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A B S T R A C T

Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is
mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of
inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose
tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects
tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given
that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could
induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The
overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity.
Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose
tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of
adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity
induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms
by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our
paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types
of inflammation in adipose tissue and the tumor microenvironment.

1. Introduction

Obesity is a widespread chronic disease [1–10]. Obesity is a risk
factor for cancer [11–20]. Specifically, obesity increases the risk for 13
different cancers [21]. The prevalence of worldwide obesity has
approximately doubled since 1980 such that nearly one-third of the
adult world population is now overweight or obese [4]. It is projected
that nearly 60 % of the world’s population will be overweight or obese
by the year 2030 [4]. It is estimated that one in five men and women will
develop cancer worldwide and that one in three adults will be over-
weight or obese, indicating that the majority of adults who will have
cancer will also have obesity [4,12]. The global increase in obesity is
hypothesized to contribute to the increasing incidence of early-onset
cancers, such as colon cancer [22]. The increase in breast cancer inci-
dence also coincides with the surge in obesity [23]. Obesity is positively
associated with breast cancer risk in postmenopausal women and
inversely correlated with breast cancer risk in premenopausal women
[23]. The difference in obesity association with breast cancer based on

menopausal age is in part due to estrogen synthesis by breast adipose
tissue [23]. Obesity is also linked with increased risk and progression of
breast cancer that is negative for the ER, progesterone receptor, and
HER2 [24,25]. The increasing incidence of uterine cancer is hypothe-
sized to be in part due to obesity [26–28]. The link between obesity and
uterine cancer is especially strong considering obesity increases the risk
for this hormone-responsive tumor by 7-fold [21]. Cancer is increased in
obesity by several mechanisms, including the promotion of chronic
inflammation, and the inhibition of acute inflammation that rejects tu-
mors. Herein, we will review the cellular mechanisms that are involved
in obesity-mediated chronic inflammation and suppression of acute
inflammation that mediates anti-tumor immunity.

2. Adipokines

2.1. Cytokine effects of leptin

The term adipokine refers to a large group of bioactive molecules
released from an adipocyte. Many adipokines have roles in cancer, and
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in this review, we have summarized their effects on cancer in Table 1.
The adipokine leptin has been intensely studied, and we have reviewed
its signaling mechanisms in more detail. The crystal structure of leptin is
homologous to the long-chain helical cytokine family that induces IL-6
[29]. Leptin signals through its cell surface Jak-STAT linked receptor
[30]. The binding of leptin to the leptin receptor (LepR), induces LepR
dimerization and JAK2-mediated phosphorylation of specific residues in
the intracellular domain of the LepR [30]. The phosphorylation of JAK2
sites in the LepR mediates the induction of STAT3 and ERK signaling in
response to leptin [30]. Leptin acts on hypothalamic neurons to induce a
satiety effect [31]. The increase in fat mass in obesity is correlated with
an increase in serum leptin concentrations. The serum level of leptin in
lean humans is 5 ng/mL and in obese humans, the levels of leptin can
reach 100 ng/mL [32]. Overproduction of leptin leads to leptin resis-
tance in obesity [31]. Clinically, leptin resistance causes overeating and
obesity [31]. Leptin resistance may be cell-type specific. For example,
obese levels of leptin are associated with the progression of breast cancer
[33]. Leptin when applied to breast cancer cells in cell culture induces a
concentration-dependent increase in signaling with a maximal effect
observed in response to an obese concentration (100 ng/mL) of leptin
[34]. Breast cancer cells also express leptin and the LepR [35]. The
concentration of leptin in some tumors therefore might be higher than
the concentration of leptin in blood. Most immune cell types in innate
and adaptive T cell immunity express the leptin receptor (LepR) [36].
Broadly, the role of leptin in immunity is to boost inflammatory re-
actions. For instance, leptin augments TNFα and IL-1β production by
human macrophages [37]. Leptin may also promote the initiation of
cancer. For example, leptin stimulates an increase in DNA damage in
normal breast epithelial cells obtained from women with a mutation in
the BRCA gene [38]. The mechanism by which leptin promotes DNA
damage is unknown.

