through the atria)

QL = KLPpv and QR = KRPsv. (8.69)
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Fig. 8.53. The eight subsystems in systemic and pulmonary flow, with their model
equations. (From [394])

The volumes in the large arteries are determined by their compliances and
the pressures within them

Vsa = CsaPsa and Vpa = CpaPpa, (8.70)

as are the volumes of the veins

Vsv = CsvPsv and Vpv = CpvPpv. (8.71)

(A more refined model would include the dead volume in these large vessels.)
The pressure drop across the small vessels is the difference in pressure between
the large arteries and large veins. For the respective systemic and pulmonary
systems, the pressure drop is determined by their resistances (Rs and Rp) and
the flows through them (Qs and Qp)

Psa − Psv = RsQs and Ppa − Ppv = RpQp. (8.72)

We see a symmetry here. There are three types of variables, the flow Q,
volume V , and pressure P . Each subsystem depends on relations between two
of them: Q and P for the ventricles, V and P for the large vessels, and P and
Q for the small vessels.

There are 12 unknowns: four flows: QR, QL, Qs, Qp; four pressures: Psa,
Psv, Ppa, Ppv; and four volumes: Vsa, Vsv, Vpa, Vpv. We need 12 equations to
solve for these 12 unknowns, but have only eight here and need four more.
However, for steady-state flow, the flow in each region is the same, so QR =
QL = Qs = Qp. These are really the three independent equations

QR = QL, QR = Qs, and QR = Qp, (8.73)
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with each flow rate equal to Q. The fourth equation describes the constant
total volume and is

V0 = Vsa + Vsv + Vpa + Vpv. (8.74)
We can now solve these equations. From the pump (8.67) and (8.68), the

venous pressures are

Psv =
Q

KR
and Ppv =

Q

KL
. (8.75)

Inserting these venous pressures into the resistance (8.72) gives

Psa =
Q

KR
+ RsQ and Ppa =

Q

KL
+ RpQ. (8.76)

Inserting these venous and arterial pressures into the compliance (8.70) and
(8.71) gives

Vsa = QCsa

(
1

KR
+ Rs

)
and Vpa = QCpa

(
1

KL
+ Rp

)
(8.77)

Vsv = QCsv

(
1

KR

)
and Vpv = QCpv

(
1

KL

)
. (8.78)

These can be expressed as

Vi = TiQ for i = sv,pv, sa,pa, (8.79)

with

Tsa = Csa

(
1

KR
+ Rs

)
and Tpa = Cpa

(
1

KL
+ Rp

)
(8.80)

Tsv = Csv

(
1

KR

)
and Tpv = Cpv

(
1

KL

)
. (8.81)

Inserting these equations in (8.74) for the total blood volume gives

V0 = Vsa + Vsv + Vpa + Vpv (8.82)
= Q(Tsa + Tsv + Tpa + Tpv) (8.83)

or

Q =
V0

Tsa + Tsv + Tpa + Tpv
. (8.84)

All the volumes are obtained from this and (8.79)

Vi =
TiV0

Tsa + Tsv + Tpa + Tpv
(8.85)

and all of the pressures from Pi = Vi/Ci (from (8.70) and (8.71))

Pi =
1
Ci

TiV0

Tsa + Tsv + Tpa + Tpv
. (8.86)

With known values of the flow rate and the total volume, the model pa-
rameters can be determined – see Table 8.7.
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Table 8.7. Normal resting parameters of the circulation model. (Using data from
[394])

systemic system pulmonary system

resistance, mmHg/(L/min) Rs = 17.5 Rp = 1.79
compliance, L/mmHg
arterial Csa = 0.01 Cpa = 0.00667
venous Csv = 1.75 Cpv = 0.08
heart KL = 1.12 KR = 2.8

total volume: V0 = 5.0 L

8.4.3 The Arterial Pulse

This model is capable of analyzing much more than just this idealized average
flow. We can use it to understand the arterial pulse, which is the periodic
deviation of the systemic arterial pressure from the diastolic value due to
systole (Fig. 8.54). This pulse pressure is

Ppulse = Psystole − Pdiastole, (8.87)

which is ∼40 mmHg (= 120 mmHg − 80 mmHg). These steady-state assump-
tions we just made are no longer appropriate here for this pulsatile flow.

Consider the systemic artery system, which has volume Vsa and pressure
Psa. As a compliance vessel its volume can change, and it will change when the
flow into it does not equal to the flow leaving it (Fig. 8.55). The flow into it is
that from the left heart QL and the flow out of it goes into the (noncompliant)
small vessel system, which has flow Qs. Conservation of volume gives

dVsa(t)
dt

= QL(t) − Qs(t). (8.88)

Fig. 8.54. The systemic arterial pulse. Also see the aortic pressure in Fig. 8.5. (From
[394])
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Fig. 8.55. During pulsatile flow, the change of arterial volume is equal to the
volumetric inflow minus the outflow, as required by the conservation of volume
(mass). (From [394])

For this compliance vessel we know that

Vsa(t) = Vsa,d + CsaPsa(t), (8.89)

where we have now included the dead volume. Differentiating this equation
with respect to time and combining it with the previous equation gives

dVsa(t)
dt

= Csa
dPsa(t)

dt
= QL(t) − Qs(t). (8.90)

Using (8.72) gives

RsQs = Psa − Psv ∼ Psa (8.91)

since Psv % Psa. Therefore we arrive at

Csa
dPsa(t)

dt
= QL(t) − Psa

Rs
. (8.92)

This determines the time dependence of the systemic artery pressure, and
consequently the arterial pulse, if the flow rate out of the left ventricle is
known.

We will assume that systole occurs very fast (for a very small fraction of
the cardiac cycle of duration T , with T = 1/F ) with a very large QL(t) for
t ∼ 0, and that it is zero for the rest of the cardiac cycle. This idealized model
is amenable to simple analysis. Although it is not very accurate, some of the
features it predicts are accurate.

When QL(t) = 0, (8.92) is

Csa
dPsa(t)

dt
= −Psa

Rs
(8.93)

or

dPsa(t)
dt

= − Psa

RsCsa
= −Psa

τ
, (8.94)

where τ = RsCsa. Therefore

Psa(t) = Psa(0) exp(−t/τ), (8.95)
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Fig. 8.56. Systemic arterial pulse from idealized model. (From [394])

as is depicted in Fig. 8.56 (see Appendix C). In this model, at the start of the
cardiac cycle Psa(0) = Psystole and at the end of the cardiac cycle Psa(T ) =
Pdiastole = Psystole exp(−T/τ). The pressure of the arterial pulse is Ppulse =
Psystole − Pdiastole.

We can determine these pressures in terms of the stroke volume using
(8.62)–(8.64) and (8.70)

Vsa(0) = Vsa,d + CsaPsa(0) (8.96)

Vsa(T ) = Vsa,d + CsaPsa(T ). (8.97)

The difference is the stroke volume

Vstroke = Vsa(0) − Vsa(T ) = Csa(Psa(0) − Psa(T ))
= CsaPsa(0)[1 − exp(−T/τ)]. (8.98)

Consequently, we find

Psystole = Psa(0) =
Vstroke

Csa[1 − exp(−T/τ)]
(8.99)

Pdiastole = Psa(T ) =
Vstroke exp(−T/τ)

Csa[1 − exp(−T/τ)]
. (8.100)

With (8.87) we see

Ppulse = Psystole − Pdiastole =
Vstroke

Csa
(8.101)

and so Psystole, Pdiastole, Vstroke, the heart rate 1/T , Csa, and Rs (= τ/Csa)
are all interrelated.

Let us consider a numerical example. For Vstroke = 70 cm3 = 0.070 L and
Ppulse = 40 mmHg, (8.98) gives Csa = Vstroke/Ppulse = 0.00175 L/mmHg.
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Using Rs from Table 8.7 of 17.5 mmHg/(L/min), we know that τ = RsCsa =
0.0306 min. With T = 1/80 min = 0.0125 min, (8.99) and (8.100) give the
last remaining parameter, which could be either Psystole or Pdiastole, be-
cause they are related by Ppulse = Psystole − Pdiastole. From (8.101), we
get Psystole = 120 mmHg. As expected from self-consistency, Pdiastole =
Psystole exp(−T/τ) = 120 mmHg × exp(−0.0125 min/(−0.0306 min)) =
80 mmHg.

A better model for the arterial pulse is described in Problem 8.49, in which
the flow of blood from the left ventricle to the systemic arteries occurs with a
finite (nonzero) duration in the cardiac cycle. It gives predictions that agree
with Fig. 8.54 better than do those in Fig. 8.56. Even this improved model
does not explain the small increase in pressure just after systole that is seen
in Figs. 8.5 and 8.54, which is known as the “incisura” or “dicrotic notch.”
When the semilunar valve closes, some backward flowing blood bounces off
the elastic aorta walls, setting up a pressure wave in the aorta; this pressure
blip can be included with even more refinement in the model.

8.4.4 Windkessel Model

This simplified model of the arterial pulse is also known as the Windkessel
Model [370], which was the first real model of blood flow. In this model blood
flows from the left ventricle at a rate Qin(t) into an elastic chamber of compli-
ance C (i.e., the larger arteries) of volume V (t) and leaves it at a rate Qout(t)
to enter a resistive element of resistance Rp (peripheral resistance of the ar-
terioles and capillaries). It assumes that all pressure changes in the arteries
occur at the same time. Because conservation of volume for an incompressible
fluid gives

Qin(t) =
dV (t)

dt
+ Qout(t), (8.102)

with C = dV (t)/dP (t) (8.61) and Qout(t) = P (t)/Rp (8.72), (8.102) becomes

Qin(t) = C
dP (t)

dt
+

P (t)
Rp

. (8.103)

The formal solution to this is

P (t) = exp(−(t/τ))
(

P (0) +
1
C

∫ t

0
exp(t′/τ)Qin(t′)dt′

)
, (8.104)

where τ = RpC. This can be shown to be the solution by substitution and by
the method shown in Appendix C. Still it is simple and instructive to examine
what happens after ventricular ejection, starting at t = 0 when Qin(t) = 0
and P = P (0), until the next cycle starts at t = T . Then

dP (t)
dt

+
P (t)
RpC

= 0 for 0 < t < T. (8.105)
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Fig. 8.57. Electrical analogs of the (a) classic or elastic Windkessel Model (W2),
(b) three-element (or improved) Windkessel Model (W3), and (c) viscoelastic Wind-
kessel Model (VW). The electrical resistances represent flow resistances and the
electrical capacitances represent flow compliances. (See Appendix D)

The solution is

P (t) = P (0) exp(−(t/τ)) for 0 < t < T, (8.106)

which is the same as (8.95) (see Appendix C).
This two-element classic Windkessel Model is formally equivalent to the

electrical circuit, where the electrical resistance Relect maps into the flow resis-
tance in the capillaries and the electrical capacitance Celect maps into the flow
compliance (Table D.1, Appendix D). (This is how the model is expressed in
Fig. 8.57a.) The voltage Velect in the electrical model corresponds to the pres-
sure P in the flow model and the current I corresponds to the volumetric flow
rate Q. Ohm’s Law relates Velect and I across the resistor by Velect = IRelect.
The voltage across the capacitor is Velect = q/Celect, where the charge on the
capacitor is q. The voltages across both elements sum to zero (Kirchhoff’s
2nd Law, Chap. 12), so IRelect + q/Celect = 0. Because I = dq/dt, we have
(dq/dt)Relect + q/Celect = 0 or with Velect = q/Celect

dVelect

dt
+

Velect

RelectCelect
= 0. (8.107)

The two-element Windkessel Model can be refined by adding more ele-
ments to the electrical analog. The three-element Windkessel Model shown in
Fig. 8.57b predicts a more realistic arterial pulse. The vascular resistance Ra

of the aorta is added in series, and the value of the resistance in parallel is now
Rb, which equals Rp−Ra. The viscoelastic Windkessel Model (Fig. 8.57c) rep-
resents a different type of improvement of the two-element Windkessel Model.
The compliant arterial systems are represented by a capacitance (in the elec-
trical analog of flow compliance) that is in series with a resistor Rd, which
represents the viscous wall motion to more fully represent the viscoelasticity
of the aorta.
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Fig. 8.58. Left ventricular performance (Frank–Starling) curves relate cardiac per-
formance to preconditions (preloading), such as the pressure or volume of the left
ventricle after diastole. (Based on [380])

8.4.5 Modeling the Malfunctioning Heart

There are many ways a heart can malfunction [402]. These conditions can be
characterized quantitatively and, in principle, can be included in our models
of the heart and circulation. Cardiac performance can be characterized by
several parameters, such as the stroke volume Vstroke and cardiac output Qt =
FVstroke, described earlier.

