Dynamic Control Heterogeneous Sensors for Flood Management

Systematic Review in Software Engineering

Luiz Fernando Ferreira Gomes de Assis Prof. Dr. João Porto de Albuquerque Profa. Dra. Elisa Yumi Nakagawa

Context

 3 000 floods have occurred around the world, between 1980 and 2008;
 More than 190 000 deaths;
 Almost U\$ 400 million;

- miscellaneous participation of geosensors, for example, they can fail, they can continuously move and be programmable;
- subscribe geosensors to receive alerts and notifications about their measurements;

Context

Middleware that provides interoperable communication between geosensors and web applications;

A Geospatial Open CollaboRative Architecture (AGORA) that builds resilient communities against disasters and climate change impacts

RQ1. How to dynamically control heterogeneous geosensors used in flood managing?

∞ Q1.1. How to dynamically discover a "sensor"?

Q1.2. How to access a "sensor" and its metadata using an interoperable communication between sensors and web application?

Q1.3. Which are the details for sensors implementation that applications should be isolated?

ℴ Q1.4. How to subscribe sensors?

Important Factors

- Reputation: Approaches employed to dynamically manage heterogeneous geosensors.
- **Intervention:** Protocols and Standards to manage heterogeneous sensors.
- C Effect: Defining a gap related to the question focus, getting to know researches group in this research area, increasing a base knowledge and point to specifics researches that can solve the question.
- Outcome Measure: performance, scalability, reusability, interoperability, standizable.
- Application: Defense civil, researches of area and resilience communities.

Inclusion Criteria

Researches that approach techniques to integrate Sensors, UAVs or "Sensor as Humans";

Researches that involve a middleware used by web applications or geosensors;

Researches related to Sensor Web;

Exclusion Criteria

Researches that weren't published yet; Researches that aren't in English; Researches; caUnavailable Researches; ^{ca}Quality Researches below than 3 points; Researches unrelated to sensors, networks sensors and "Human and Sensors". Researches related to hardware components; Researches that aren't papers.

- \propto G1 Were the goals clear?
- \propto G2 Was there a context description?
- ∝ G3 Was the documentation proper?
- \curvearrowright G4 Were the results impartial analyzed?
- \propto G5 Were the results clear?
- ∞ G6 Did add results value to the research area?.

Conduction

Manual Search

Studies Reference

Jirka, S., et al. (2009) Discovery Mechanisms for the Sensor Web. Sensors.

Jirka, S., et al. Applying OGC Sensor Web Enablement to Risk Monitoring and Disaster Management.

Sagl, G., et al. Standardised geo-sensor webs and web-based geo-processing for near real-time situational awareness in emergency management. Int. J. Business Continuity and Risk Management.

Fei Wang & Hongyong Yuan (2010): Challenges of the Sensor Web for disaster management, International Journal of Digital Earth, 3:3, 260-279.

Control Papers

Studies Reference

Broering, A., S. Jirka & T. Foerster (2010): The Sensor Bus - Integrating Geosensors and the Sensor Web. Second Open Source GIS UK Conference - OSGIS 2010. 21.-22. June 2010. Nottingham, UK.

Broering, A., T. Foerster, S. Jirka & Carsten Priess (2010): Sensor Bus: An Intermediary Layer for Linking Geosensor Networks and the Sensor Web. In: Proceedings of COM.Geo 2010, 1st International Conference on Computing for Geospatial Research and Applications, ACM. 21.-30. June 2010. Washington, USA.

Broering, A., S. Jirka & T. Foerster (2010): The Sensor Bus - Integrating Geosensors and the Sensor Web. Second Open Source GIS UK Conference - OSGIS 2010. 21.-22. June 2010. Nottingham, UK.

Broering, A., Maue, P., Janowicz, K., Nuest, D. & Malewski, C. (2011): Semantically-Enabled Sensor Plug & Play for the Sensor Web. Sensors, 11(8), pp. 7568-7605.