3. Obesity-associated inflammation

Localized acute inflammation in adipose tissue is a beneficial
mechanism that protects against determinantal deposition of lipids in

peripheral tissues such as the liver [165]. In obesity, however, the
chronic overfilling of adipocytes with triglycerides causes chronic
low-grade inflammation in adipose tissue that leads to low-grade sys-
temic inflammation [166,167]. The cytokines that emerge from adipose
tissue modulate inflammatory pathways in peripheral organs [166].
Given that adipose tissue is in all tissues, chronic inflammation can
occur in all tissues in response to obesity [166]. However, the severity of
obesity-induced adipose tissue inflammation is dependent on the
anatomical location of the adipose tissue in the body [168–170]. For
example, in obesity, visceral fat has more inflammation than subcu-
taneous fat [171–176]. In humans, white adipocytes make up 98 % of
total fat mass and the remaining adipocytes are brown adipocytes [177].
White adipocytes store and release energy and initiate inflammation in
response to obesity. Brown adipocytes regulate thermogenesis and are
less prone to obesity-associated inflammation [178–180]. In humans,
body fat distribution is also linked with differences in risk for cardio-
vascular disease. The accumulation of abdominal fat promotes the risk
of cardiovascular disease and insulin resistance. Conversely,
gluteal-femoral subcutaneous fat protects against these
obesity-associated diseases [181–188]. Visceral adipose tissue contains
a greater percentage of hypertrophic adipocytes, and immune cells, and
thus is more sensitive to obesity than subcutaneous adipose tissue. This
difference could in part explain why the accumulation of visceral fat is
more strongly associated with metabolic disease compared to an in-
crease in the amount of subcutaneous adipose tissue [188]. Obesity also
has distinct effects on different types of inflammation. For example,
obesity promotes chronic inflammation in adipose tissue, yet inhibits
acute inflammation in the tumor microenvironment (TME). In this re-
view, we will discuss the cellular mechanisms by which obesity pro-
motes low-grade inflammation, and inhibits acute inflammation in the
TME.

3.1. Inflammation promotes cancer risk

There are several examples by which chronic inflammation promotes
cancer and these studies support the hypothesis that obesity, by

Abbreviations

APC Antigen-Presenting Cells
ATP Adenosine Triphosphate
BC breast cancer
BRCA Breast Cancer Associated Gene
CAA Cancer Associated Adipocytes
CD4 Cluster of Differentiation 4
CD8 Cluster of Differentiation 8
CRC colorectal carcinoma
CTRP3 Adipokine C1q/Tumor Necrosis Factor Related Protein 3
CTRP9 Adipokine C1q/Tumor Necrosis Factor Related Protein 9
DNA Deoxyribonucleic Acid
ERK Extracellular Signal Related Kinase
FGFB21 Fibroblast Growth Factor 21
GLP-1 – Glucagon Like Peptide − 1
HCC hepatocellular carcinoma
HUVEC Human Umbilical Vein Endothelial Cells
IGFBP2 Insulin-Like Growth Factor Binding Protein 2
IGF1 Insulin-Like Growth Factor 1
IL-1β Interleukin 1 Beta
IL-2 – Interleukin 2
IL-6 – Interleukin-6
IL-10 Interleukin 10
IL-17 – Interleukin 17
JAK Janus Kinase

LepR Leptin Receptor
MCP1 Monocyte Chemoattractant Protein 1
MDSCs Myeloid Derived Suppressor Cells
MHC Major Histocompatibility Complex
MMP2 Matrix Metalloproteinases 2
MMP9 Matrix Metalloproteinases 9
mTOR Mammalian Target of Rapamycin
NASH nonalcoholic steatohepatitis
NK Natural Killer cells
PAI1 – Plasminogen Activator Inhibitor 1
PD-1 Programmed Cell Death 1
PD-L1 Program Death Ligand 1
PHD3 Prolyl Hydroxylase 3
RANTES Regulated on Activation Normal T Expressed and Secreted
RBP4 Retinol Binding Protein 4
RNA Ribonucleic acid
SCC squamous cell carcinoma
STAT Signal Transducer and Activator of Transcription 3
TAMs Tumor-Associated Macrophages
TH1 T helper cell 1
TH17 T helper cell 17
TME Tumor Microenvironment
TNBC Triple Negative Breast Cancer
TNFα – Tumor Necrosis Factor Alpha
Tregs T regulatory cells
VEGF Vascular Endothelial Growth Factor
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Table 1
Summary table of the biomolecules secreted from adipose tissue, the effect
obesity has on their secretion, and their role in cancer pathogenesis. Abbrevia-
tions: CRC- colorectal carcinoma, HCC- hepatocellular carcinoma, BC- breast
cancer, NASH- nonalcoholic steatohepatitis, SCC- squamous cell carcinoma,
TNBC- Triple Negative Breast Cancer, PD-L1- Program Death Ligand 1, mTOR-
Mammalian Target of Rapamycin, HUVEC- human umbilical vein endothelial
cells, RNA- Ribonucleic acid, DNA- Deoxyribonucleic Acid.