Figure 8.58 shows cardiac performance as a function of the conditions
at the end of diastole in the left ventricle. The middle curve describes the
operation of that person’s heart, and point a represents that normal person
at rest. After heart failure, such as after a myocardial infarction, the curve
shifts down due to lessened left ventricle contractility. Point b represents the
person described by point a after heart failure. Increased circulatory volume
in this person is represented by point c. The stroke volume is increased due to
increased contractility in the uppermost curve, perhaps caused by the infusion
of the drug norepinephrine.

The solid line pressure–volume loops in Fig. 8.59 represent normal heart
function, and are more accurate representations than the simplified rectangu-
lar one depicted in our model in Fig. 8.52. In systolic dysfunction, the systolic
curve shifts from 1 to 2 in (a) due to decreased cardiac contractility. As seen
in the dashed loop, the volume at the end of systole increases. In diastolic dys-
function, the diastolic curve shifts from 1 to 2 in (b) due to increased stiffness
(decreased compliance). As seen by the dashed loop, the ventricular pressure
is higher than normal at any diastolic volume.

Several series of problems occur when there is leakage between heart cham-
bers. In valvular regurgitation there is backflow through one of the heart
valves, such as mitral regurgitation and aortic regurgitation in the left heart
valves. The regurgitant fraction for mitral regurgitation is the volume of blood
flowing back through the mitral valve divided by the left ventricle stroke
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Fig. 8.59. Pressure–volume curves for the left ventricle for normal performance
(solid loop), systolic dysfunction (dashed loop in (a)), and diastolic dysfunction
(dashed loop in (b)). (Based on [380])

volume. There can also be openings in the septum between the atria or
the ventricles, called a septal defect [374]. For example, a ventricular sep-
tal defect is a congenital condition in which there is an opening between
the left and right ventricles (Fig. 8.60). During systole blood flows from the
left to right ventricle because of the higher pressure in the former. This
leads to increased blood return to the left side of the heart which causes
the left atrium and ventricle to enlarge. The ejection fraction (EF) is the
stroke volume divided by the ventricular volume at the end of diastole (when
the ventricle is full). It is normally 55–75%, but can be less with a septal
defect.

Fig. 8.60. With a ventricular septal valve defect blood flows from the left to right
ventricle. (Based on [374])
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8.5 Summary

The flow of blood in the vessels of the circulation system can be modeled using
the resistive and compliant nature of the flow. This can be combined with a
model of the heart to understand the flow in the entire circulation system.
These models can also be used to understand the physical consequences of a
malfunctioning heart and problems in the circulation system, such as clogged
and weakened arteries, that can lead to strokes and aneurysms. The energy
needed to operate the heart can also be modeled.

Problems

Blood Pressure

8.1. (a) The brain in a human is 55 cm above the heart. If the average blood
pressure in the major arteries near the heart is 100 mmHg, what is the blood
pressure in major arteries in the brain (in both mmHg and cmH2O) when a
person is either lying down or standing up.
(b) Repeat part (a) for an erect human on the moon (g = gEarth/6) and on
Jupiter (g = 2.34gEarth).
(c) A pilot coming out of a dive experiences an upward centripetal acceleration
a of magnitude v2/r, where v is the speed of the jet and r is the radius of
curvature of the trajectory, that adds to gravity (effectively increasing g to
g + a). What is the arterial pressure in the pilot’s brain for v = 200 m/s and
r = 2 km? What could happen to the pilot during this recovery from the
dive? Would you expect dizziness because of a lack of blood to the head? (See
Fig. 8.61.)
(d) What must the pressure in the aorta in a giraffe be (on Earth) for its brain
to receive blood? (How can you estimate the elevation of its brain above its
aorta?)

8.2. In Problem 8.1d we saw that the pressure of the blood leaving the heart
of a giraffe and entering its systemic system must be much larger than that
for humans because of its long neck.

Fig. 8.61. Trajectory of a pilot coming out of a dive, with the acceleration and
velocity vectors shown for the low point of the dive. For Problem 8.1. (From [367])
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(a) Would a blood pressure of 280 mmHg/180 mmHg account for pumping the
blood up this long neck in large arteries and then for the pressure drop that
occurs in the very small arteries in the brain?
(b) The giraffe has this relatively high blood pressure because of this long
neck, which is usually nearly vertical. However, we could expect that there
would be a rush of blood to the brain because of this high pressure when the
giraffe lowers its head by almost 7 m when it bends down to drink water, and
that this could lead to rupture of the arteries in the brain. Why?
(c) This artery rupturing does not occur because of compensating effects.
Explain this by considering the following (i) The elastic walls of the long
giraffe carotid artery help force blood upward (which is a peristaltic action),
and this also means that this artery can swell to absorb excess blood when
the head is lowered because it is very compliant. (ii) The giraffe jugular vein
contains a series of one-way valves that prevent back-flow of the blood when
the giraffe’s head is down.

8.3. When you stand on your head, why does your head become red and why
do your legs become pale?

8.4. Why is blood pressure measured using major arteries in the upper arm,
rather than those in the lower arm or leg?

8.5. You are told that your blood pressure is 880 mmHg/840 mmHg. You are
quite understandably concerned because these values are astronomically high,
but you are told not to worry because your blood pressure is normal. Should
you be concerned?

8.6. (a) An intravenous infusion is made under gravity. If the fluid to be
delivered has a density of 1.0 g/cm3, at what height above the vein, h, should
the top surface of the fluid in the bottle be positioned so the fluid just barely
enters the vein? The gauge pressure in the vein is 18 mmHg. (Assume the
needle entering the vein has a “large” inside diameter.) (See Fig. 8.62.)
(b) If this needle has a “very small” inside diameter, should the bottle be
placed higher, lower, or at the same height? Why?
(c) Why are such infusions performed intravenously and not intra-arterially?

Fig. 8.62. Intravenous infusion under gravity. (Based on [387].) For Problem 8.6
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8.7. You are lying down and are injured in such a way that blood from a
major artery squirts upward. How high can it spurt?

8.8. Twirl one arm around as fast as you can many times until you see your
fingers on that arm turn red. (Continue even if you do not see them getting
redder.) [365]
(a) Estimate the centrifugal acceleration at the end of your finger tips,
v2
radial/r = v2

radial/larm, where larm is your arm length (to your fingertips)
and vradial is the radial speed of your finger tips. (Why is vradial = 2πlarm/T ,
where T is the period for a complete cycle of this motion?)
(b) Express this acceleration in units of g.
(c) Calculate the effective pressure pushing your blood to your fingers by this
motion. This is the apparent outward force divided by the cross-sectional area
of your fingers, Afingers, or (mfingersv2

radial/larm)/Afingers. Because mfingers =
ρfingerslfingersAfingers, this pressure is ρfingersv2

radial(lfingers/larm).
(d) Compare this to the systolic pressure 120 mmHg and explain why your
fingers (could have or should have) turned red.

Blood Pressure Drop During Flow

8.9. Calculate the pressure drop (in mmHg) across the following arterial sys-
tems using Poiseuille’s Law with ηblood = 4 × 10−3 Pa-s, for a total flow of
80 cm3/s across each system:
(a) aorta (internal radius r = 1.25 cm, length L = 10 cm, all of the flow in this
one aorta)
(b) large arteries (r = 0.2 cm, L = 75 cm, n = 200 of them, each with equal
flow and the same dimensions)
(c) arterioles (r = 30 µm, L = 0.6 cm, n = 5 × 105)
(d) capillaries (r = 3.5 µm, L = 2 mm, n = 1010).

8.10. In estimating pressure drops across the different arterial branches we
assumed specific numbers of arteries of given diameters and lengths. There is
really a wide range of arterial diameters and lengths. How does this affect the
pressure drops in the systemic arterial system?

8.11. In estimating pressure drops across the arterioles we assumed a specific
number of arterioles with the same diameter and length.
(a) Let us say that all arterioles have the same radius, but their lengths (in-
stead of all being L) range between 0.8L and 1.2L (with equal probability
throughout). How does this change the overall resistance of the arteriole sys-
tem?
(b) Let us say that all arterioles have the same length, but their radii (instead
of all being r) range between 0.8r and 1.2r (with equal probability through-
out). How does this change the overall resistance of the arteriole system?
(c) The pressure drop across each arteriole in the system must be the same
because each is fed by the large arteries, whose pressure is set by the left



514 8 Cardiovascular System

ventricle, and by the arterial side of the capillaries, whose pressure is also set.
If the overall pressure drop across the arterioles is unchanged (by the changes
in (a) or (b)), how is the overall flow rate in the arteriole system changed and
what is the flow in each arteriole, for the situations alternately described in
(a) and (b).
(d) If you wanted the flow rate to stay the same in each arteriole in (a) and
(b) for the given distributions of lengths and radii, how would you have to
change the distributions of radii and lengths in each, respectively?

8.12. Find the pressure drop across the arterioles in Problem 8.9c, if – with
the same total flow in both cases – and either
(a) all the arterioles become clogged in such a way that their radii decrease
to 28 µm or
(b) the number of the arterioles decreases to 4 × 105.
(c) By how much would the pressure in the main arteries need to change if
the body responded to either change by maintaining the same flow rate?

8.13. Assume that the diameter of each blood vessel in a person is doubled
and the total volumetric flow rate is not changed.
(a) What is the new total volume of blood? (Assume the base line parameters
in the chapter.)
(b) What is the new circulation time for blood (total blood volume/total
volumetric flow rate)?
(c) How do the resistances of the arterioles and capillaries change?
(d) How does the pressure drops across the arterioles and capillaries change?
(e) How does the work done by the heart change?

8.14. Repeat Problem 8.13 if instead the length of each blood vessel is
doubled.

8.15. The length of a blood vessel is doubled and its diameter is doubled.
(a) How does the flow resistance change?
(b) If the flow through it is unchanged, how does the pressure drop change?
(c) How does the flow through it change if instead the pressure drop is un-
changed?

8.16. Your internal body temperature increases from 37 to 40◦C. Assuming
that the only thing that changes is the viscosity of blood, how must the blood
pressure change to ensure the flow rate remains unchanged?

