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Abstract

Toll-like receptors (TLRs) sense pathogen-associated molecular patterns originating from invading microorganisms and initiate innate im-
mune responses. Recent structural studies of TLR—ligand complexes have revealed the detailed molecular mechanisms by which each TLR
specifically recognizes its own ligands. This review focuses on the structure of TLR8 and discusses the similarities and diversities of

TLR—ligand interactions and signaling mechanisms.
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1. Introduction

Microbial components of invading pathogens, such as lip-
opeptide, lipopolysaccharide (LPS), and nucleic acids, activate
an efficient and immediate innate immune response, followed
by acquired immunity [1]. These pathogen-associated molec-
ular patterns (PAMPs) are recognized by a variety of pattern
recognition receptors, including toll-like receptors (TLRs),
NOD-like receptors, and RIG-I-like receptors [2]. TLRs,
which respond to a wide variety of PAMPs, are type I trans-
membrane receptors that are characterized by an extracellular
domain-containing leucine-rich repeats (LRRs), a trans-
membrane domain, and a cytoplasmic Toll/Interleukin-1 re-
ceptor homology (TIR) domain Refs. [3.,4]. The extracellular
LRR domain is responsible for ligand recognition, while the
cytoplasmic TIR domain initiates downstream signaling by
interacting with other TIR domain-containing adaptor pro-
teins, such as MyD88, MAL, TRIF, and TRAM [5]. The
signaling cascades initiated by PAMP-induced stimulation of
TLRs lead to a variety of cellular responses (Fig. 1). To date,
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ten human TLRs have been identified, each of which recog-
nizes a distinct group of PAMPs. Hetero-dimers of TLR2 and
TLR1 or TLR6 are activated by lipopeptides [6—9]; TLR3 is
activated by viral dsRNA [10]; hetero-dimers of TLR4 and its
co-receptor MD-2 are activated by LPS [11—14]; TLRS is
activated by bacterial flagellin [15,16]; TLR7 and TLRS8 are
activated by viral or bacterial ssSRNA [17—19]; and TLR9Y is
activated by viral or bacterial CpG DNA [20] (Figs. 1 and 2).

Based on their phylogenetic, structural, and functional
similarities, TLR7, TLR8 and TLR9 form a subfamily of
TLRs. While other human TLRs are expressed on the cell
surface, TLR7—9 and TLR3 are localized mainly to endo-
somal membranes, with the exception of a small population of
TLR8 that is also expressed on the cell surface [21,22]. Ex-
periments using chimeric receptors comprising the extracel-
lular region of TLR4 and the transmembrane and cytoplasmic
regions of other TLRs demonstrated that endosomal mem-
brane targeting is mediated by the transmembrane region and/
or intracellular TIR domain Refs. [23,24]. The endoplasmic
reticulum membrane protein UNC93B1 is also involved in
endosomal targeting of nucleic acid-sensing TLRs [25]. TLR7
and TLRS share the highest degree of similarity and, since
both proteins are receptors for viral ssRNA [17,19,26], their
activation is key to the initiation of antiviral responses. Human
TLR7 is expressed predominantly in plasmacytoid dendritic
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Fig. 1. Schematic illustration of human TLR signaling. TLRS and hetero-dimers of TLR2 and TLR1 or TLR6 are expressed at the cell surface, whereas TLR3 and
TLR7-9 localize to the endosome where they sense microbial and host-derived nucleic acids. TLR4 localizes to both the plasma membrane and the endosome.
TLR signaling is initiated by ligand-induced dimerization of receptors, followed by the engagement of TIR domain-containing adaptor proteins, such as MyD88
and TRIF, which activate downstream signaling cascades. A major consequence of TLR signaling is the induction of proinflammatory cytokines and type I

interferons.

cells and B cells, while human TLRS8 is expressed in mono-
cytes and myeloid dendritic cells [27,28]. The TLR7 and
TLR8 signaling pathways are mediated by MyDS88; this
adaptor protein activates NF-kB, IRF-7, and p38 MAPK,
resulting in the induction of proinflammatory cytokines such
as tumor necrosis factor «, interleukin 6 (IL-6), IL-1p, IL-12,
and antiviral type I interferons. Murine TLRS was thought to
be non-functional as it was initially observed that TLR7 '~
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Fig. 2. Schematic representation of the extracellular domains of human TLRs.
The cognate ligands are shown on the right. The LRRs are numbered and the
N-terminal (LRRNT) and C-terminal (LRRCT) domains at the ends of the
protein are also indicated. The characteristic Z-loop in TLR7—9 is shown and
the LRRs located on either side of the loop are colored differently.
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mice did not respond to the agonist [29]. However, recent
works have demonstrated mouse TLRS8 can be activated and
play an important role in controlling TLR7 expression [30,31].