Adipokine Name Obesity
Effect

Effect on Cancer Reference

Leptin - Increase cell
proliferation in breast
cancer

- Increase cell invasion
in CRC

- promote secretion of
exosomes

[39–44]

Adiponectin - Triggers cell death in
BC

- Suppress cell
migration in prostate
cancer cells

[40,45–47]

Visfatin - Promotes TNBC cell
stemness

- Anoikis resistance in
ovarian cancer

[48–51]

Fetuin-A unknown [52,53]

Plasminogen Activator
Inhibitor 1 (PAI-1)

- Marker of poor
prognosis in breast
and ovarian cancer

- inhibits cell migration
in pancreatic cancer,
glioma, and
melanoma

[54–59]

Resistin - Prostate cancer cell
proliferation

[60–63]

Omentin-1 - Inhibits proliferation
and promotes
apoptosis in CRC

- promotes expression
of tumor suppressive
microRNA in CRC

[64–67]

Lipocalin-2 - Inhibits ferroptosis in
CRC

- Promotes TME in
hepatocellular
carcinoma HCC

[68–71]

Asprosin - promote progress to
invasive SCC

[72–74]

Neuregulin 4 - serves as a hormonal
checkpoint to prevent
progression of NASH-
HCC

[75–78]

Vaspin - Increase proliferation,
migration and
invasion of TNBC

[79–81]

Insulin-like Growth
Factor Binding
Protein-2 (IGFBP-2)

- promotes metastasis
of pancreatic cancer
and chemotherapy
resistance

[82–84]

Fibroblast Growth
Factor 21 (FGF21)

unknown [85,86]

Retinol Binding Protein
4 (RBP4)

- increases ovarian
cancer migration

[87–89]

Adipokine C1q/Tumor
Necrosis Factor
Related Protein 3
(CTRP3)

Controversial - promotes
proliferation of
osteosarcoma cells

[90–93]

Adipokine C1q/Tumor
Necrosis Factor
Related Protein 9
(CTRP9)

unknown [94,95]

Table 1 (continued )

Adipokine Name Obesity
Effect

Effect on Cancer Reference

Irisin - inhibit tumor
development and
induce apoptosis in
prostate cancer

[96–100]

Apelin - promotes prostate
cancer progression

- increased tumor size,
stage, and poor
prognostic measure in
BC

[101–104]

Angiopoietin like
protein 2

- increase breast cancer
metastasis

- chemotherapy
resistance in CRC

[105–108]

Chemerin - promotes endothelial
angiogenesis and
migration of HUVEC
cells

[109–111]

Progranulin - upregulates PDL-1 in
breast cancer

- promotes growth,
migration, and
invasion of CRC

[112–115]

Monocyte
chemoattractant
Protein 1 (MCP1/
CCL2)

- poor prognostic
marker in multiple
cancers including
breast, lung, and
prostate cancer

- induce tamoxifen
resistance

[112,
116–121]

Matrix
Metalloproteinases 2
(MMP2)

- promotes invasion
and migration in
bladder and prostate
cancer

[122–125]

Matrix
Metalloproteinases 9
(MMP9)

- promotes invasion
and migration in
bladder and prostate
cancer

[122–125]

Activin A – - increased invasion,
migration and
metastasis in prostate,
BC, and squamous cell
carcinoma SCC

- induces apoptosis in
HCC

- suppresses
angiogenesis and
tumor growth in
gastric cancer

[126–132]

Regulated on
Activation, Normal T
expressed and
Secreted (RANTES/
CCL5)

- promotes immune cell
infiltration of tumors

- glioblastoma
chemotherapy
resistance

[133–136]

Insulin Like Growth
Factor-1 (IGF-1)