8.17. Use (8.29) to relate P (L) to P (0) and other flow terms.

8.18. (a) Estimate how much the flow is changed in small arteries by including
the influence of compliance by using (8.29) and assuming the same pressure
drop.
(b) Repeat this estimate for how much the pressure drop changes with this
analysis assuming the same flow rate.
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8.19. Express the flow resistance units of N-s/m5 in terms of (N/m2)/(cm3/s),
dyne-s/cm5, and PRU (with 1 PRU = 1 mmHg-s/mL).

8.20. (a) Calculate the total peripheral vascular resistance in the systemic
and pulmonary systems for someone with a steady-state blood flow rate of
5 L/min, and with 120 mmHg/80 mmHg blood pressure in the systemic sys-
tem and 25 mmHg/8 mmHg pressure in the pulmonary system. Express your
answer in the units of dyne-s/cm5, which are CGS units and those that are
often used by cardiologists.
(b) The expression given in the text for this vascular flow resistance should
be corrected because it uses the average pressure at the beginning of the
system instead of the pressure drop across the system. For the systemic sys-
tem the final pressure is that at the right atrium (2 mmHg) and for the pul-
monary system it is that at the left atrium (5 mmHg). How does using the
actual pressure drop affect your calculations in part (a) (both qualitatively
and quantitatively)?

8.21. (a) The pulmonary vascular resistance changes with lung volume.
Figure 8.63 shows that it increases much with larger lung volumes, in part
because the larger alveoli stretch the pulmonary capillaries. It also increases
at very small lung volumes because these capillaries surrounding the alveoli
become narrow. Calculate the range of pulmonary blood flow rates (in L/min),
assuming this range of resistances and assuming that the pulmonary pressures
are the same as in Problem 8.20.
(b) The pulmonary pressures actually change with lung volume. If they
changed in a manner to keep the average flow the same as it is for a 110 mL
lung volume, determine this change. (For the purpose of this calculation,

Fig. 8.63. Effect of lung volume on pulmonary vascular (blood flow) resistance
(from an animal lobe preparation). (Based on [419].) For Problem 8.21
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assume that the ratio of systolic and diastolic pressures remains a constant
and that the left atrium pressure remains the same.)

8.22. (a) Determine the overall compliances of the systemic arterial and ve-
nous systems by using Fig. 8.26.
(b) Is the ratio of these two compliances reasonable, given our model for com-
pliance and the data for the vessels in both groups? (Consider only the large
vessels in both groups.)

8.23. Does Fig. 8.26 suggest that sympathetic stimulation and inhibition
change the vessels’ compliances, dead volumes, or both?

Flow and Pressure

8.24. What is the average time blood spends in a capillary?

8.25. The cardiac index is the cardiac output divided by the person’s surface
area. It normally ranges from 2.6 to 4.2 (L/min)/m2. Use this to determine
the cardiac output of a standard human. How does this value compare to the
normal cardiac output we have assumed?

8.26. An artery with radius r1 and blood speed u1 divides into n arteries of
equal radius. Find the radius r2 and blood speed u2 in these daughter arteries
assuming that the pressure drop per unit distance dP/dx is the same in the
initial artery and each daughter artery.

8.27. Four veins with radius r1 and flow speed u1 combine to form one vein
with radius r2 = 4r1. Find the flow speed in the larger vein.

8.28. The design of blood vessels is sometimes optimized by minimizing a
“cost function,” F , which is the sum of the rate work is done on the blood in
the vessel and the rate that energy is used by metabolism through the blood
in the vessel [385]. The first term is Q(∆P ), for flow rate Q and pressure drop
∆P , and the second term is assumed to be proportional to the volume of the
vessel of radius r and length L, Kπr2L, where K is a constant. Consequently,
the cost function can be written as

F = Q(∆P ) + Kπr2L. (8.108)

(a) For a resistive vessel, show that this becomes

F =
8ηL

πr4
Q2 + Kπr2L. (8.109)

(b) For a fixed vessel length and flow rate, show the optimal radius is

ropt =
(

16η

π2K

)1/6

Q1/3 (8.110)
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Fig. 8.64. (a) A planar, bifurcating vessel. Determining variations in the length of
each vessel for small planar displacements of B to B′ in the (b) AB, (c) AC, and
(d) DB directions. (Based on [385].) For Problem 8.29

and the minimum cost function is

Fmin =
3π

2
KLr2

opt. (8.111)

8.29. (advanced problem) We will use the cost function defined in Prob-
lem 8.28 to optimize the flow in a vessel of radius r0 and length L0 with
flow rate Q0, that bifurcates into a vessel of radius r1 and length L1 with flow
rate Q1 at an angle θ to the first vessel and one with radius r2 and length L2

with flow rate Q2 at an angle φ to the first vessel, as seen in Fig. 8.64a [385].
Having straight, coplanar vessels minimizes the vessel lengths.
(a) Show that the total cost function is

Fmin =
3πK

2
(r2

0L0 + r2
1L1 + r2

2L2). (8.112)

(b) We can optimize the lengths and angles of the vessels by considering how
the displacements of point B in Figs. 8.64b–d change the cost function. Show
that any such movement of point B causes length changes δL0, δL1, and δL2
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that lead to a change of the cost function of

δFmin =
3πK

2
(r2

0(δL0) + r2
1(δL1) + r2

2(δL2)). (8.113)

This is optimized by setting δFmin,opt = 0.
(c) Show that moving point B along AB to B′ by a distance δ as shown in
Fig. 8.64b gives δL0 = δ, δL1 = −δ cos θ, and δL2 = −δ cos φ, and δFmin,opt =
(3πKδ/2)(r2

0 − r2
1 cos θ − r2

2 cos φ) = 0, and so it is optimized by

r2
0 = r2

1 cos θ + r2
2 cos φ. (8.114)

(d) Show that moving point B along CB to B′ by a distance δ as shown
in Fig. 8.64c gives δL0 = −δ cos θ, δL1 = δ, and δL2 = δ cos(θ + φ), and
δFmin,opt = (3πKδ/2)(−r2

0 cos θ + r2
1 + r2

2 cos(θ + φ)) = 0, and so it is
optimized by

−r2
0 cos θ + r2

1 + r2
2 cos(θ + φ) = 0. (8.115)

(e) Show that moving point B along DB to B′ by a distance δ as shown in
Fig. 8.64d gives the optimization condition

−r2
0 cos φ + r2

1 cos(θ + φ) + r2
2 = 0. (8.116)

(Note the symmetry in the last two equations.)
(f) Show that (8.114)–(8.116) can be solved to give

cos θ =
r4
0 + r4

1 − r4
2

2r2
0r

2
1

, (8.117)

cos φ =
r4
0 − r4

1 + r4
2

2r2
0r

2
2

, (8.118)

and

cos(θ + φ) =
r4
0 − r4

1 − r4
2

2r2
1r

2
2

. (8.119)

(g) Use continuity of flow and (8.110) to show that

r3
0 = r3

1 + r3
2. (8.120)

(h) Show that (8.117) then becomes

cos θ =
r4
0 + r4

1 − (r3
0 − r3

1)4/3

2r2
0r

2
1

(8.121)

and find the analogous relations for (8.118) and (8.119).
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8.30. Use Problem 8.29 to show that for optimized bifurcating vessels if
[385]
(a) r1 = r2, then θ = φ,
(b) r2 > r1, then θ > φ,
(c) r2 is much greater than r1, then r2 approaches r0 and φ approaches π/2,
(d) r1 = r2, then r1/r0 = 2−1/3 = 0.794 = cos θ and so θ = 37.5◦.
These results generally agree with observations.

8.31. Use Problem 8.30d to show that it would take ∼30 generations of sym-
metric bifurcations starting with a vessel with the aorta radius of 1.5 cm to
arrive at a vessel with the capillary radius of 5×10−4 cm [385]. (Note, however,
that such arterial divisions are usually not simple symmetric bifurcations.)

8.32. There is a fusiform aneurysm in an aorta where the internal radius in-
creases from r1(= 1.25 cm) in the normal section to r2 = 1.3r1 in the diseased
section, while staying at the same vertical height. The speed of blood flow is
v1 = 0.4 m/s in the normal section and the (gauge) pressure P1 is 100 mmHg.
The blood density is 1,060 kg/m3.
(a) Find the speed of blood flow v2 in the aneurysm.
(b) Find the pressure P2 in the aneurysm.
(c) Use the Law of Laplace to find the tensions required in the normal part
of the aorta and in the aneurysm to maintain the pressure difference (from
inside to outside the vessel). Compare these values.
(d) Describe how this increase in the tension needed in the aneurysm wall
and the decreased strength of the wall (due to the thinner aorta wall in the
aneurysm) can lead to an unstable situation.

8.33. The normal inner radius of a large artery is 2 mm. It is 75 cm long, and
the flow through it is 1/200 of the total blood flow. How would the pressure
drop across it change if the flow through it were unchanged and there were
severe stenosis in the artery
(a) across its entire length or
(b) across 5 cm of it?
(c) In each case, if the pressure at the beginning of the artery were 75 mmHg,
would the pressure drop be severe enough to affect flow in the arterioles and
capillaries?
(d) In each case, what added pressure would be needed at the beginning of
the artery to maintain an unchanged flow in these arterioles and capillaries?

8.34. Arteriosclerotic plaque narrows down a section of an artery to 20% of its
normal cross-sectional area. What is the pressure in that section if immediately
before it the pressure is 100 mmHg and the flow speed is 0.12 m/s?

8.35. The osmotic pressure of blood is 25 mmHg higher than that of intersti-
tial fluid because it has a higher density of proteins. What is the difference in
their densities of proteins that accounts for this?



520 8 Cardiovascular System

8.36. (more advanced) The blood hematocrit is usually higher nearer the
center of a blood vessel than at the blood vessel wall and has a distribution
that we will take as h(r) = H[1 − (r/R)2] from r = 0 to R [406]. (The
reason why flowing suspended particles, such as red blood cells, have higher
concentrations near the center, called the Fahraeus–Lindquist effect, is not
obvious.)
(a) The volume flow of a cylindrical shell in the vessel is 2πrv(r)dr, where
v(r) = 2u

(
1 − r2/R2

)
from (7.40), so this flow weighted for the hematocrit is

2πrh(r)v(r)dr. Therefore the average hematocrit in the transported blood is
hav =

∫ R
0 2πrh(r)v(r)dr/

∫ R
0 2πrv(r)dr. Show that H = 3hav/2.

(b) Now find the average value of the hematocrit at any given time in the blood
vessel by calculating

∫ R
0 2πrh(r)dr/

∫ R
0 2πr dr. Show that for the parabolic

distribution of hematocrit this volume-averaged hematocrit is 3hav/4.
(c) The result in (b) states that the average hematocrit of the blood in the
vessel at any given time is less than that in the blood that is being transported.
Is this a contradiction?

8.37. (more advanced) Repeat parts (a) and (b) in Problem 8.36 assuming
h(r) = H exp(−r/R) and show the volume-averaged hematocrit is 0.88hav

[406].

8.38. (more advanced) The analysis in Problems 8.36 and 8.37 assumed
that the parabolic v(r) we derived earlier assuming a constant viscosity is
still valid when the hematocrit – and consequently the viscosity – decreases
with radius. This should not be true. Qualitatively, how would you expect
the spatially varying hematocrit and viscosity to affect the parabolic flow
rate?