Over the last decade, X-ray crystallography studies have
made significant contributions to understanding the ligand
recognition and signaling mechanisms of TLRs [32—37]
(Fig. 3 and Table 1). This review focuses on the function
and recently published structure [32] of TLRS, and discusses
the similarities and diversities of TLR—ligand interaction and
signaling mechanisms.

2. TLRS8 and TLR7 agonists

sSRNA has been identified as the natural ligand of TLR8
and TLR7 [17,26]. For example, HIV-1 or influenza virus
ssRNAs induce the production of proinflammatory cytokines
in plasmacytoid dendritic cells [38]. Although sequence-
specific recognition of RNA by TLR7 and TLRS has not yet
been established fully, some sequence preferences have been
reported; for example, sSRNAs containing GU-rich or poly-U
regions are agonists for both TLR7 and TLRS8 [17,19,26].
Typical ssRNA agonists are shown in Fig. 4.

TLR7 and TLR8 are also targeted by small chemical
compounds with antiviral activity [29,39]. The imidazoqui-
noline derivative imiquimod (R837) is a TLR7-specific



U. Ohto et al. / Microbes and Infection 16 (2014) 273—282 275

(Front view) (Side view)
TLR2/TLR1/Pam;CSK,

Fig. 3. The activated dimer structures of TLR2/TLR1/Pam3CSK4 (PDB ID:
277X) [37], TLR2/TLR6/Pam2CSK4 (PDB ID: 3A79) [35], TLR4/MD-2/LPS
(PDB ID: 3FXI) [34], TLRS/FIiC (PDB ID: 3V47) [33], TLR3/dsRNA (PDB
ID: 3CIY) [36], and TLR8/CL097 (PDB ID: 3W3J) [32]. The color scheme is
the same as that used in Fig. 2. The ligands are shown in magenta. The gray
regions in the TLR2/TLR1/Pam3CSK4, TLR2/TLR6/Pam2CSK4, and TLRS/
FliC structures indicate the non-TLR portions. All structural figures were
generated using the PYMOL program [64].

agonist, whilst resiquimod (R848) and CL097 are
imidazoquinoline-derived TLR8/7 agonists with potent anti-
viral activity (Fig. 4) [39]. The guanosine analog loxoribine
and the pyrimidine analog bropirimine were later found to be
TLR7 agonists [40,41], and CLO75 was identified as a

thiazoloquinolone derivative that stimulates TLR8 (Fig. 4).
Furthermore, many research groups have reported the dis-
covery of additional novel TLR8 and TLR7 agonists.

Recent studies have revealed that secreted microRNAs
(miRNAs) can be transferred from donor cells to recipient
cells, in which they function as ligands of Toll-like receptors
[42]. Tumor-secreted miR-21 and miR-29a are recognized by
endosomally expressed human TLR8 or murine TLRT7;
miRNA-induced activation of these receptors initiates the
recruitment of the adaptor molecule MyD88, which drives the
production of proinflammatory cytokines such as tumor ne-
crosis factor o and IL-6. These miRNAs harbor a GU-motif
that is predominant in sSRNA agonists of TLRS (or TLR7)
(Fig. 4).

3. Overall structure of the TLR8 ectodomain

The extracellular domains of TLRs contain 20—26 LRR
modules (Fig. 2) and form a horseshoe-shaped right-handed
curved solenoid that is characteristic of LRR proteins (Figs. 3
and 5). Each LRR module comprises 20—30 amino acids; the
first 10 amino acids form a consensus motif (XLxxLxLxxN)
that is highly conserved among LRR proteins, while the
remaining portion is variable in sequence and length. Each
LRR module represents one turn of the solenoid; the
consensus motif forms a B-strand in the concave face of the
horseshoe structure, followed by the variable loop or helical
segment forms the ascending lateral, convex, and descending
lateral faces (Fig. 5). The B-strands of flanking LRR modules
interact to form a large B-sheet that spans the whole concave
face of the horseshoe structure. While typical LRR proteins
utilize their concave surface for ligand recognition, such as the
binding of ribonuclease A to the concave surface of LRR-
containing ribonuclease inhibitor [43], all TLRs whose
ligand complexes have been solved utilize their ascending
lateral or convex face for ligand recognition (Fig. 3).