Electronic Search

Database	Search String	Recovered
Scopus	TITLE-ABS-KEY((Geosensor OR {Geo-sensor} OR {Heterogeneous Sensor} OR GSN OR {Sensor Web} OR {Web Sensor} OR {Web Sensing}) AND (Middleware OR {Intermediary Layer} OR {Sensor Bus} OR {Plug & Play} OR {Plug and Play} OR PnP))	102
IEEE Xplore	((geosensor OR "geo-sensor" OR "heterogeneous sensor" OR gsn OR "sensor web" OR "web sensor" OR "web sensing") AND (middleware OR "intermediary layer" OR "sensor bus" OR "plug & play" OR "plug and play" OR pnp))	0
ACM Digital Library	(Title:((geosensor or "geo-sensor" or "heterogeneous sensor" or gsn or "sensor web" or "web sensor" or "web sensing") and (middleware or "intermediary layer" or "sensor bus" or "plug & play" or "plug and play" or pnp))) or (Abstract:((geosensor or "geo-sensor" or "heterogeneous sensor" or gsn or "sensor web" or "web sensor" or "web sensing") and (middleware or "intermediary layer" or "sensor bus" or "plug & play" or "plug and play" or pnp))) or (Keywords:((geosensor or "geo-sensor" or "heterogeneous sensor" or gsn or "sensor web" or "web sensor" or "web sensing") and (middleware or "intermediary layer" or "sensor bus" or "plug & play" or "plug and play" or pnp)))	14
Science Direct	TITLE-ABSTR-KEY((geosensor OR {geo-sensor} OR {heterogeneous sensor} OR gsn OR {sensor web} OR {web sensor} OR {web sensing}) AND (middleware OR {intermediary layer} OR {sensor bus} OR {plug & play} OR {plug and play} OR pnp))	3
ISI Web of Science	TI=((geosensor OR "geo-sensor" OR "heterogeneous sensor" OR gsn OR "sensor web" OR "web sensor" OR "web sensing") AND (middleware OR "intermediary layer" OR "sensor bus" OR "plug & play" OR "plug and play" OR pnp)) OR TS=((geosensor OR "geo-sensor" OR "heterogeneous sensor" OR gsn OR "sensor web" OR "web sensor" OR "web sensing") AND (middleware OR "intermediary layer" OR "sensor bus" OR "sensor web" OR "web sensor" OR "web sensing") AND (middleware OR "plug & play" OR "sensor web" OR "heterogeneous sensor" OR "geo-sensor" OR "heterogeneous sensor" OR gsn OR "sensor web" OR "plug & play" OR "geo-sensor" OR "heterogeneous sensor" OR "sensor web" OR "sensor web" OR "web sensor" OR "web sensing") AND (middleware OR "intermediary layer" OR "sensor bus" OR "plug & play" OR "plug and play" OR pnp))	69
Springer	((geosensor OR "geo-sensor" OR "heterogeneous sensor" OR gsn OR "sensor web" OR "web sensor" OR "web sensing") AND (middleware OR "intermediary layer" OR "sensor bus" OR "plug & play" OR "plug and play" OR pnp))	5

First Phase

∞ It was found 193 primary studies

Some of them were duplicated and unavailable (6 studies).

∞ It remains 119 studies.

Second Phase

Reach study was analyzed by reading only title, abstract and keywords;

A It remains 52 studies to be read through full-text;

Inclusion List

#	E	A Title	Y 1)	4 Ti	Bi	
1	🐼 Co.	Ab Infrastructure for data processing in large-scale interconnected sensor networks	20 P	r Inc.	201	Abe	
2	Co.	Ah Study on robustness middleware using integrating sensor observation service in sens	20 Ir	nt Inc.	201	Ahn	
3	Co.	Bo Standards-based sensor interoperability and networking SensorWeb: An overview	20 P	r Inc.	201	Boll	
4	Arti.	. Bo A semantics-based middleware for utilizing heterogeneous sensor networks	20 L	e Inc.	201	Bou	
5	Co.	Br Interaction patterns for bridging the gap between sensor networks and the sensor web	20 2	0 Inc.	201	BrÃ	
6	Arti.	. Br Semantic challenges for sensor plug and play	20 L	e Inc.	201	BrÃ	
7	🚫 Arti.	. Br Semantically-enabled sensor Plug & Play for the Sensor Web	20 S	e Inc.	201	BrÃ	-
8	Arti.	. Br {New Generation Sensor Web Enablement}	{20 {	S Inc.	201	ISI:	-
9	🚫 Co.	. Br Sensor bus: An intermediary layer for linking geosensors and the Sensor Web	20 A	C Inc.	201	Bro	
10	Inp.	. Br {Semantic Challenges for Sensor Plug and Play}	{20	Inc.	201	ISI:	
11	💽 Arti.	. Br {Semantically-Enabled Sensor Plug \& Play for the Sensor Web}	{20 {	S Inc.	201	ISI:	
12	🚫 Arti.	. Ch An efficient method for near-real-time on-demand retrieval of remote sensing observati	20 IE	E Inc.	201	Che	
13	🚫 Arti.	. Ch Use of ebRIM-based \{CSW\} with sensor observation services for registry and discover	20 C	o Inc.	201	Che	
14	🚫 Co.	Ch An efficient sensor observation data registration based on asynchronous service middl	20 P	r Inc.	201	Che	
15	🚫 Arti.	. Ch A flexible data and sensor planning service for virtual sensors based on web service	20 IE	Inc.	201	Che	
16	🚫 Co.	Ch Open sensor web architecture: Core services	20 P	r inc.	201	Chu	
17	🚫 Co.	. Ch Applying and extending sensor web enablement to a telecare sensor network architect	20 P	r Inc.	201	Chu	
18	Inp.	. Ch {Applying Complex Event Processing and Extending Sensor Web Enablement to a Heal	. {20	Inc.	201	ISI:	
19	🚫 Arti.	. De Using a link metric to improve communication mechanisms and real-time properties in	20 L	e Inc.	201	DeF	
20	🚫 Co.	Do Opportunistic pervasive computing with domain-oriented virtual machines	20 P	r Inc.	201	Do	
21	🚫 Co.	Du Information services and middleware for the coastal sensor web	20 10	C Inc.	201	Dur	
22	🚫 Arti.	. Du Standards-based middleware and tools for coastal sensor web applications	20 IE	E Inc.	201	Dur	
23	🚫 Arti.	Fo Servilla: A flexible service provisioning middleware for heterogeneous sensor networks	20 S	ici Inc.	201	Fok	
24	🚫 Arti.	de Coordinating aerial robots and unattended ground sensors for intelligent surveillance s	. 20 Ir	nt Inc.	201	deF	
25	🚫 Co.	. GÃ SStreaMWare: A service oriented middleware for heterogeneous sensor data manage	20 P	r Inc.	201	GÃ	
26	🚫 Co.	. GÃ Sensor data management in dynamic environments	20 P	r Inc.	201	GÃ	+
×	Require	d fields 🔲 Optional fields 🧧 General 📄 Abstract 📄 Review 🗦 BibTeX source					
3++	1003110100						-
	File				Au	to	
0					Daw	land)	_
D					Down	load	
<u>~</u>	Doi						
	Url	http://www.scopus.com/inward/record.url?eid=2-s2.0-77956069390&partnerID=40&md5=d4a7	1d48400)2830e	dd74f32	26f 🍨	
	Comment						
	Owner	Incluído: Researches that involve a middleware used by web applications or geosensors				Auto	
0	Timestamp	2013 06 27			6	1	-

