SECTION 9

SCUBA TANK

SCUBA TANK

- Topics covered in this section
- Axisymmetric modeling techniques
- Importing Geometry
- Mesh Density Control
- Perform quality checks on stress results
- Create and manipulate viewports

SCUBA TANK

- Problem Description
- Scuba tanks are designed to withstand cyclic pressurization and depressurization loads. They must also survive loads induced during transportation and actual service. You are asked to analyze a new scuba tank design.
- Analysis Objectives
- Determine stresses in the scuba tank under an internal pressure of 3000 psi. The maximum stress must be below the yield point of the tank material.

SCUBA TANK

- Getting started on the scuba tank analysis
- The scuba tank is a thick shell structure. We expect the state of stress to be 3 dimensional in the tank shell. Solid elements should be used.
- Solid element models tend to get large and take a lot of CPU time to solve. This is especially true for non-linear or transient analysis. It is often advisable to simplify the model in order to speed up the analysis process.
- Several ways to simplify finite element models are presented next.

SCUBA TANK

- Simplifying Finite Element Models
- Finite element models can be simplified by using a 2D (planar) representation of a 3D model. There are three ways to do this:
- Plane Stress
- Plane Strain
- Axisymmetric
- Finite element models can also be simplified by taking advantage of symmetry. There are two primary types of symmetry - reflective symmetry and cyclic symmetry. Symmetry techniques will be presented in detail in the advanced course.

SCUBA TANK

- The Plane Stress Model
- Assumptions:
- Z stress is zero
- Stresses do no vary through the thickness
- One way to identify a plane stress model is to look for structures in which the thickness is small compared to the other two dimensions.

SCUBA TANK

- The Plane Strain Model
- Assumptions:
- Z strain is zero
- The depth of the plane strain model is large compared to the cross section.
- Plane strain problems are common in civil engineering and are used to model retaining walls or dams.

Retaining Wall

Earth Dam

$$
\begin{gathered}
\varepsilon_{Z}=0 \quad \gamma_{X Z}=\gamma_{Y Z}=0 \\
\left\{\begin{array}{l}
\sigma_{X} \\
\sigma_{Y} \\
\sigma_{Z}
\end{array}\right\}=\frac{E}{(1+\psi)(1-2 \psi)}\left[\begin{array}{ccc}
1-\psi & \psi & 0 \\
\psi & 1-\psi & 0 \\
0 & 0 & 1-\psi
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{X} \\
\varepsilon_{Y} \\
\gamma_{X Y}
\end{array}\right\}
\end{gathered}
$$

SCUBA TANK

- The Axisymmetric Model
- Assumptions:
- The geometry, loads, and boundary conditions are not a function of q.
- Another way to state this is
 and boundary conditions do not vary in the circumferential direction.
- Axisymmetry is commonly used to analyze pressure vessels and tanks.

$$
\left\{\begin{array}{l}
\sigma_{f} \\
\sigma_{Z} \\
\sigma_{\theta} \\
\tau_{\mathrm{IZ}}
\end{array}\right\}=\frac{E}{(1+\psi)(1-2 v)}\left[\begin{array}{cccc}
1-\psi & \psi & v & 0 \\
v & 1-\psi & v & 0 \\
v & v & 1-v & 0 \\
0 & 0 & 0 & 1-\psi
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{\mathrm{I}} \\
\varepsilon_{\mathrm{I}} \\
\varepsilon_{\theta} \\
\gamma_{\mathrm{IZ}}
\end{array}\right\}
$$

SCUBA TANK

- Simplification of the scuba tank model
- Since the scuba tank is axisymmetric and the pressure load is axisymmetric, we can simplify the problem using axisymmetry. We will solve this problem using two different axisymmetric methods:
- Build a sector of the tank using 3D solid elements
- Build the tank cross section using 2D solid elements

SCUBA TANK

- Creating the geometry for the tank
- A geometry file for the scuba tank generated by a CAD package is available so there is no need to re-create the geometry.
- Use File/lmport to import the geometry file directly into PATRAN.