The extracellular domains of TLR7, TLR8 and TLR9
comprise approximately 800 amino acids and 26 LRR modules,
which is the largest number of LRRs among the human TLRs
identified to date (Fig. 2). TLR7—9 contain a characteristic
insertion loop (Z-loop) of approximately 30—40 amino acids
between LRR14 and LRR15 (Fig. 2). In a recent study, the re-
combinant full-length ectodomain of human TLRS8 expressed in
Drosophila melanogaster Schneider 2 cells was cleaved at the
Z-loop by an unidentified protease [32]; however, the resulting
N-terminal (residues 27—455) and C-terminal (residues
456—827) fragments remained associated during purification,
indicating a strong interaction between them. Unlike the
horseshoe-shaped structure exhibited by other TLRs, the
extracellular domain of human TLRS8 forms a ring-shaped
structure in which each half of the ring is produced by the N-
and C-terminal fragments (Figs. 3 and 5). The association be-
tween these fragments is mediated by interactions at three
distinct regions (Fig. 5A): First, several hydrogen bonds are
formed between the N-terminal and C-terminal domains of the
protein. Second, the latter half of the Z-loop (residues 458—481)
located in the C-terminal fragment forms an ordered structure in
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Table 1

X-ray crystallographic structures of agonist-induced TLR homo- or hetero-dimers.

PDB ID TLR dimer Species Agonist Resolution (A) Crystallized regions” References
277X TLR1-TLR2 Human Pam;CSK, 2.1 TLR1 (1—-475)_LRR1-18 (18/20), TLR2 (1—506)_LRR1—-19 (19/20) [37]
3A79 TLR2-TLR6 Mouse Pam,CSK,4 2.9 TLR2 (1-506)_LRR1-19 (19/20), TLR6 (1—482)_LRR1—18 (18/20) [35]
3CIY TLR3 Mouse dsRNA (46mer) 3.4 TLR3 (28—704)_LRR1-23 (23/23) [36]
3FXI TLR4-MD-2 Human LPS Ra 3.1 TLR4 (27—631)_LRR1-22 (22/22) [34]
3vQ2 TLR4-MD-2 Mouse LPS Re 2.5 TLR4 (22—627)_LRR1-22 (22/22) [45]
3vQl TLR4-MD-2  Mouse Lipid I'Va 2.7 TLR4 (22—627)_LRR1-22 (22/22) [45]
4G8A TLR4-MD-2 Human LPS Re 2.4 TLR4 (23—629)_LRR1-22 (22/22) (D299G and T399I) [65]
3v47 TLRS Zebrafish  Flagellin 2.5 TLRSb (22—390)_LRR1-14 (14/22) [33]
3W3J TLRS Human CL097 2.0 TLR8 (27—827)_LRR1-26 (26/26) [32]
3W3K  TLR8 Human CL075 2.3 TLRS8 (27—827)_LRR1-26 (26/26) [32]
3W3N TLR8 Human R848" 2.1 TLR8 (27—827)_LRR1-26 (26/26) [32]

# The numbers in parentheses after the LRR indicate the number of LRRs in the crystallized construct compared with the number in the entire extracellular

region.

" Three structures of the TLR8/R848 complex are deposited in the PDB; however, only one is listed.

the concave surface of the N-terminal fragment by forming
extensive hydrophobic interactions with LRR3 to LRR18. Note
that the first half of the Z-loop (residues 433—457) located in the

N-terminal fragment was not present in the electron density map ring-like structure.
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miR-21: UAGCUUAUCAGACUGAUGUUGA
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(due to disorder). Third, despite being interrupted by the Z-loop,
LRR14 in the N-terminal fragment and LRR15 in the C-terminal
fragment form a continuous B-sheet in the concave face of the

Fig. 4. TLR8 and TLR7 agonists. (A) The sequences of ssSRNA agonists and miRNAs that activate human TLR8; ssRNA06 and ssRNAO2 contain six repeats of the
“UUGU” and “UUAU” motifs, respectively, while ssRNA40 is a phosphorothioate-protected oligonucleotide containing a GU-rich sequence. (B) The chemical
structures of synthetic TLR8 and TLR7 agonists.
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Fig. 5. Monomer structures of TLR8 (A) and TLR3 (B) derived from the
TLR8/CL097 (PDB ID: 3W3J) [32] and TLR3/dsRNA (PDB ID: 3CIY) [36]
complexes, respectively. The LRRs are indicated by underlined numbers, and
the N-terminal (LRRNT) and C-terminal (LRRCT) domains at the ends of the
protein are shown. The two ligand-binding sites for CL097 are also indicated.
The color scheme is the same as that used in Fig. 2.