Exclusion List

#		E	Author	Title	Y	Jo				
1		Arti	Le-Phuo	{A middleware framework for scalable management of linked streams}	{20	{JO	Ex	2	l	
2	0	Co	Mechitov	Building portable middleware services for heterogeneous cyber-physical systems	2012	201	Ex	2	M	
3	0	Co	Pereral	Capturing sensor data from mobile phones using global sensor network middleware	2012	IEE	Ex	2	P	
4	0	Co	Perlepe	PLATO - Intelligent middleware platform for the collection, analysis, processing of dat	2012	Pro	Ex	2	P	=
5	0	Arti	Picone e	. Mobile architecture for dynamic generation and scalable distribution of sensor-based	2012	Lect	Ex	2	P	
6	0	Arti	Lee et al.	Design and implementation of middleware for greenhouse based on ubiquitous sen	2010	Lect	Ex	2	L	
7	0	Co	Lee et al.	The evolution of the SEMAT sensor network management system	2011	Pro	Ex	2	L	
8	0	Co	Le-Trun	DCM-arch: An architecture for data, control, and management in wireless sensor netw	2009	Pro	Ex	2	L	
9	0	Co	Leuchter	Personalisation in German smart sensor web	2006	Pro	Ex	2	L	
10	0	Co	Liscano	Integration of component-based frameworks with sensor modelling languages for the	2010	201	Ex	2	Li	
11	0	Co	Mandl a	Experimenting with an evolving ground/space-based software architecture to enable s	2005	Pro	Ex	2	M	
12	0	Co	Nam et al.	Data processing mechanism for supporting distributed system of heterogeneous sen	2010	201	Ex	2	N	
13	0	Co	Panang	A system to provide real-time collaborative situational awareness by Web enabling a	2012	GIS:	Ex	2	P	
14	0	Co	Park et al.	Design and implementation of home sensor service platform	2010	ICC	Ex	2	P	
15	0	Co	Park et al.	Design of home sensor service platform using sensor network middleware	2010	Dig	Ex	2	P	
16	0	Co	Perera e	Connecting mobile things to global sensor network middleware using system-genera	2012	Mob	Ex	2	P	
17	0	Arti	Pignaton	. Multi-agent support in a middleware for mission-driven heterogeneous sensor networ	2011	Co	Ex	2	P	
18	0	Co	TuÃin et	Global sensor modeling and constrained application methods enabling cloud-based	2012	Pro	Ex	2	T	
19	0	Co	Zeeb et al.	. Generic sensor network gateway architecture for plug and play data management in s	2009	ETF	Ex	2	Z	
20	0	Arti	Zheng et	Integration of hydrological observations into a spatial data infrastructure under a sens	2012	Inte	Ex	2	Z	
21	0	Co	Kim et al.	The access control model in ubiquitous sensor network environment	2009	NC	Ex	2	K	
22		Arti	Kim et al.	{Energy-Efficient Distributed Spatial Join Processing in Wireless Sensor Networks}	{20	{IEI	Ex	2	I	
23	0	Co	Kinnebr	Intelligent resource management and dynamic adaptation in a distributed real-time a	2009	Pro	Ex	2	K	
24	0	Arti	Koutsou	OASIS: A service-oriented architecture for ambient-aware sensor networks	2007	Lect	Ex	2	K	
25	0	Co	Stirbu	Towards a RESTful plug and play experience in the Web of Things	2008	Pro	Ex	2	S	
26	0	Arti	Kim et al.	USN middleware security model	2009	Lect	Ex	2	K	-
×	F	Require	ed fields	Optional fields General Abstract Review 🕃 BibTeX source						
N.	Keyw	vords				-				^
۲	File						A	uto		
13							Dou	nlas	4	

 Image: Second second