Controversial - increased tumor
development,
angiogenesis, and
metastasis in CRC

[137–140]

Lysophosphatidic Acid - increase proliferation
and migration of
prostate cancer cells

- suppress autophagy
through activation of
mTOR in prostate
cancer

[141–144]

Vascular Endothelial
Growth Factor
(VEGF)

- mediator of
angiogenesis in
cancer

- suppress antitumor
immune activity

[145–148]

Interleukin-1 beta (IL-
1β)

- marker of high-grade
dysplasia or cancer

- promote
carcinogenesis

[149–152]

(continued on next page)

C.E. Miracle et al. Biochemical and Biophysical Research Communications 733 (2024) 150437 

3 



promoting low-grade inflammation, promotes tumorigenesis. For
example, the presence of gut pathogens promotes inflammatory bowel
disease, which increases the risk of colon cancer [189]. Human papil-
lomavirus induces cervicitis and increases the risk of cervical cancer
[189]. The risk for hepatocellular carcinoma is increased by hepatitis,
which is caused by the hepatic B/C virus [189]. The Epstein-Barr virus
induces mononucleosis and is a risk factor for Burkitt’s lymphoma
[189]. The hypothesis that chronic inflammation in obesity promotes
cancer is supported by the link between cancer and other instances of
inflammation, including chronic inflammation.

3.2. Obesity-associated mechanisms of chronic inflammation in adipose
tissue

The inflammatory environment in adipose tissue is highly responsive
to obesity. With obesity, the inflammatory milieu in adipose tissue
moves from anti-inflammatory to pro-inflammatory. This regulation is
mediated by changes in the numbers and activity of anti- and pro-
inflammatory immune cells in adipose tissue in response to obesity.
For example, regulatory T cells (Tregs) inhibit inflammation by
releasing the anti-inflammatory cytokine, interleukin 10 (IL-10) [190].
During murine and human obesity, there is a reduction in Tregs and
IL-10 in adipose tissue [190–193]. Macrophages are also responsive to
obesity [194,195]. There is increased infiltration and phenotypic
switching to proinflammatory M1-stage macrophages in adipose tissue
in obesity [194–196]. M1-stage macrophages release tumor necrosis
factor-α (TNF-α), interleukin 6 (IL-6), and IL-1β [197]. The recruitment
of macrophages is due to chemokines released from necrotic adipocytes
in obese adipose tissue [198]. The inflammatory activity of
M1-macrophages in adipose tissue is further increased by leptin which is
produced in greater amounts by adipocytes in obesity [37]. Obesity
increases the number of inflammatory T helper 1 (TH1), and TH17 cells
in part by upregulating major histocompatibility complex class II on
adipocytes in adipose tissue [192]. The primary cytokine from TH1 cells
is interferon-gamma (INF-ꝩ). INF-ꝩ is also the primary cytokine that
downregulates the number of Tregs, which stimulates more inflamma-
tion in adipose tissue in obesity [191]. TH1 cells also release TNFα and
IL-2 cytokines [199]. Cytotoxic CD8 T cells are also responsive to
obesity. The induction and expansion of adipose tissue-resident CD8 T
cells initiate the recruitment of proinflammatory M1-macrophages to
adipose tissue in obesity [200,201]. TH17 are inflammatory T cells that
are increased in adipose tissue in obesity [202,203]. IL-17 is the
proinflammatory cytokine that is primarily released by TH17 cells [204].

Functionally, IL-17 activates neutrophils, which are the first immune
cells to infiltrate adipose tissue in obesity [205]. IL-17 also inhibits
adipocyte differentiation and therefore the increase in IL-17 in obesity
disrupts adipose tissue [203]. Clinically, IL-17 could be linked to auto-
immunity in obese humans [206]. Fig. 1 summarizes the mechanisms of
obesity-associated inflammation in adipose tissue. Based on these
studies, the accumulation of inflamed adipose tissue causes systemic
inflammation that increases cancer risk in obesity.