4. Proposed mechanism of activation of TLRS

Based on biochemical and crystallographic studies of
TLRs, ligand-induced multimerization of TLR1—6 has been
widely accepted (Figs. 3 and 6). The monomeric extracellular
domains of these proteins form homo- or hetero-dimers upon
ligand stimulation. TLR2 hetero-dimerizes with TLR1 or
TLR6 after binding of triacyl or diacyl lipopeptides, respec-
tively [37], forming a 1:1:1 complex. TLR3 homo-dimerizes
after binding of dsRNAs of approximately 50 base pairs,
forming a 2:1 TLR3/ligand complex [36]. Additional TLR3
oligomers, such as 3:1, 4:1, and 5:1 complexes, can also occur
when longer dsRNAs are used as ligands [44]. In collaboration
with its co-receptor MD-2, TLR4 homo-dimerizes after
binding to LPS, forming a 2:2:2 TLR4/MD-2/LPS complex
[34,45]. TLRS homo-dimerizes after binding to the bacterial
flagellin FliC, forming a 2:2 TLRS5/FliC complex [33].
Although the binding interfaces in ligand-induced homo- or
hetero-dimers of specific TLRs are considerably different

(Figs. 3 and 7), the overall symmetrical tail-to-tail arrange-
ment of two TLRs, in which the C-termini of the TLRs are
positioned in the center and the N-termini extend in opposite
directions, is very similar. As a result, the C-termini of TLRs
within a dimer are in close proximity, which prompts the
dimerization of the intracellular TIR domain and subsequent
recruitment of the adaptor protein (Figs. 3 and 6A).

A number of studies have reported that TLR1—6 form dimers
in the absence of ligand and that a ligand-induced conforma-
tional change in the complex is required for its activation
(Fig. 6B). In contrast to the well-established mechanisms
involved in ligand-induced multimerization of TLR ectodo-
mains, the events involved in activation of full-length TLRs are
less well understood. A recent study using electron microscopy
single-particle image reconstruction showed that full-length
TLRS forms an asymmetric homo-dimer in the absence of its
ligand flagellin [46], although the interaction between mono-
mers was very weak in solution for the ectodomain constructs
used in this study [33]. Using a combination of immunopre-
cipitation, crosslinking, circular dichroism spectroscopy, and
fluorescence resonance energy transfer experiments, Latz et al.
showed that TLRY also forms homo-dimers in the absence of
ligand; in this study, the ectodomain of the preformed dimer
underwent a conformational change upon ligand binding that
resulted in the close apposition of the intracellular TIR domains
[47]. Similarly, TLR8 forms a dimer in the absence of ligand and
a ligand-induced conformational change is required for its
activation [48]. Moreover, several studies have shown that, after
their initial ligand-induced homo- or hetero-dimerization, TLRs
form higher order oligomers in the cell membrane [49—51].

Gel-filtration chromatography and small-angle X-ray scat-
tering analyses of the purified extracellular domain of human
TLR8 showed that both the unliganded and liganded forms exist
as adimer [32]. Similar results were also reported for cell-based
assays of full-length bovine TLRS [48] and the dimer formations
are supported by the crystal structures of the unliganded and
liganded forms of TLR8 (Fig. 8). When viewed from the front,
the overall dimer structures of unliganded and liganded TLR8
are similar; both forms exhibit an “m”-shaped tail-to-tail
arrangement and both utilize the ascending lateral face as the
dimerization interface. However, when viewed from the side,
the C-termini of the two protomers are in closer proximity in the
liganded form (30 A) than the unliganded form (50 /D\) (Fig. 8).
Upon binding of agonistic ligands, the TLR8 dimer undergoes a
large structural rearrangement whereby the ligand molecule
penetrates the dimerization interface of the unliganded form.
Subsequently, the interactions between the two protomers are
disrupted and reorganized completely such that the C-termini
are brought into close proximity. This structural change enables
dimerization of the intracellular TIR domains and subsequent
recruitment of the adaptor proteins to initiate downstream
signaling cascades (Fig. 6B).