The Heart and Circulation

8.39. Would you expect cardiac muscle to be most similar to Type I, IIA, or
IIB skeletal muscle? Why?

8.40. Compare the total mechanical and metabolic powers needed by the left
heart and the right heart to pump blood.

8.41. Determine all the pressures, volumes, and flow rates in the overall body
circulation model using the data provided in the Table 8.7. Do your answers
agree with your expectations, such as the values in Table 8.1?

8.42. The volumetric flow rate out of a ventricle has been described in terms
of the heart rate F and stroke volume Vstroke as Q = FVstroke, while flow rates
have also been expressed in terms of the vessel cross section A and flow speed
u as Q = Au. Explain why these two characterizations are either consistent
or inconsistent.
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8.43. If the cardiac output is 5 L/min and heart rate is 1 Hz, determine
the volume of the left ventricle at its peak if the ejection fraction is
65%.

8.44. There is a hole in the septum that separates the left ventricle and right
ventricle (Fig. 8.60).
(a) Explain why you would expect the pressure in the left ventricle to decrease
and that in the right ventricle to increase.
(b) Explain why you would expect the stroke volume from the left ventricle
to decrease because of this.
(c) Explain why the oxygenation of the blood in the left ventricle would de-
crease and that in the right ventricle would increase.
(d) If during systole the (gauge) pressure, stroke volume, and oxygenation
levels (relative to that in the vena cavae) in the left ventricle each decreases
by 10% as a result of this, explain quantitatively how the body could try to
compensate for this?

8.45. (a) If the inner volume of the left ventricle is 100 cm3 and the wall
volume is 30 cm3, find the inner radius, outer radius, and wall thickness for
the ventricle modeled as a hemispherical shell.
(b) Find the wall stress during systole.

8.46. The cardiac output of a woman remains at 5 L as she ages from 25 to
65 years of age, while her blood pressure increases in the average way.
(a) How does her total vascular resistance change?
(b) What fractional changes in vessel radius do this correspond to? (Assume
conditions for arterioles.)

8.47. When blood is pumped out of the left ventricle, it travels “upward” a
distance of about 10 cm in the aorta during the ∼0.2 s duration of the peak
of systole, stretching the walls of this very compliant vessel. There are no
external forces on the body during this time, so the center of mass of the
body does not move. Consequently, when the stroke volume of blood (of mass
mblood ! 70 g) is ejected upward, the rest of the body (of mass mrest ! 70 kg)
moves “downward” (ignoring gravity and frictional forces). This is the basis
of the diagnostic method called ballistocardiography, in which a person rests
horizontally on a light, very low friction horizontal suspension [367]. (Such
devices have been used to develop methods that assess heart function, but are
not in clinical use.) Assume the person is lying along the x direction on this
“couch” – with his head pointing in the positive direction – and the center of
mass of ejected blood is at xblood, that of the rest of the body is at xrest, and
that of the entire body is xbody.
(a) Show that xrest = (xbloodmblood + mrestxrest)/(mblood + mrest) always.
(b) Now let us call the positions in (a) those before systole. At the end of
the main part of systole, the blood and rest of the body have moved by
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∆xblood and ∆xrest, respectively. Show that the body has moved by ∆xrest =
−(mblood/mrest)∆xblood and that this is −0.1 mm.
(c) Because the blood moves with a constant velocity in this motion in the
aorta, show that the velocity of the body during systole is −0.5 mm/s in the
x direction.
(d) What is the average of ∆xrest during a full cardiac cycle? Why?

8.48. Someone wants to donate two pints of blood instead of the usual (and
allowed maximum of) one. What consequences could this have?

8.49. (advanced problem) (a) Solve (8.92) assuming that the flow QL(t) is a
constant a from t = 0 to αT , and 0 from t = αT to T , where 0 ≤ α ≤ 1. (This
repeats for every heart beat.) Note that the pressure at the beginning and
end of each cardiac cycle is Pdiastole and it becomes Psystole at t = αT . (Hint:
The analysis is similar to that for exciting an isometric muscle in Chap. 5 (see
(5.11)–(5.13)) and temperature regulation in Chap. 13 (see (13.18)); also see
Appendix C.)
(b) Show that a = Vstroke/αTCsa.
(c) Show the solutions from (a) lead to the relations

Pdiastole = Psystole exp(−(1 − α)T/τ) and (8.122)

Psystole = Vstrokeτ/αTCsa+(Pdiastole−Vstrokeτ/αTCsa) exp(−αT/τ). (8.123)

(d) Sketch Psa(t) for several heart beats for α = 1/3. Compare this sketch
with those from the simple model in Fig. 8.56 and the real pulse in Fig. 8.54.
Is this model better? Why?
(e) Show that when α = 0 the solutions in (a) and (c) give the results presented
in the text for the simpler model.

8.50. The solution to the classic Windkessel Model for steady-state flow that
is suddenly turned off is exponential decay of the flow, as we saw in the simple
model of the arterial pulse. In the electrical analog in Fig. 8.57 this corresponds
to tracking the current when a constant voltage is initially applied and is
suddenly turned off. Analyze this electrical problem analog and show that it
has the same solution as the flow problem.

8.51. (advanced problem) Solve the electrical analog in Problem 8.50 for the
three-element Windkessel Model.

8.52. (advanced problem) Solve the electrical analog in Problem 8.50 for the
viscoelastic Windkessel Model.

Scaling

8.53. Calculate the heart mass and heart beat rate (in beats per minute) for a
man (70 kg), woman (50 kg), and an infant (5 kg) using the allometric relation
parameters in Table 1.13.
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8.54. The heart rate of mammals F is known to decrease with body mass
as m−1/3

b . This seems to be true interspecies and also within a species. The
human heart rate is known to decrease from infancy, through childhood and
to maturity in a manner described better by body mass than age. Derive this
relation using the dimensional analysis methods presented in Chap. 1. Assume
that the stroke volume scales as body mass. Assume that a primary function
of circulation is to bring warm blood from the core to the body surface to
keep it warm. This means that the total blood flow rate scales as the rate of
heat loss from the body.
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Lungs and Breathing

Our lungs serve several important functions. They interact with blood by ex-
changing carbon dioxide for oxygen (Chap. 8) and they maintain the blood pH.
The lungs are involved in heat exchange and fluid balance in the body, because
relatively dry and usually cooler air is inhaled and air at the body temper-
ature saturated with water vapor is exhaled (Chap. 6). They are also a key
element in voice production (Chap. 10). We will highlight the mechanics of
breathing [423, 424, 428, 429, 430, 432, 434, 435, 439, 443, 444].

We typically breathe in 6 L/min of air. (This compares to the ∼5–
6 L of blood pumped per min in the pulmonary circulation through the
lungs.) Because air is ∼20% oxygen, we inhale (inspire) 1.2 L oxygen/min.
The breathing rate is typically 12/min for men, 20/min for women, and
60/min for infants. The air we inhale has 80% N2/20% O2 (or more pre-
cisely 78.084% N2/20.947% O2/0.934% Ar/0.035% CO2), and the air we
exhale (expire) has 80% N2/16% O2/4% CO2. (If the air we exhaled had
little or no oxygen, we could not use it for mouth-to-mouth resuscita-
tion.) We breathe in roughly 10 kg air/day, with ∼2 kg O2/day. The lungs
absorb about 0.5 kg O2/day (400 L). We exhale air with ∼0.5 kg water
vapor/day.

Because we inspire and expire air at the same rate (if not where would
the difference go?), it is clear the body uses ∼0.3 L oxygen/min during usual
sedentary activity, delivered by the ∼5–6 L of blood pumped per min. We
have called this rate of oxygen consumption in the body dVO2/dt in Chaps. 6
and 8. During aerobic exercise dVO2/dt increases linearly with cardiac output
Qt (see Fig. 8.27, and (6.18) and (8.33)). The maximum rate of oxygen usage
is ≈2.8 L/min for a person of average fitness and ≈4 L/min for a highly fit
person. This assumes the lungs bring in air at a rate fast enough to maintain
the needed oxygenation of arterial blood.

Gauge pressures, relative to atmosphere, are usually used in discussing
breathing. Two roughly equal types of units are commonly used, mmHg and
cmH2O, with 1 mmHg = 1.36 cmH2O.
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9.1 Structure of the Lungs

Air is inhaled through the nose or mouth and then through the pharynx,
larynx, and the trachea (windpipe) (Fig. 9.1). The trachea divides into the
right and left bronchus (Fig. 9.2), each of which continues to bifurcate into
smaller and smaller bronchi and bronchioles over 23 levels of bifurcation
(224 = 1.6 × 108) (Table 9.1, Figs. 9.2 and 9.3) until they form alveoli (which
is the plural of alveolus) (al-vee-oh’-lie (lus)), which are the actual operat-
ing units of the lungs. The average diameter of the airways decreases with
generation z, as d(z) = 2−z/3d(0) until generation 16. This relation is the
optimal design of a branched system of tubes in hydrodynamics. There are
about 3 × 108 alveoli, each ∼0.2–0.3 mm in diameter, with walls that are

Fig. 9.1. Diagram of parts of the respiratory system. (These components are also
important in voice production (Chap. 10). The vocal cords (or vocal folds) used in
speaking are in the larynx.) (From [425]. Used with permission)



9.1 Structure of the Lungs 527

Fig. 9.2. The relationship between the lung and heart is shown. The first few
generations of the branching of the air vessels in the lungs, pulmonary arteries, and
the pulmonary veins are shown. These three systems can be called the three “trees”
of the lung. Note that the pulmonary arteries are close to the bronchi, while the
pulmonary veins stand alone. (From [427])

∼0.4 µm thick. They are in contact with blood in the pulmonary capillaries
(Fig. 9.4), which themselves form after subdividing in 17 branches (Table 9.2,
Figs. 9.2 and 9.5). Oxygen diffuses from the alveoli to the red blood cells,
while carbon dioxide diffuses from the blood into the air in the alveoli. The
total surface area of the alveoli is ∼80 m2 (ranging from 50–100 m2). The total
external surface area of the lungs is only ∼0.1 m2, so subdividing into alve-
oli results in a tremendous increase in the surface area in contact with the
blood, by a factor of almost 1,000. This is also the factor by which the oxygen
intake increases. Without this, we would never even come close to meeting
our metabolic needs for oxygen. Our chests expand when we breathe because
incoming air filling the alveoli makes each one bigger, just as with ordinary
bubbles.