4. Breast adipose tissue inflammation

Clinically, breast adipose tissue inflammation is measured by the
number of tissue slides that are positive for the presence of macrophage
crown-like structures surrounding dying adipocytes [207–210]. The
density of crowns per tissue section is also reported [207–210]. The
macrophages in crowns surrounding dying adipocytes are immuno-
stained with an anti-CD68 antibody, which is a pan-marker of macro-
phages [207–210]. The presence of macrophage crown-like structures is
a good readout of inflammation, given that the infiltration of macro-
phages is the first and most robust inflammatory response in adipose
tissue in obesity [211,212]. Clinical studies show obesity is significantly
associated with increased abundance of macrophage crowns in breast
adipose tissue in women with breast cancer [207–210].
Obesity-associated systemic increases in leptin, IL-6, and triglycerides
are also positively correlated with breast adipose tissue inflammation in
women who underwent mastectomy for breast cancer treatment [209].
In women, breast adipose tissue inflammation is positively associated
with faster relapse of metastatic breast disease [209]. The progression of
benign breast disease to breast cancer is also significantly associated
with breast adipose tissue inflammation [207]. The presence of crowns
in breast adipose tissue was significantly higher in women with breast
cancer compared with women who did not have cancer [210]. Women
who were carriers of a BRCA mutation did not show increased breast
adipose tissue inflammation [210]. Breast adipose tissue inflammation

Table 1 (continued )

Adipokine Name Obesity
Effect

Effect on Cancer Reference

Interleukin-6 (IL-6) - promotes resistance
to anti-PDL-1
immunotherapy

- expansion of cancer
stem cell population
in BC

[82,
153–156]

Tumor Necrosis Factor
alpha (TNF α)

- breast cancer
progression and
metastasis

- promotes epithelial to
mesenchymal
transition

- promotes suppression
of T-regulatory cells

[157–160]

Extracellular Vesicles
- siRNA
- microRNA
- DNA
- Lipids
- Sphingolipids
- Phosphatidylserine

Unknown - promote cell to cell
communication in
breast cancer

- influence tumor
microenvironment

[161,162],
[44,163,
164]

Fig. 1. Adipose tissue inflammation in obesity.
Adipose tissue is highly responsive to obesity-induced inflammation. The in-
crease in MCP-1, leptin, cytotoxic CD8 T cells, and activated neutrophils recruit
and polarize proinflammatory M1-macrophages in adipose tissue in obesity.
There is increased development of proinflammatory TH1 and TH17 cells, which
by releasing INFᵧ and IL-17 inhibit Tregs and stimulate neutrophils, respec-
tively. Obesity-associated adipose tissue inflammation increases circulating
TNF-α, IL-6, and leptin. MCP-1 = Monocyte Chemoattractant Protein 1, TNFα
= Tumor necrosis factor-alpha, IL-6 = Interleukin-6, M1 = M1-stage Macro-
phage, IL-7 = Interleukin-17, TH17 = T helper 17, TH1 = T helper 1, Treg =

Regulatory T cells, INFᵧ = Interferon-gamma, IL-10, Interleukin-10.
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is not associated with breast tumor grade [208]. However, breast adi-
pose tissue crowns occurred more frequently in women with
luminal-B-like breast tumors [210]. The presence of breast adipose tis-
sue crowns was associated with increased lymphovascular disease for
triple-negative breast cancer (TNBC) [210]. The mechanisms that link
luminal-B-like breast tumors and TNBC invasiveness with increased
breast adipose tissue inflammation in women have not been published.
Studies have asked if the presence of breast adipose tissue crowns is
associated with breast cancer progression. The abundance of macro-
phage crowns in breast adipose tissue is not associated with disease-free
progression or overall survival of breast cancer patients [208,210]. The
role of race has also been investigated, and the results show that the
number of breast adipose tissue crowns in African-American women was
not significantly different than the number of breast adipose tissue
crowns in White women with breast cancer [208]. The role of the tumor
has been assessed and the results show the abundance of macrophage
crowns in breast adipose tissue is higher in obese women with breast
cancer compared with obese women who do have cancer [210]. This
finding indicates the tumor secretes proinflammatory cytokines that act
on breast adipose tissue. Combining multiple biomarkers for breast ad-
ipose tissue inflammation could be a more accurate predictor of cancer
progression than just assessing the number of macrophage crowns in
breast adipose tissue. A future study that combines multiple markers of
breast adipose tissue inflammation could identify an improved strategy
that might be significantly associated with disease-free survival and
overall survival for breast cancer patients.