SCUBA TANK

SCUBA TANK

- Models created by the following CAD packages can be imported into PATRAN:
- CATIA
- Unigraphics
- Pro/ENGINEER
- EUCLID 3
- I-DEAS

SCUBA TANK

- Additional types of geometry files can also be imported into PATRAN
- ACIS solid geometry files
- Typical file extension is .sat
- Generated by CAD systems such as Autocad, SolidEdge, and Mechanical Desktop
- Parasolid solid geometry files
- Typical file extension is .xmt
- Generated by CAD systems such as SolidWorks
- IGES geometry files
- Typical file extension is .igs
- Generated by most CAD systems
- STEP geometry files
- Typical file extension is .stp
- Generated by CAD systems such as CATIA

SCUBA TANK

- The scuba tank geometry file we have is a parasolid solid geometry model. Let's import this file into PATRAN.

SCUBA TANK

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-16

SCUBA TANK

Finish importing the parasolid model

SCUBA TANK

Rotate and shade the model

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation

S9-18

SCUBA TANK

				Geometry		Properties	Loads/BCs		Meshing	Analysis Results						
	\sim	\square	5	\xrightarrow{n}		\uparrow	\square	8	四	(0)				\$2		
Select	5	1	Show	Edit	Verify	Renumber	Delete	Associate	Disassociate							
Points	Curves	Surfaces	Solids	Coordinates	Planes	Vectors	P-Shapes		ansform				Geometry	tions		

NAS120v, Section 9, August 2009
Copyright© 2009 MSC.Software Corporation
S9-19

SCUBA TANK

SCUBA TANK

Break the remaining

 tank into two halves

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-22

SCUBA TANK

\square

SCUBA TANK

A relatively coarse mesh is created

SCUBA TANK

- Create Boundary Conditions
- Since the scuba tank is axisymmetric, we need to create a cylindrical coordinate system to define the symmetry boundary conditions.

SCUBA TANK

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright© 2009 MSC.Software Corporation
S9-27

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright© 2009 MSC.Software Corporation
S9-28

SCUBA TANK

SCUBA TANK

[Loads/BCs		Meshing	Analysis	Results	
Displacement Constraint	Force	Temp No		Velocity	Accel		Element Uniform	Element Variable	Contact Bodies *	Initial Conditions *	LBC Actions *	Create Load Case Load Cases	$\begin{gathered} \text { LBC } \\ \text { Fields } \end{gathered}$

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-30

SCUBA TANK

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation

SCUBA TANK

SCUBA TANK

						Loads/BCs		Meshing Analysis		Results	
Displacement Constraint	Force	Tempe No	Velocity	Acceleration	Element Uniform	Element Variable	Contact Bodies *	Initial Conditions *	LBC Actions	Create Load Case Load Cases	$\begin{gathered} \text { LBC } \\ \text { Fields } \end{gathered}$

SCUBA TANK

						Loads/BCs		Meshing Analysis		Results	
Displacement Constraint	Force	Tempe No	Velocity	Acceleration	Element Uniform	Element Variable	Contact Bodies *	Initial Conditions *	LBC Actions *	Create Load Case Load Cases	$\begin{gathered} \text { LBC } \\ \text { Fields } \end{gathered}$

Finish creating the radial constraint.

SCUBA TANK

						Loads/BCs		Meshing Analysis		Results	
Displacement Constraint	Force	Tempe No	Velocity	Acceleration	Element Uniform	Element Variable	Contact Bodies *	Initial Conditions *	LBC Actions *	Create Load Case Load Cases	LBC Fields *

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-37

SCUBA TANK

						Loads/BCs		Meshing Analysis		Results	
Displacement Constraint	Force	Tempe No	Velocity	Acceleration	Element Uniform	Element Variable *	Contact Bodies *	Initial Conditions *	LBC Actions *	3 $=$ Create Load Case Load Cases.	$\begin{gathered} \text { LBC } \\ \text { Fields } \end{gathered}$

SCUBA TANK

				Geometry Properties		Loads/BCs		Meshing	Analysis	Results	
Displacement Constraint	Force	Tempe No	Velocity	Acceleration	Element Uniform	Element Variable	Contact Bodies	Initial Conditions *	LBC Actions *	Create Load Case Load Cases	$\begin{gathered} \text { LBC } \\ \text { Fields } \end{gathered}$

SCUBA TANK

			Geometry		Properties	Loads/BCs		Meshing	Analysis Resu			
Displacement Constraint	Force	Tempe	Velocity	Acceler	Displa		Pressure	Temperature	il Inertial Load	Distributed Load	CID Distributed Load	Total Load
Nodal					Element Uniform							

Create a pressure load.