The circulatory system is the conduit for the transfer of O2 and CO2

between the alveoli and tissues, and so we should track the partial pressure
in each system. Within the alveoli the partial pressure of O2 is $105 mmHg,
which is smaller than that in the atmosphere (159 mmHg = 21% of 760 mmHg)
because of the dead volume in the respiratory system. The partial pressure
of O2 blood in the pulmonary capillaries increases from 40 to $100 mmHg
after O2 is transferred from the alveoli, and this is the partial pressure in the
pulmonary veins and systemic arteries. The partial pressure of O2 in tissue
is 40 mmHg, so that after transfer of O2 from the capillaries to surrounding
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Table 9.1. Approximate quantification of the bronchial system. (Using data from
[426, 440]. Also see [441, 442])

pulmonary branch generation branch branch total volume air
z diameter length cross- (cm3) speed

(mm) (mm) sectional (cm/s)
area (cm2)

trachea 0 18.0 120.0 2.5 31 393
main bronchus 1 12.2 47.6 2.3 11 427
lobar bronchus 2 8.3 19.0 2.1 4.0 462

3 5.6 7.6 2.0 1.5 507
segmental bronchus 4 4.5 12.7 2.5 3.5 392

5 3.5 10.7 3.1 3.3 325
bronchi 6 2.8 9.0 4.0 3.5 254

w/cartilage in wall 7 2.3 7.6 5.1 3.8 188
8 1.86 6.4 7.0 4.4 144
9 1.54 5.4 9.6 5.2 105

10 1.30 4.6 13 6.2 73.6
terminal bronchus 11 1.09 3.9 20 7.6 52.3

12 0.95 3.3 29 9.8 34.4
bronchioles 13 0.82 2.7 44 12 23.1

w/muscle in wall 14 0.74 2.3 69 16 14.1
15 0.66 2.0 113 22 8.92

terminal bronchiole 16 0.60 1.65 180 30 5.40
respiratory bronchiole 17 0.54 1.41 300 42 3.33
respiratory bronchiole 18 0.50 1.17 534 61 1.94
respiratory bronchiole 19 0.47 0.99 944 93 1.10
alveolar duct 20 0.45 0.83 1,600 139 0.60
alveolar duct 21 0.43 0.70 3,200 224 0.32
alveolar duct 22 0.41 0.59 5,900 350 0.18
alveolar sac 23 0.41 0.50 12,000 591 0.09
alveoli, 21 per duct 0.28 0.23 3,200

The air speed is assumed to be 1 L/s. The data include that for both lungs. The
number in each generation is 2z (for generations z = 0–23), and 300 × 106 for the
alveoli.

tissues, the partial pressure in the systemic veins and pulmonary arteries is
also $40 mmHg – and then it is again increased to 100 mmHg in the lungs.

Similarly, within the alveoli the partial pressure of CO2 is $40 mmHg; this
is much larger than that in the atmosphere (∼0.25 mmHg), again because of
the dead volume. The partial pressure of CO2 blood in the pulmonary capil-
laries decreases from 46 to $40 mmHg after CO2 is transferred to the alveoli,
and this is the partial pressure in the pulmonary veins and systemic arteries.
The partial pressure of CO2 in tissue is 46 mmHg, so that after transfer of CO2

into the capillaries from the tissues, the partial pressure in the systemic veins
and pulmonary arteries is also $46 mmHg – and then it is again decreased to
40 mmHg in the lungs.
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Fig. 9.3. Bifurcations of lung airways, showing generation number z. (From [436])

Fig. 9.4. The details of the alveolar bifurcation are shown in (a). These alveoli are
sacs imbedded in capillary beds. The details of the interaction between the alveoli
and capillaries are depicted in (b) and (c). (From [436])
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Table 9.2. Branching structure of the pulmonary arterial network. (Using data
from [426, 438])

pulmonary number vessel vessel
branching of branches length diameter
order of each order (mm) (mm)

1 1 90.5 30.0
2 3 32.0 14.83
3 8 10.9 8.06
4 20 20.7 5.82
5 66 17.9 3.65
6 203 10.5 2.09
7 675 6.6 1.33
8 2,290 4.69 0.85
9 5,861 3.16 0.525

10 17,560 2.10 0.351
11 52,550 1.38 0.224
12 157,400 0.91 0.138
13 471,300 0.65 0.086
14 1,411,000 0.44 0.054
15 4,226,000 0.29 0.034
16 12,660,000 0.20 0.021
17 300,000,000 0.13 0.013

Fig. 9.5. A silicone elastomer cast of the venous tree of the lung of a cat. The
venous pressure was −7 cmH2O (= −5 mmHg), the airway pressure was 10 cmH2O
(= 7 mmHg), and the pleural pressure was 0 cmH2O. (From [427])
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9.2 The Physics of the Alveoli

The alveoli are similar to interconnected bubbles. Inside them the pressure is
Pin and outside the pressure is Pout, with ∆P = Pin − Pout, and they have a
radius R. The Law of Laplace for a sphere (7.9) is

∆P =
2T

R
, (9.1)

where T is the tension in the sphere walls. The main source of this tension
in the alveoli is not within the walls but on the surfaces. This contribution is
called the surface tension γ, which has the same units as T – of force/length or
energy/area. In typical bubbles, such as soap bubbles, both surfaces contribute
the same surface tension and so T is replaced by 2γ. Therefore we find

∆P = Pin − Pout =
4γ

R
. (9.2)

For the water/air interface γ $ 7.2×10−4 N/m (Table 7.2). In alveoli, however,
only the surface tension of the inner surface is really important because it is
a fluid/air interface with larger surface tension than the fluid/fluid interface
of the outer surface, and so

∆Palveoli = Pin − Pout =
2γ

R
. (9.3)

There is an apparent instability that seemingly leads to an unreasonable
situation in interconnected bubbles or alveoli. Consider two bubbles that are
initially not interconnected, as in Fig. 9.6, because there is a plug between
them. Bubble #1 has an internal pressure P1 and radius R1, and Bubble #2
has an internal pressure P2 and radius R2. (Because the difference between
the pressure inside and outside the bubble is what is significant, the external

Fig. 9.6. Instability of bubbles, according to the Law of Laplace. This assumes that
the surface tension does not change with bubble (or alveolus) radius. The external
pressure is 0
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pressure is equal to zero.) In equilibrium, the internal pressure Pinternal =
4γ/R for each bubble. (Whether this factor is 4 or 2 is not significant here.) Say
Bubble #2 is the smaller bubble. Because R2 < R1, in equilibrium P2 > P1;
the smaller bubble has the higher internal pressure. If the plug is opened,
air will flow from higher pressure to lower pressure, and therefore from the
smaller bubble to the larger bubble. The loss of air in Bubble #2 makes it
smaller. With this smaller radius, the equilibrium internal pressure increases.
Because this pressure is still higher than in Bubble #1, air continues to flow
from the smaller bubble to the larger bubble, until it collapses.

This implies that the largest of the hundreds of millions of alveoli would
get ever larger at the expense of all of the smaller ones and the system of
alveoli we have described for the lungs could not be stable. What is wrong?
There is no error in our reasoning; however, we have made one assumption
that is not accurate for alveoli. We implicitly assumed that the surface tension
is not a function of radius R. There is a surfactant on the surfaces of the alveoli
of healthy people, containing dipalmitoyl phosphatidycholine or DPPC, that
causes γ(R) to decrease for decreasing R. With ∆P = 2γ(R)/R, as R of
the smaller bubble or alveolus becomes smaller in Fig. 9.6, eventually γ(R)
decreases with smaller R faster than R does itself, as in Fig. 9.7, so ∆P begins
to decrease with smaller R. Such a system of interconnected alveoli is stable.

We can see how such a dependence of γ(R) can occur with the following
model. The surface of an alveolus can be covered either with a lipoprotein
or by water; the surface tension of the lipoprotein is much lower (γlung =
1×10−3 N/m) than that of water (γwater = 7.2×10−2 N/m (= 72 dynes/cm)).
Assuming the alveolus is spherical, for one particular radius R0 there is exactly
one monolayer of lipoprotein on the whole surface and at that radius the
surface tension is γlung over the 4πR2

0 surface area. If this alveolus becomes
smaller, so R < R0, it has several monolayers of lipoprotein on its surface and

Fig. 9.7. Surface tension on alveoli walls (lung extract) in (b), as measured by the
surface balance in (a) which measures surface tension vs. area. Similar measurements
for detergent and water are also shown. (Based on [430, 443])
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its surface tension is still γlung, and so

γ(R) = γlung for R ≤ R0. (9.4)

If this same alveolus instead becomes larger, so R > R0, it has a monolayer
of lipoprotein over only a portion of its surface (of surface area 4πR2

0 because
the layer cannot become smaller than a monolayer) and water over the rest
of the surface (of area 4πR2 − 4πR2

0). So the average surface tension is

γ(R) =
4πR2

0γlung + (4πR2 − 4πR2
0)γwater

4πR2
for R > R0 (9.5)

or

γ(R) = γwater −
R2

0

R2
(γwater − γlung) for R > R0. (9.6)

This approaches the much smaller γwater for R ' R0 at a rate that is faster
than 1/R, so the alveoli will be stable.

Because this lipoprotein is only on one of the surfaces, the stability con-
dition is ∆P = 2γ/R. For R > R0, there is a stable equilibrium when
d(∆P )/dR = d[2γwater/R − 2(R2

0/R3)(γwater − γlung)]/dR = 0 or

d(∆P )
dR

= −2γwater

R2
+ 6

R2
0

R4
(γwater − γlung) = 0 (9.7)

or

Req =
√

3
γwater − γlung

γwater
R0. (9.8)

Because γwater ' γlung, the equilibrium radius Req $
√

3R0.
Figure 9.7 shows that this surface tension of the surfactant in the lung

decreases from 5×10−2 N/m (50 dynes/cm) to zero as the area of the film gets
smaller. Alveoli are typically stable at approximately 1/4 of their maximum
size.

One function of the surfactant is to provide alveolus stability. Another
function is to lower the amount of force needed to be supplied by the di-
aphragm to inflate the alveoli. With γwater = 7.2×10−2 N/m and R = 0.05 mm
of the alveoli when they are collapsed (and need to be inflated), (9.3) gives
∆Palveoli = 2.9×103 N/m2 = 22 mmHg. The area of an adult diaphragm mus-
cle is about 500 cm2, so the force it needs to exert to expand the alveoli for
breathing is ∼150 N – which corresponds to a weight of 15 kg. With the lower
surface tension of the lung surfactant, this force is over an order of magni-
tude smaller and breathing is easier, especially for infants. This explains why
people with insufficient surfactant – with hyaline membrane disease – have
difficulty breathing.
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Fig. 9.8. (a) Pushing a fist into a balloon is analogous to the lungs in the pleural
cavity. (b) Schematic of the lungs in the pleural cavities. (Based on [439])

9.3 Physics of Breathing

Each lung is surrounded by a sac membrane within the thoracic cavity. We can
picture the pleural sac as a balloon, as in Fig. 9.8, filled with intrapleural fluid.
The inside wall of this sac, the visceral pleura (membrane), attaches to the
outer lung wall. The outside wall of this sac, the parietal pleura (membrane),
attaches to the thoracic wall. It is the springiness of the lung that pulls the
two pleural membranes apart, and this causes a slight decrease of pressure of
the pleural sac relative to atmospheric pressure of −4 mmHg to −6 mmHg.
This pressure difference is what keeps the lungs expanded, and keeps them
from collapsing. The mechanical “driving force” in controlling lung volume is
the transpulmonary pressure, which is the difference in pressure in the alveoli
in the lungs and that around the lung in the pleural sac, which is called
the intrapleural (or pleural) pressure. (The alveolar and pleural pressures are
gauge pressures, referenced to atmospheric pressure.)

The lungs are expanded and contracted by the motion of structures sur-
rounding them by way of inspiratory and expiratory muscles. This occurs in
two ways (Fig. 9.9), of which only the first is used during quiet breathing (1)
The diaphragm moves downward to lengthen the chest cavity (by pulling the
bottom of the lungs downward) during inspiration. During quiet breathing,
the lungs contract by the natural elastic recoil of the lungs and chest wall,
with the diaphragm relaxed, while in heaving breathing this contraction is



9.3 Physics of Breathing 535

Fig. 9.9. Expansion and contraction of the thoracic cage during expiration and
inspiration, showing the ribs, lungs and heart, the external intercostal muscles (that
contract during inspiration to elevate the rib cage and widen it laterally so the cage
increases in all three dimensions), and the diaphragm (that contracts to increase the
vertical dimension of the cage during inspiration). (From [437])

accelerated by the contraction of the abdominal muscles that push the ab-
dominal contents and then the diaphragm upward to shorten the chest cavity.
(2) The ribs are elevated by the neck muscles to increase the anteroposte-
rior (front-to-back) diameter of the chest cavity and are depressed (lowered)
by the abdominal recti to decrease it. This causes chest cavity expansion
and contraction, respectively, because the ribs slant outward and have larger
transverse cross-sectional areas in the lower sections; this can increase the
anterior–posterior chest thickness by about 20% during inspiration.