5. Ligand recognition mechanism of TLRS8

Although their ligand-binding modes display some diversity,
all TLRs utilize their ascending lateral face for ligand binding
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Fig. 6. Mechanisms of TLR activation. (A) Ligand-binding induces homo- or hetero-dimerization and activation of TLR1—6 monomers. (B) Ligand-induced
conformational changes in preformed dimers are involved in the activation of TLR7—9. The illustration is based on a structural study of TLR8 [32]. Note that
structural information about the fate of the intact Z-loop in TLR7—9 is not yet available; therefore, its oligomerization state has not been defined fully. The color

scheme is the same as that used in Fig. 2.

(Figs. 3 and 7). In TLR1, TLR2 and TLR®6, the lipopeptide
binding site is located in the middle region of the LRR structure
[35,37]. In TLR3, dsRNA binds to two sites located at opposite
ends of the LRR structure [36]. The binding sites for LPS-bound
MD-2 and FliC in TLR4 and TLRS, respectively, are widely
distributed over more than 10 LRR units [33,34].

TLR2/TLR1/Pam,CSK,

In the TLR8 homo-dimer, the two binding sites for small
chemical ligands, such as CL097, CLO75 and R848, are
located at equivalent positions in the dimerization interface
(Fig. 8). Each ligand is sandwiched by the two protomers,
TLR8 and TLR8*, and interacts with the N-terminal
LRR11—14 of one protomer and the C-terminal LRR16—18
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Fig. 7. Schematic representations of the ligand-binding sites and dimerization interfaces of TLR2/TLR1/Pam3CSK4 (PDB ID: 2Z7X) [37], TLR2/TLR6/
Pam2CSK4 (PDB ID: 3A79) [35], TLR4/MD-2/LPS (PDB ID: 3FXI) [34], TLRS/FIiC (PDB ID: 3V47) [33], TLR3/dsRNA (PDB ID: 3CIY) [36], and TLRS/
CL097 (PDB ID: 3W3J) [32]. The ligands and their binding sites within the TLRs are indicated by red (first ligand) and blue (second ligand) letters and numbers.
The red and blue boxes in the TLR4/MD-2/LPS complex represent the binding sites for LPS. Regions missing in the crystal structure are shown in gray. The

protein—protein interfaces in the dimer are shown in yellow.
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Fig. 8. Dimer structures of the unliganded (PDB ID: 3W3G) and liganded (CL097 complex; PDB ID: 3W3J) forms of TLR8. The color scheme is the same as that

used in Fig. 2.

of the other (Fig. 7). Therefore, both the N- and C-terminal
fragments of TLR8 are required for ligand recognition.
Specifically, three key interactions occur between TLR8 and
its ligands: (i) stacking interactions between the benzene
ring of the ligands and Phe405 of TLRS; (ii) hydrogen bonds
between the amidine group of the ligands and Asp543 of
TLRS, and between the N atoms of the imidazole or thiazole
ring of the ligands and Thr574 of TLRS; and (iii) snug fitting
of two substituents of the ligand to the small hydrophobic
pocket formed between the two protomers (Fig. 9). The
importance of the Asp543-mediated interaction to ligand-

binding has been demonstrated by a mutagenesis analysis
[52]. Interestingly, the residues forming the ligand-binding
site of TLRS8 are well conserved between TLR7 and TLR8
(Fig. 9). Hence, TLR7 would utilize the same ligand-binding
site as TLRS8. The noticeable difference between TLR7 and
TLRS is found at the entrance of the ligand-binding pocket;
TLR8 has an acidic residue Asp545 forming stacking
interaction with the aromatic ring of the ligand while TLR7
has a hydrophobic residue Leu557, however, how these
differences affect ligand specificity is still unknown.
Although the binding site in TLR8 for small chemical
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Fig. 9. The ligand-binding site of TLR8 in the TLR8/CL097 complex (PDB ID: 3W3J) [32] (left). Residues interacting with the CL0O97 molecule are indicated by
stick representations. Hydrogen bonds are indicated by with dashed lines. Corresponding residues with the ligand recognition in hTLR7 and hTLRS8 are shown

(right). Conserved residues are highlighted as red colors.

ligands has been demonstrated by crystallography and sub-
sequently verified by mutagenesis experiments, the binding
site for ssRNA remains to be clarified. However, the
responsiveness of TLR8 to ssRNA was reduced following
mutation of the residues involved in the recognition of small
chemical ligands [32], suggesting that this region is also
important for the recognition of sSRNA. Because ssRNA and
small chemical ligands differ considerably in their sizes and
electrostatic properties, further structural analyses are
required to confirm this proposal.