SCUBA TANK

			Geometry		Properties	Loads/BCs		Meshing	Analysis Resu			
Displacement Constraint	Force	Tempe	Velocity	Accele	Displa		Pressure	Temperature	il Inertial Load	Distributed Load	CID Distributed Load	$\begin{aligned} & \sum_{\text {nal }} \\ & \text { Total } \\ & \text { Load } \end{aligned}$
Nodal					Element Uniform							

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-41

SCUBA TANK

			Geometry		Properties	Loads/BCs		Meshing	Analysis	s Results		
Displacement Constraint	Force	Tempe	Velocity	Acceler	Displa		Pressure	Temperature	il Inertial Load	Distributed Load	CID Distributed Load	Total Load
Nodal					Element Uniform							

Load/Boundary Conditions ${ }^{\text {a }}$		
LoadBoundary Condtions		
Action:	Create -	\wedge
obiect	Pressure -	
Type		
Current Load Case:		
\square		
Type: Static		
Existing Sets 易		
New Set Name		
internal_pressure		
Target Element Type: 30		
Input Data...		
Select Application Region...		
-Apply-		
		\checkmark

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-42

SCUBA TANK

- Create the scuba tank material properties
- The tank is made from 17-4 PH stainless steel forging, heat treated to the H 1025 condition.
- $\mathrm{E}=28.5 \times 10^{6} \mathrm{psi}$
- $v=0.27$
- Ultimate strength $=155 \mathrm{ksi}$
- Yield strength $=145 \mathrm{ksi}$

SCUBA TANK

Create an isotropic material named 17-4PH.
S9-44

SCUBA TANK

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-46

SCUBA TANK

Submit the model to MD NASTRAN for a static analysis.

S9-47

SCUBA TANK

Group
Method: Result Entities
Available Jobs
scuba

Job Name
scuba
Job Description (TTitLE) MD Nastran iob created
O6-Apr-10 at 21:59:30

SUBTITLE
Label

Select Results File. Translation Parameters...

Apply

$$
\begin{aligned}
& \text { Code: MO Nastran } \\
& \text { Type: Structural }
\end{aligned}
$$

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation

SCUBA TANK

Object Deformation -
 是图图圆

Seiect रesuit Cases EX Default，A1：Stetic Subcase；－MD NASTF
（ ）III
Select Deformation Resut
Constrint Forces，Translational

```
Displacements, Translational
```

```
Displacements, Translational
```


Postion...((NON-LAYERED))

Resultant -
\square Aninate
Apply
Reset

SCUBA TANK

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-51
\square Ms

SCUBA TANK

- Next, let's plot the stresses
- By default, the solid element stresses are computed in the basic coordinate system.
- For the scuba tank, we are interested in the radial, hoop, and axial stresses which are defined in a cylindrical system. We need to transform the stresses from the basic coordinate system to the cylindrical coordinate system no. 1.

SCUBA TANK

Click the Plot Options icon.

Select CID and coordinate system no.

1. This transforms the stresses into
coordinate system 1.

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation

SCUBA TANK

	事 $=\mathrm{H}$		Geometry	Pro	perties	Loads/E	Cs Mes	hing		Analysis	Results						
Fringe/Deformation	Deformation	Fringe	$\underset{\text { Vector }}{\rightarrow \stackrel{1}{7}}$	Tensor	cursor	Contour	Isosurface	Free	dy	Graph	Animation	Report	-	\% a	Insight	XY Plots	Imaging
Quick Plot	Result Plots													Result A....	Insight		

SCUBA TANK

SCUBA TANK

SCUBA TANK

\square

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-59

SCUBA TANK

SCUBA TANK

- Scuba tank coarse-mesh model analysis summary:
- The maximum Von Mises stress is 31,800 psi at the base of the tank near the fillet radius.
- The stress gradient through the tank wall thickness is high. It ranges from 31,800 psi on the inside wall to about 5,000 psi on the outside wall. This stress gradient is captured by a single tet10 element through the thickness.
- The un-averaged stress fringe plot is jagged, an indication that the mesh is too coarse.
- The stress difference plot shows a maximum stress jump of 13,700 psi. This suggests that the mesh is too coarse in this area.
- This first scuba tank model was relatively coarse. It helped us identify the critical area in the tank. We will now create a second model with a finer mesh in the critical area.

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation

SCUBA TANK

SCUBA TANK

SCUBA TANK

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright© 2009 MSC.Software Corporation

SCUBA TANK

from the dome/cylinder transition point and create a plane there.
Break the solid using this plane.

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation

SCUBA TANK

> Mesh the dome portion of the tank
> with an element size of 0.25 inch.