How does this help bring air into the lungs? Before inspiration, there is
atmospheric pressure in the lungs. The attractive force of the visceral pleura
for the parietal pleura and the outward force of the outer lung wall due to the
lower-than-atmospheric pressure in the pleural sac (∼ −4 mmHg) cause each
lung to expand. In equilibrium their sum is balanced by the tendency of the
lungs to contract due to their springiness. This preinspiration force balance is
shown in Fig. 9.10. They are no longer in balance during inspiration.

The steps in inspiration (inhaling) are shown in Fig. 9.11. The inspiratory
muscles (diaphragm and external intercostals) increase the dimensions of the
rib cage (the thoracic cavity). This causes the visceral and parietal pleurae
to separate. The lung volume then increases because (1) the attraction of the
visceral and parietal pleurae increases as they are separated further and (2)
this separation causes Plung − Ppleura to decrease even more, from ∼ −4 to
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Fig. 9.10. Force balance of the visceral pleura/outer lung wall during preinspiration.
Note that the forces are really normal to the wall everywhere, not just at the bottom
as depicted. (Based on [439])

∼ −6 mmHg (i.e., from ∼756 to 754 mmHg absolute pressure). Because both
of these forces in the direction of lung expansion increase, they now overcome
the springiness of the lungs that favors lung contraction – and the lung ex-
pands. The pressure in the lungs and alveoli decreases from ∼0 to ∼ −1 mmHg
(i.e., from ∼760 to 759 mmHg absolute pressure), and then air flows from the

Fig. 9.11. (a) Force imbalance at the onset of inspiratory muscle contraction (and
expansion of the thoracic wall/parietal pleura) leads to a (b) subatmospheric pres-
sure in the lungs and flow of air into the lungs. (Compare this to the preinspiration
force balance in Fig. 9.10). (Based on [439])
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Fig. 9.12. The measurement of the pressure–volume curve of an excised lung, which
shows hysteresis in inflation and deflation. (Based on [443])

mouth and nose into the lungs. During normal breathing exhaling is auto-
matic, requiring no contraction by muscles. Muscle contraction is necessary
during heavy exercise to inhale more fresh air and to actively exhale stale air.

9.4 Volume of the Lungs

The volume of the lungs depends on the transpulmonary pressure, as is seen
in Fig. 9.12 for an excised lung. The inflation and deflation curves are not the
same; as in Chap. 4, this is called hysteresis.

The volume of the lungs during different stages of normal and deep breath-
ing is a good diagnostic of lung functionality. It is easily measured using a
spirometer (Fig. 9.13). Figure 9.13 shows one such measurement during dif-
ferent types of breathing. In this example, during normal breathing the lung
volume is seen to oscillate between 3.2 L after normal inspiration and 2.2 L
after normal expiration. The difference is the tidal volume (TV) (∼1 L), which
is the usual lung volume used during breathing when at rest. The volume af-
ter normal expiration is the functional residual capacity (FRC). After a deep
inspiration the lung volume is the total lung capacity (TLC), ∼6L. This ex-
ceeds the volume after normal inspiration by the inspiratory reserve volume
(IRV, which is also one of the author’s nicknames). After a deep expiration,
the remaining volume is the residual volume (RV), ∼1 L. The difference in
lung volumes after deep inspiration and deep expiration is the vital capac-
ity (VC) ∼5 L, which also equals the total lung capacity minus the residual
volume. After deep expiration the lung volume is smaller than that after nor-
mal expiration by the expiratory reserve volume (ERV), which also equals the
functional residual capacity minus the residual volume.

The vital capacity is an important measure of how well the lungs are
functioning. (More importantly, you need a robust vital capacity to inflate
balloons.) The functional reserve capacity is the volume of stale air that nor-
mally mixes with new air (the tidal volume). There is also dead space. Some is
anatomic (0.15 L), due to the trachea and bronchii, and some is physiological
alveoli dead space, where the alveoli have no access to blood.
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Fig. 9.13. (a) Lung volume changes during breathing cycles, (b) along with a
schematic of a spirometer. (Based on [422, 443])

We know that we inhale air that is 80% N2/20% O2/0% CO2, it mixes
with stale air, and after diffusion across the alveoli walls we exhale air that
is 80% N2/16% O2/4% CO2. What is the composition of this stale air? Let
us call its composition 80% N2/x% O2/y% CO2. After inspiration the lungs
have a tidal volume of 80% N2/20% O2/0% CO2 air that has mixed with
a functional reserve capacity of 80% N2/x% O2/y% CO2 air. If the tidal
volume is a fraction α of this volume, the functional reserve capacity volume
fraction is 1 − α. After inhalation the composition of air in the lungs is 80%
N2/[20α + (1 − α)x]% O2/(1 − α)y% CO2. Say a fraction β of all of the
inhaled air is absorbed by the lungs. This means that a fraction β of the
20α% O2 in the lungs is absorbed, which is 20αβ% O2. There is an equal
20αβ% increase in CO2 that diffuses into the lungs. So, after the oxygen
and carbon dioxide transfer, the air in the lungs has a composition of 80%
N2/[20α− 20αβ + (1−α)x]% O2/[20αβ + (1−α)y]% CO2, which is exhaled.
Therefore, the oxygen and carbon dioxide fractions are, respectively,

16% = [20α − 20αβ + (1 − α)x]% (9.9)

4% = [20αβ + (1 − α)y]%. (9.10)

The tidal volume fraction is α = 1/3 and the fraction of inhaled oxygen that
is absorbed by the lungs is β = 1/4. This gives x = 16.5 and y = 3.5, so
the stale air in the lungs has a composition 80% N2/16.5% O2/3.5% CO2.
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(This air is clearly oxygenated enough to be useful during mouth-to-mouth
resuscitation.)

9.5 Breathing Under Usual and Unusual Conditions

9.5.1 Flow of Air During Breathing

During inspiration, air flows because the pressure is lower in the lungs and
alveoli by a positive amount ∆P than in the atmosphere. The amount of air
that flows is determined by the resistance and compliance of the respiratory
system.

The compliance of the lung is ∼0.2 L/cmH2O and it decreases for a normal
person with higher expanding pressures, as is seen by the decreasing slope in
Fig. 9.12. In trying to evaluate lung performance, the specific compliance of the
lung is perhaps more meaningful, for which the lung compliance is normalized
by a characteristic of the person’s size, such as a characteristic lung volume
(FRC, VC, TLC, etc.), the lung dry weight, or the body weight. The elasticity
of the chest, as well as that of the lung, contributes to the lung compliance.

Airway resistance is dominant in the generation of the intermediate sized
bronchii, as seen in Fig. 9.14a and Problem 9.21. Poiseuille’s Law (7.24) can
be used to calculate the airway resistance in the lungs (Problems 9.21–9.23)
and other passages (Problems 9.16 and 9.18). The total airway resistance
is typically ∼2 cmH2O/(L/s) during normal breathing and it decreases with
increasing lung size (Fig. 9.14b). (It is measured as in Fig. 9.17 later).

Fig. 9.14. (a) Airway resistance for each bronchus generation, and (b) total airway
resistance and conductance vs. lung volume. (Based on [443], from (a) [433], (b)
[421])
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Fig. 9.15. Pressure–volume curves of the lungs, chest wall (no lungs), and chest wall
with lungs, with relaxed respiratory muscles. The lung data are the same as those
in Fig. 9.12, except no hysteresis is shown and the airway pressure is of the opposite
sign to the pressure around the lung. FRC is the functional residual capacity. The
measurement is made with a spirometer-like apparatus, similar to that in Fig. 9.13b.
(Based on [443])

This airway resistance is about 80% of the total pulmonary resistance. The
other 20% is due to viscous forces in chest and lung wall movement, and this
is called tissue resistance.

The elastic properties of the thoracic cage (with the chest well) are impor-
tant in breathing, as are those of the lungs. Figure 9.15 shows the volume of
the lungs, chest walls alone, and the lungs in the chest wall as a function of
pressure. This is measured after inspiration or expiration with a spirometer
and subsequent relaxing of respiratory muscles. At every volume the pressure
(the relaxation pressure) of the lung/chest wall combination is the sum of
those for the lungs and chest walls separately.

Is the pressure difference between the alveoli and atmosphere large enough
to drive the right amount of air into our lungs each breath? (Under normal
conditions, it had better be.)

During each breath, this pressure difference starts at zero, increases to
a maximum ∆Pmax, and then decreases to zero again at the end of the
breath. Let us determine the average pressure difference in this sequence.
We will model inhalation as a half cycle of a sine wave with: ∆P (t) =
∆Pmax sin(2πft) = ∆Pmax sin(πt/Thalf period), which lasts a half-cycle time
Thalf period = 1/(2f). (The parameter f is the same as the breathing or res-
piratory rate only if the inhalation and exhalation times are the same.) For
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f = 0.25 Hz, Thalf period = 2 s. The average pressure difference during this
inhalation is

∆Pav =
1

Thalf period

∫ Thalf period

0
∆Pmax sin(πt/Thalf period)dt (9.11)

∆Pav =
∆Pmax

Thalf period

Thalf period

π
(cos(πThalf period/Thalf period) − cos(0))

=
2
π

∆Pmax, (9.12)

so for ∆Pmax = 1.1 mmHg, we see that ∆Pav = 0.7 mmHg.
Let us say that the inflow of air per breath is Vin. Then the average flow

rate is Qav = Vin/Thalf period. For Vin = 0.5 L, this is 0.25 L/s. If the flow rate
is proportional to the pressure drop, Q and ∆P have the same dependence
on time and so Qmax = (π/2)Qav, which is (π/2)0.25 L/s = 0.4 L/s, and
Q(t) = Qmax sin(2πft) = Qmax sin(πt/Thalf period). Moreover, Q = ∆P/Rflow,
where Rflow is the total resistance to flow in the nasal passages, trachea, and
so on. The resistance to flow is Rflow = ∆P/Q, and so using average values
we see that Rflow = 0.7 mmHg/(0.25 L/s) = 3.7 × 105 Pa-s/m3.

Is the flow laminar or turbulent? If the trachea has a radius of 9 mm, the
air flows at a maximum speed umax = Qmax/A = (400 cm3/s)/(π(0.9 cm)2) =
160 cm/s. The Reynolds number (7.11) is Re = ρud/η. Using the mass
density of air at body temperature ρ = 1.16 × 10−3 g/cm3 and the air
viscosity 2 × 10−5 Pa-s = 2 × 10−5(N/m2)s, we find that Re = (1.16 ×
10−3 g/cm3)(160 cm/s)(1.8 cm)/(2 × 10−4(dyne/cm2)s) = 1,600, so the flow
would generally be expected to be laminar in the trachea, as well as in the
nasal passages and pharynx. However, some turbulence is expected because
the walls of these passages are not smooth.

9.5.2 Mechanical Model of Breathing and Model Parameters

We have just examined only the resistance to flow during breathing. Figure
9.16b shows a more complete mechanical model of the lungs and breathing.
It is a compliance vessel described by V (t) = Vd + CflowP (t), attributed to
the springiness of the lungs, in series with an inertial element. They are in
parallel with a resistive element, attributed to the airway resistance we just
examined. These model elements are driven by a pressure determined by the
inspiratory muscles.