6. Functional implications of processing of the Z-loop

A number of studies have demonstrated that protease
cleavage of the characteristic Z-loop in TLR 7—9 is required
for proper functioning of these proteins [53—56]. Ewald et al.
were the first to demonstrate processing of the Z-loops in
TLR9 and TLR7; this group reported that the ectodomains of
these proteins are cleaved in the endolysosome, such that no
full-length protein is detectable in the compartment where the
ligand is recognized [56]. Several proteases, including aspar-
agine endopeptidase, cathepsin and cysteine protease, are
involved in Z-loop cleavage [53—55,57]. To our knowledge,
there are currently no reports describing processing of the Z-
loop in TLRS, although its functional similarity with TLR7
and TLRY suggests that similar mechanisms are likely to be
involved in the activation of TLRS. While the notion that Z-
loop processing is a prerequisite for nucleic acid sensing by
TLRs has been widely accepted, the subsequent activation
mechanism is a matter of debate, especially with regard to the
identity of the functional receptor. For example, Park et al. and
Sepulveda et al. reported that, after Z-loop processing, the C-
terminal fragment alone is sufficient for ligand binding and the
subsequent activation of TLR9 [54,55]. Conversely, Onji et al.
[57] reported that the both the N- and C-terminal fragments
are required for the functional integrity of TLRO [58]; this
latter report is supported by our structural analysis, which
revealed that the N- and C-terminal fragments remain asso-
ciated after Z-loop cleavage and that both fragments are
required for ligand recognition [58].

The end of the N-terminal fragment (Pro432) and the start
of the C-terminal fragment (Asp458) of TLRS8 are located

44 A apart and are positioned close to the ascending lateral
face involved in dimerization (Figs. 3 and 8). Given that these
two residues are connected by a flexible linker of 26 residues
when the Z-loop is unprocessed, the Z-loop likely passes in
front of the ascending lateral face of TLRS. An unprocessed Z-
loop would interfere with dimerization because there is no
space to accommodate the flexible Z-loop between the two
protomers in the activated dimer structure of TLRS. The Z-
loop sequences in specific TLRs are well conserved across
species, while those among the different TLRs within a spe-
cies are not conserved at all; therefore, the features of the Z-
loop in TLR8 may not be applicable to TLR7 and TLRO. It is
possible that the Z-loop in each TLR plays a distinct role in
the regulation of TLR function. Additional crystallographic
studies are required to clarify the roles and processing of the
Z-loops in individual TLRs.

7. TLR8 and TLR?7 as therapeutic targets

TLRs are attractive therapeutic targets for the modulation
of immune responses and hold promise for the treatment of
infection and inflammation. Agonists of TLR7 and TLRS8 are
currently being considered as promising antiviral and anti-
cancer drugs. Imiquimod (marketed as Aldara® by 3M Phar-
maceuticals), one of the first and most successful drugs tar-
geting TLRs, was approved by the US Food and Drug
Administration in 1997 for the topical treatment of external
genital and perennial warts, actinic keratosis, and non-
melanoma skin cancers [59,60]. Resiquimod, which is struc-
turally related to imiquimod and binds to TLR7 and TLR&, is a
considerably more potent analog. This drug is a candidate for
treating hepatitis C and other viral infections, and is now being
evaluated [61,62].

Systemic lupus erythematosus is an autoimmune disease that
can affect almost any organ system. The disease is characterized
by the production of autoantibodies specific for a variety of
autoantigens, including nucleic acids, chromatin and ribonu-
cleoproteins. Studies have suggested that the inhibition of im-
mune responses mediated by TLR7, TLR8 and TLR9 may hold
promise for the treatment of systemic lupus erythematosus;
therefore, antagonists of TLR7 and TLR8 have been suggested
as novel therapeutic targets for the treatment of lupus [63].
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8. Concluding remarks

Structural studies of the ligand complexes of TLRs have
contributed tremendously to current understanding of their
diverse ligand recognition and signaling mechanisms. However,
the relevance of the activation of distinct signaling pathways by
TLRs and the mechanism by which dimerization of the extra-
cellular domains trigger activation of the intracellular TIR
domain remain to be addressed. Structural investigation of full-
length TLRs, including their transmembrane and intracellular
domains, and examination of their interaction with the adaptor
proteins will be challenging but will offer a comprehensive
understanding of the mechanism of activation TLRs.
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