SCUBA TANK

SCUBA TANK

SCUBA TANK

SCUBA TANK

SCUBA TANK

SCUBA TANK

Plot the Von Mises stress

SCUBA TANK

\square

SCUBA TANK

SCUBA TANK

Results	
Action:	Create -
Object	Fringe -
骂	- 5

Coordinate Transtormation
$\mathrm{ClD}-$
Select Coordinate Frame
Coord 1

Scale Factor
Filter Values: None -

Averaging Definition:
Domair: All Entities -
Method: Difference ∇
Extrapolation: Shape Fn. -
\square use PCL Expression

Define PCL Expression...
Existing Fringe Flots...

Save Fringe Plot $A s$:

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation

SCUBA TANK

- Scuba tank fine-mesh model analysis summary:
- The maximum Von Mises stress is 30,300 psi at the base of the tank near the fillet radius.
- There are 5 elements through the thickness in this critical area. The stress gradient is represented reasonably well through the thickness.
- The un-averaged stress fringe plot is relatively smooth, indicating that the re-meshing effort paid off.
- The stress difference plot shows a maximum stress jump of 4300 psi. Is further mesh refinement necessary?
- A total of 98,830 nodes and 66,504 elements were used to model this problem.
- Let's analyze the tank again using 2D axisymmetric elements.

SCUBA TANK

- Using 2D Axisymmetric Elements
- This converts a 3D problem into a planar problem by using 2D elements.
- Only half of the tank cross section is modeled.
- Geometry, boundary condition, and loads must all be axisymmetric.
- A much finer mesh can be used to solve this problem.

SCUBA TANK

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-81

SCUBA TANK

SCUBA TANK

Change the view by using Viewing Angles.

SCUBA TANK

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright© 2009 MSC.Software Corporation
S9-85

SCUBA TANK

The use of planar elements allowed us to use a much finer mesh.

There are now 10 elements through the thickness in the critical area.

SCUBA TANK

The T2, R1, R2, and R3 degrees of freedom are not used in this axisymmetric problem. Constrain these unused degrees of freedom.

SCUBA TANK

Constrain the model in the z direction.

NAS120v, Section 9, August 2009
Copyright© 2009 MSC.Software Corporation

SCUBA TANK

Apply the pressure to all the internal curves.

NAS120v, Section 9, August 2009
Copyright© 2009 MSC.Software Corporation

SCUBA TANK

Create an isotropic material named 17-4PH.

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation

SCUBA TANK

SCUBA TANK

			Geometry				Properties Loads/BCs			Meshing	alysis Results			
		$+$		4		\square	$\square \square$			8		$\prod_{\text {plot }}^{33}$		(4) 5
Entire Model	Selected Group	Analysis Deck		Read	Submit		+ 8	XDB	Output2	$\begin{aligned} & \text { MASTER/ } \\ & \text { DBALL } \end{aligned}$	t16/t19	d3plot		6evi 4
Analyze		Create	Existing Deck			Optimize	Toptomize	Access Results					Delete	Actions

Copyright® 2009 MSC.Software Corporation
S9-92

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
\square

SCUBA TANK

SCUBA TANK

SCUBA TANK

SCUBA TANK

NAS120v, Section 9, August 2009
Copyright® 2009 MSC.Software Corporation
S9-97

SCUBA TANK

Results
Results
Action: Create -
Object: Fringe -
Coordinate Transformation: \square CID
Select Coordinate Frame
Coord 1
Scale Factor 1.0
Filter Values: None -
Averaging Definition: Domain: All Entities Method: Difference
Extrapolation: Shape Fn.
\square Use PCL Expression
Define PCL Expression..
Existing Fringe Plots...
Save Fringe Plot As:
Apply \quad Reset

SCUBA TANK

- Scuba tank 2D axisymmetric analysis summary
- The maximum Von Mises stress is 29,100 psi at the base of the tank near the fillet radius.
- There are 10 elements through the thickness in this critical area. The stress gradient is represented reasonably well through the thickness.
- The un-averaged stress fringe plot is very smooth, indicating that the mesh density is adequate.
- The stress difference plot shows near zero values.
- Using a 2D representation of the scuba tank, we were able to create a smaller model with a finer mesh compared to the 3D model.

EXERCISE

- Perform Workshop 9 "Support Bracket" in your exercise workbook.
- Optional:
- Analyze the Scuba Tank covered in this section.