9.5.3 Inspiration/Expiration Cycle

Figure 9.17 shows the lung pressure, rate of flow of air into the lungs, and
lung volume vs. time during a cycle of inspiration and expiration. If the effect
of airway resistance were neglected, the alveolar pressure would be zero and
the intrapleural pressure would follow the broken curve, which is determined
by the elastic recoil of the lung.
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Fig. 9.16. (a) Work done during inspiration (areas I + II + III) and work recovered
during expiration (area I). With no viscous, resistive forces, the work in inflating
the lung would be areas I + II, and this is associated with the lung compliance. The
extra work done overcoming respiratory flow resistance is area III. (b) Mechanical
model of breathing has the lumped compliance (elastance) Cflow, resistance Rflow,
and inertance Iflow, and P represents the inspiratory muscles. The inertance can be
neglected except for large flows. (Based on [430, 444])

Fig. 9.17. Lung volume, intrapleural pressure, flow, and alveolar pressure vs. time
during a breathing cycle. If the effect of airway resistance were neglected, the alveolar
pressure would be zero and the intrapleural pressure would follow the broken curve.
(Based on [443])
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Fig. 9.18. Typical lung volume vs. pressure for patients with various respiratory
conditions. The monotonically increasing curves are for static conditions, with the
lower horizontal bar being the residual volume and the upper horizontal bar the func-
tional residual capacity. Representative dynamic breathing loops (enclosed dashed
curves) for tidal volume breathing are shown for each condition. (Reprinted from
[430], with permission of Elsevier)

It is also instructive to plot these variables as functions of each other.
Lung volume is plotted vs. lung pressure for all times during a breathing
cycle in the dashed cycle trajectories in Fig. 9.18. Time is an implicit variable
along the trajectories. Such plots are useful because the model of the lungs
includes a compliance vessel in which volume and pressure are interrelated.
The differences in various modes of breathing are easily seen in such plots.

9.5.4 Breathing with a Diseased Lung

The static and dynamic pressure–volume curves in Fig. 9.18 indicate how dif-
ferent diseases affect lung compliance, lung volume, and airway resistance.
Obstructive disorders are due to airway obstructions, and include chronic
bronchitis (excessive mucus production in the bronchial tree), emphysema
(enlargement of air spaces after the terminal bronchiole, with the destruction
of respiratory system walls, such as those of the alveoli), and asthma (wide-
spread narrowing of airways, sometimes spontaneously). Such obstructions
(Fig. 9.19) can be due to excessive secretions (due to chronic bronchitis),
thickening of airway walls (edema or muscle hypertrophy), and outside
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Fig. 9.19. (a) Normal airway and obstructed airways due (b) blocking, (c) airway
wall thickening, and (d) outside abnormality. Also see Fig. 9.22. (Based on [444])

abnormalities (edema, enlarged lymph nodes, or destruction of lung alveoli
tissue as in emphysema). (Edema is an excessive accumulation of fluid in tis-
sue spaces or a body cavity.) These obstructions and the loss of small airways
due to the destruction of lung tissue all increase airway resistance. The break-
down of elastic alveoli walls also reduces the springiness, and therefore also
the compliance. Restrictive disorders are those in which the expansion of the
lung is restricted. The decreased compliance (slope) in pulmonary fibrosis and
idiopathic respiratory distress syndrome (RDS) is clear in Fig. 9.18. They are
characterized by a lower vital capacity, but airway resistance (per lung vol-
ume) is not increased. There are also vascular disorders, such as pulmonary
edema, which is the abnormal accumulation of fluid in the lungs.

Poor breathing due to a diseased lung is manifest in different ways. As
seen in Fig. 9.20, the inspired volume is very low if the compliance is less than
normal and/or the airway resistance is greater than normal. A spirometer with
a low resistance can also be used to test for lung malfunctions in a manner that
is slightly different from that used in Fig. 9.13. After a very deep inhalation,
a person forces air out as fast as possible. The total volume exhaled is the
forced vital capacity (FVC), which can be a bit less than the vital capacity

Fig. 9.20. Lung volume during inspiration for (a) normal conditions, (b) decreased
compliance, and (c) increased airway resistance. (Based on [443])
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Fig. 9.21. Forced expiration for (a) normal, (b) obstructive, and (c) restrictive
patterns. (Based on [444])

measured with slower expiration. Also of note is the volume exhaled in the
first 1 s, which is the forced expiratory volume (FEV) (or FEV1, which denotes
specifically that this volume was expired in 1 s), and the ratio FEV/FVC. As
seen in Fig. 9.21, for a normal lung FVC = 5.0 L and FEV/FVC = 80%.
The example of an obstructive pattern has a lower FV, 3.1 L, and smaller
FEV/FVC, 42%. The example of a restrictive pattern also has a lower FV,
3.1 L, but a high FEV/FVC, 90%. The flow rates for the obstructive pattern
are also abnormally low (Problem 9.27).

Figure 9.18 shows cycles that typify the breathing cycles of a normal per-
son and of people with lung disorders. The divisions between the alveoli break
down in people with emphysema. Consequently, the lungs become less springy
and more compliant, and the airway resistance contribution dominates breath-
ing. In pulmonary fibrosis, the compliance is reduced by an increase in fibrous
tissue. This condition increases in pulmonary emphysema and in normal ag-
ing, due to a change in elastic tissue in the lungs. The volume/pressure locus
is also shown for idiopathic respiratory distress syndrome (RDS). It is seen
to move to higher pressure due to a lack of alveoli surfactant, as occurs in
some premature babies. In such infants the minimal surface tension is only
2 × 10−4 N/m, compared to )0.5 × 10−4 N/m for normal lungs. With less
surfactant, the alveolus surface tension decreases and, at the same pressure
difference the alveolus is smaller. Figure 9.22 shows that the airways tend

Fig. 9.22. Airways dimensions for different patients. (Based on [444])
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to collapse in emphysema because of the loss of radial traction with exterior
structures, while in interstitial fibrosis the airways can become large in di-
ameter, due to excessive radial traction, making the airways large in volume
relative to the lungs.

9.5.5 Breathing at Higher Elevations

The partial pressure of oxygen is 161 mmHg (21.2 kPa) at sea level (300 K).
Hypoxia (which is the lack of oxygen reaching living tissues) occurs below a
critical partial pressure of 57 mmHg (7.5 kPa), for a normal, relaxed breathing
rate. (Another way of saying this is: Our bodies have been designed so that our
rate of breathing air, rate of transferring oxygen to the blood, the capacity of
the blood to hold oxygen, the rates of blood flow to tissues, and so on leads to
a metabolism that functions well when the partial pressure of oxygen is above
this critical value.) At what elevation above sea level does hypoxia occur?

The pressure of a fluid column of constant fluid density ρ and constant
gravitational constant g is given by (2.48), P = ρgh, where h is the height of
the column. In Chap. 8 we considered a column of blood; now let us consider
a column of air at a height z and above, where z = 0 at sea level. The change
in pressure for a change in height is

dP = −ρgdz. (9.13)

Because we will be considering heights above sea level that are much smaller
than the radius of the earth, we have ignored the dependence of the gravita-
tional acceleration g on z. (It is considered in Problem 9.35.)

The ideal gas law (7.2) is P = nRT , where n is the density, R is the gas
constant, and T is the temperature, or P = ρRT/m

P =
RT

m
ρ, (9.14)

where ρ = mn is the mass density, with m the molecular mass. We will
assume that the atmospheric temperature (300 K) does not vary with height
(see Problem 9.40). Dividing (9.13) and (9.14) gives

dP

P
= −mg

RT
dz. (9.15)

Integrating from sea level, z = 0 with pressure Psea level, to a height h, with
pressure P (h), gives

P (h) = Psea level exp
(
−mg

RT
h
)

. (9.16)

Using the partial pressure of oxygen at sea level and m = 32 g/mol for oxygen,
this shows that hypoxia occurs at a height of 8.25 km (= 27,100 ft = 5.1 miles).
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9.6 Work Needed to Breathe

During inspiration the thorax and abdomen do positive work to expand the
lungs [420, 430, 431, 443]. The body does no work during normal expiration,
but during forced breathing work is also done to contract the lungs during
expiration. Because V = Vd + CflowP , for the breathing cycle with volume
changing between the functional residual capacity volume, VFRC, and that
plus the tidal volume, VFRC + Vt, we can write V (t) = VFRC + CflowP (t). We
see that ∆V (t) = V (t)− VFRC = CflowP (t) or P (t) = ∆V (t)/Cflow. The work
done during inhaling a tidal volume Vt is

W =
∫ Vt

0
Pd(∆V ) =

∫ Vt

0

∆V

Cflow
d(∆V ) =

V 2
t

2Cflow
. (9.17)

In Fig. 9.16a, the work done overcoming these elastic (compliance) effects is
the area defined by regions I + II, and this is what we have derived here (and
will use later). The work is really larger, the area represented by regions I +
II + III, because of viscous (resistive) effects. (These viscous/resistive effects
also lead to the hysteresis here and in Fig. 9.12, just as in Chap. 4.)

For a breathing rate of f , the rate of doing work for inspiration is

dW

dt
= f

V 2
t

2Cflow
. (9.18)

With a breathing rate of 20/min, tidal volume of 500 cm3, and lung compliance
of 0.1 L/cmH2O = 0.1 cm3/(dyne/cm2), this is

dW

dt
=

(20/min)(500 cm3)2

2 × 0.1 cm3/(dyne/cm2)
= 3.6 × 103 J/day = 0.86 kcal/day. (9.19)

The respiratory muscle efficiency is ε = 5–10%, and so the metabolic
need is

dE

dt
=

dW/dt

ε
=

0.86 kcal/day
0.05

= 17 kcal/day (9.20)

assuming 5% efficiency; this calculation is very sensitive to the values chosen
for Cflow and ε. This result is about 1% of the BMR; however this value is
really about 2% of the BMR, so maybe ε is closer to 3% or other effects
need to be considered, such as dissipation due to resistance of the flow and
the viscous nature (of the overall viscoelasticity) of the lungs and chest wall.
Airflow resistance in the nose seems to be responsible for about half of the
work needed to breath.

During normal breathing there is no mechanical work done in expiration.
During heavy workouts and strenuous exercise the metabolic needs increase
because there is (1) also work done during expiration, (2) a faster breathing
rate, and (3) a larger tidal volume. The work done to breathe can use 25%
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Fig. 9.23. Intrapleural, alveoli, airway, and atmospheric pressures in cmH2O during
inspiration and forced expiration. (Based on [443])

of the total body energy consumption. Such a large increase is suggested by
Fig. 8.27. Rapid shallow breathing (as recommended in Lamaze training for
childbirth) requires more energy than does normal breathing, to overcome
the resistive nature of flow in the air passages. Similarly, slow, deep breathing
requires more energy to overcome the elastic nature of the lung and chest.
Problem 9.12 compares other relative advantages and disadvantages of these
last two modes of breathing.

Another interesting thing can occur during forced expiration. In normal
breathing the pressure in the airways always exceeds the intrapleural pres-
sure during inspiration and expiration (as is seen in Fig. 9.23 during normal
inspiration). However, during forced expiration the intrapleural and alveoli
pressure both increase by the same amount (38 cmH2O) and so they are both
positive relative to the atmosphere (+30 and +38 cmH2O in the figure). There
is now a large pressure drop from the alveoli to the lips and nostrils. At some
point along this route the pressure in the airway will be lower than 30 cmH2O
and this will compress the airways (shown where the pressure is +19 cmH2O
in this figure) and increase the airway resistance.

9.7 Summary

The macroscopic basis of lung function and breathing can be understood
by analyzing the volume, pressure, and air flow during breathing, by using
models of fluid flow and lung expansion. The physical nature of the individual
operating units in the lungs, i.e., the alveoli, can also be understood this way.
These models can also be used to understand the physical consequences of a
diseased lung. The energy needed to operate the lungs can also be modeled.

Problems

Lungs

9.1. Calculate the effective lung volumes and breathing rates for a man
(70 kg), woman (50 kg), and an infant (5 kg) using the allometric relation
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parameters in Table 1.13. How do the breathing rates compare with those
given above?

9.2. If there are 3 × 108 alveoli in a lung with a functional residual capacity
(FRC) of 2.5 L, calculate the average volume and radius of an alveolus.

9.3. Use Table 9.1 to show that the air travels a total distance of 273 mm
from the trachea to the alveoli.

9.4. What is the total volume of the lungs described in Table 9.1? Where is
most of the volume?

9.5. Is continuity of flow obeyed by the data for the lungs in Table 9.1? Check
this using the data for bronchial generations 0, 1, 2, 3, 4, 5, 10, 16, 20, and
23.

9.6. Calculate the Reynolds number for the bronchial generations listed in
Problem 9.5. Is the flow laminar or turbulent in the respiratory system?

9.7. Calculate the pressure drop across pulmonary arterial orders 1, 4, 10, 13,
16, and 17, assuming a total blood flow of 5 L/min.

9.8. The CO2 level in the atmosphere was ∼280 ppm (parts per million) in
preindustrial times and is ∼380 ppm now. Express these levels in terms of
mmHg. Would this change be expected to affect the exchange of CO2 in the
lungs in any significant manner?

Alveoli and Surface Tension

9.9. Derive (9.8) from (9.7).

9.10. Estimate the force the adult diaphragm would need to exert if there
were no lung surfactant.

Breathing

9.11. Use Fig. 9.13b to explain how a spirometer works. How much should
the water in the spirometer rise and fall during breathing cycles? (Assume
reasonable dimensions for the instrument.)

9.12. During breathing, the pulmonary ventilation, Vp (in L/min) (the rate
at which air enters the trachea), equals the respiratory rate, R (in units of per
min), times the tidal volume, Vt (in L). Because of the anatomical dead space
volume Vd, only Vt − Vd enters the alveoli (and is thus of use). Therefore, a
more meaningful ventilation rate is the alveolar ventilation Va = R(Vt − Vd):
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Table 9.3. Examples of breathing cycles

activity R Vt

(per min) (L)

(i) at rest, quiet breathing 12 0.5
(ii) at rest, with rapid, shallow breathing 24 0.25
(iii) at rest, with very rapid, very shallow breathing 40 0.15
(iv) at rest, with slow, deep breathing 6 1.0
(v) exercising, with rapid, shallow breathing 24 0.5
(vi) exercising, with slow, deep breathing 12 1.0

(a) Find Vp and Va for the conditions in Table 9.3, assuming Vd = 0.15 L.
(b) Compare the pulmonary ventilation for the four breathing patterns in
this table for the person at rest. (Patterns (ii)–(iv) require more metabolic
power than does (i), because of increased work due to resistance to flow and
resistance in the tissues for (ii) and (iii), and increased work due to compliance
(elastic) forces of the lung and chest in (iv)) Which of the four are clearly
inadvisable because of poor alveolar ventilation?
(c) During exercise, both the respiratory rate and tidal volume increase. Based
on the results in part (a) for (i)–(iv) and for (v)–(vi), do you gain more by
breathing faster or deeper for a given pulmonary ventilation?

9.13. What are the maximum and average air flows for each breathing cycle in
Problem 9.12, assuming the inhalation and exhalation periods are the same?

9.14. (a) When you take in a deep breath of say 1 L, how much does your
mass (in kg) and weight (in N and lb) increase?
(b) Does your average density increase, decrease, or stay the same? If there is
a change, estimate it.

9.15. (a) What does Fig. 8.27 say about the amount of oxygen that can be
consumed per amount of cardiac output?
(b) What does it say about how much oxygen is needed to do work? Is this
consistent with what is presented in the text?
(c) How is work output defined in this figure?

9.16. Estimate the resistance of the trachea using Poiseuille’s Law, assuming
it has a radius of 9 mm and a length of 110 mm. How does this compare to
the total resistance?

9.17. Estimate the resistance of the vocal tract using Poiseuille’s Law, assum-
ing it can be modeled as three tubes in series with respective lengths 6, 3, and
6 cm and cross-sectional areas 5, 1, and 5 cm2. (Also sketch this model.)

9.18. Estimate the resistance of the nasal passage using Poiseuille’s Law, as-
suming it has a radius of 4 mm and a length of 3 cm. How does this compare
to the total resistance and is it a limiting factor in the resistance to flow?
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9.19. If you model the breathing airway as a series of sequential passages, the
nasal or mouth passage, the pharynx, larynx, and then trachea, each with a
resistance to air flow, what is the total resistance to air flow in terms of these
individual resistances?

9.20. In both inspiration and expiration, a pressure difference of 0.4 cmH2O
causes a flow of 0.15 L/s in the nose. Determine the flow resistance in it.

9.21. Consider the lung bifurcation generations 1–19 in Table 9.1:
(a) In which generation is the flow resistance largest? What is its value?
(b) Do your results agree with those in Fig. 9.14a?
(c) In which generation is the pressure drop greatest, and generally in what
range of bifurcations is most of the pressure drop?

9.22. The total airway resistance is the sum of those in each generation. Do
the resistances in Fig. 9.14a add to give you a total resistance consistent with
that in Fig. 9.14b?

9.23. Calculate the resistance for generation 4 using Poiseuille’s Law and
compare it to the values given in the chapter.

9.24. (a) Use Fig. 9.15 to determine the compliance of the lungs (Cflow,lung)
and chest walls (Cflow,chest wall) at 0, 20, 40, 60, and 80% of vital capacity.
(b) Determine the compliance of the combined lung/chest wall system
(Cflow,lung/chest wall) at these volumes, and compare these values with those
from part (a) by using 1/Cflow,lung/chest wall = 1/Cflow,lung + 1/Cflow,lung/chest wall.

9.25. (a) Use Fig. 9.18 to determine the compliance of the lungs for each
condition (within the lowest 5 cmH2O pressure range shown for each).
(b) How does the compliance vary for each over the pressure range shown?

9.26. Compare the specific lung compliances of a 65 kg man and 20 g mouse,
with respective compliances of 0.2 L/cm-H2O and 0.0001 L/cm-H2O.

9.27. Show that the forced expiratory flow (FEF) rates for the normal, ob-
structive, and restrictive flows in Fig. 9.21 are 3.5, 1.4, and 3.7 L/s, respec-
tively. Do this by determining the slopes of the three curves in this figure.
(Use a straight-line fit between points that have decreased by 25% and 75%
on the way to the FVC.)

9.28. Determine the air flow resistance from the flow rate and alveoli pressure
in Fig. 9.17.

9.29. Consider only the compliance in the work of breathing and assume that
the compliance Cflow for normal lungs is 0.1 cm5/dyne:
(a) In fibrosis of the lungs the compliance of the lungs decreases. For a given
tidal volume, how does the rate of work of breathing change if the compliance
decreases by x%?
(b) Compare the rate of work done in breathing (J/day) and the associated
rate of metabolism (kcal/day) (if the muscles associated with breathing are
5% efficient) for cases (i) and (iv) in Problem 9.12 for normal lungs.
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9.30. (advanced problem) Write down the equation of motion for the mechan-
ical model in Figure 9.16b and solve it for inspiration.

9.31. (advanced problem) Show that the solution in Problem 9.30 qualita-
tively agrees with the trends seen in Fig. 9.20: with decreased compliance, the
time constant decreases and the volume breathed during a cycle decreases,
while with increased airway resistance, the time constant increases and the
volume breathed during a cycle decreases.

9.32. Estimate the rate of energy consumed by the lungs during exercise with
a breathing rate of 40/min and tidal volume of 1,000 cm3.

9.33. Use a blood circulation rate of 5 L/min and the known change in the
partial pressures of O2 and CO2 in the systemic capillaries to find the number
of liters of O2 consumed and CO2 exhaled each day. How do your results
change if you instead use the change in the partial pressures of O2 and CO2

in the pulmonary capillaries? Explain why.

9.34. If your chest wall and parietal pleura of a lung are punctured, the in-
trapleural pressure will increase to atmospheric pressure and that lung will
collapse. Explain why. Also draw a diagram explaining this.

Breathing at High Elevation

9.35. (a) Show that the gravitational acceleration constant g varies with
height z above sea level as g(z) = g (REarth/(REarth + z))2, where the ra-
dius of the earth is REarth = 6, 378 km.
(b) Show that this variation does not affect the analysis of oxygen deprivation
at high elevations, described in the text.

9.36. What is the atmospheric pressure in the “mile-high” city of Denver?
What is the partial pressure of oxygen there?

9.37. Commercial jets typically cruise at an altitude of ∼10,700 m (∼35,000 ft).
What are the total pressure and partial pressure of oxygen at that height?
Why are jets pressurized? Why are oxygen masks made available just in case
the cabin is depressurized?

9.38. Why do some athletes train at high elevations?

9.39. Apply (9.16) to the variation of the partial pressure of nitrogen, us-
ing m = 28 g/mol. Let us say here that the ratio of oxygen to nitrogen is
20.9%/78.1% = 0.268 at sea level. What is this ratio at the critical height for
hypoxia?

9.40. The temperature of the troposphere (the atmosphere up to roughly
11 km) decreases with height, by a bit less than 1 K per 100 m of elevation. In
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Table 9.4. Total and partial pressures at different elevations. (Using data
from [445])

altitude sea level at 2,500 m

atmospheric pressure (total) 760 560
atmospheric pressure (O2) 159 117
in alveoli (O2) 105 77
in arterial blood (O2) 100 72
in venous blood (O2) 40 40

the standard atmosphere T (z) = Tsea level + αz, with Tsea level = 288.19 K and
α = −0.00649 K/km. (For a dry atmosphere, α = −0.0098 K/km.):
(a) Use this temperature variation in (9.15) to show that

P (h) = Psea level (Tsea level/(Tsea level + αh))gm/Rα . (9.21)

(b) Show that hypoxia occurs at a lower elevation, 7.21 km.

9.41. Table 9.4 compares the partial pressure of oxygen (in mmHg) in the air
and in the body at sea level and at an elevation of 2,500 m:
(a) Justify the values given for total pressure and O2 partial pressure at
2,500 m.
(b) Justify the O2 partial pressure in the alveoli at 2,500 m by using the pres-
sure at sea level.
(c) At sea level your blood flows at a rate of 5 L/min. How fast would it have
to flow at an elevation of 2,500 m to provide the same flow of oxygen to the
tissues? (Assume no change in the red blood cell and hemoglobin concentra-
tions in the blood. These increase as part of adapting to higher elevations.)
(d) How much faster would you have to breathe at this elevation (in liters of
air per min) to maintain the same rate of oxygen delivery? How could this
translate into changes in the breathing rate and tidal volume?