5. Anti-tumor immunity

The recognition and killing of cancer cells by T cells is a seven-step
process [213,214]. The first step starts with the release of
cancer-specific antigens by the tumor. The cancer antigens are detected
and processed by antigen-presenting cells (APCs). Cancer-primed APCs
activate T cells in the lymph node. Cancer-primed cytotoxic T cells
(CD8+ T cells) traffic in the bloodstream to the tumor. Cancer-activated
CD8+ T cells infiltrate the tumor and react with cancer cells that present
antigens via the major histocompatibility complex (MHC). The final step
is the killing of cancer cells by CD8+ T cells. Natural killer (NK) cells also
contribute to the killing of cancer cells through an MHC-independent
mechanism [215]. Tumors evade anti-tumor immunity by down-
regulating the expression of MHC and upregulating the expression of
PD-L1 on cancer cells [216–218]. PD-L1 expressed on cancer cells binds
to PD-1 expressed on T cells and this association between PD-L1 and
PD-1 induces signaling in T cells that inhibits T cell effector activity
[219–221]. Tregs and myeloid-derived suppressor cells (MDSCs) are
immunosuppressive and they promote cancer by inhibiting anti-tumor
immunity [222,223]. Consequently, increased numbers of Tregs and
MDSCs in the tumor microenvironment are associated with poor cancer
prognosis [224,225].

Upon entering a tumor, a subset of effector-like CD8+ T cells
differentiate into tissue-resident memory T cells [226]. Tissue-resident T
cell markers are CD69 or CD103, which retain T cells in tissue through
integrin interactions [226]. In peripheral tissues, memory resident T
cells release granzyme B in response to antigen stimulation, which can
eliminate pathogen-infected cells [226]. Tissue-resident T cells also
release the pro-inflammatory cytokines INFꝩ, TNFα, and IL-2, which
recruit additional inflammatory cells to the site of infection [226]. The
release of granzyme B and proinflammatory cytokines by tumor resident
T cells suppress tumor growth [226]. Tumor resident T cells are het-
erogeneous, with subsets expressing several T cell exhaustion and acti-
vation markers [226]. Clinically, increased number of resident CD8+ T
cells in tumors is associated with good cancer prognosis [226]. In the
sections below, we will review how obesity inhibits anti-tumor immu-
nity by acting on T cells, NK cells, and MDSCs.

6. The roles of obesity in anti-tumor immunity

6.1. Upregulation of PD-1 on T cells in obesity

Upon their recruitment to the TME, CD8 T-cells become exhausted
[227]. T cells that become exhausted are initially active, but their
persistent overstimulation in the TME leads to their gradual loss of
effector activity and their inability to kill cancer cells [227]. The upre-
gulation of PD-1 on T cells is a marker of T cell exhaustion [228]. The
PD-1 that is expressed on T cells binds to PD-L1, which is expressed on
the surface of cancer cells. The binding of PD-1 to PD-L1 induces
signaling in T cells that block T cell effector activity [221]. The hallmark
of an exhausted CD8 T cell in the TME is the inability of the
PD-1-expressing CD8 T cell to kill a cancer cell [221]. Consequently,
obesity by increasing the expression of PD-1 on T cells facilitates T cell
inactivation in the TME and this favors tumorigenesis [229]. Mecha-
nistically, leptin acts on T cells to induce phosphorylated STAT3
signaling that upregulates the expression of PD-1 [229] (Fig. 2). Higher
levels of leptin in obesity, therefore, drive the inactivation of CD4+

helper T cells, and CD8+ cytotoxic T cells [229]. The induction of PD-1
on T cells in response to obesity was confirmed in mice, primates, and
humans and therefore this mechanism could promote tumorigenesis in
obese patients [229]. The induction of PD-1 on CD8+ T cells in response
to obesity was associated with reduced CD8+ T cell effector activity and
reduced release of cytokines (IL-2 and interferon-gamma) [229]. Thus,
the induction of PD-1 on T cells in obesity is linked to the functional
suppression of CD8+ T cells. RNA-seq experiments coupled with
pathway analysis showed that CD8+ T cells from obese mice exhibited
gene expression changes significantly associated with metabolic alter-
ations, and T cell hyporesponsiveness, such as T cell anergy [229]. Thus,
the observed reduction in CD8+ T cell activity in obesity is due to

Fig. 2. T-cell exhaustion in obesity.
Increased leptin in obesity acts on cytotoxic CD8 T cells to induce signaling that
promotes the phosphorylation of STAT3 (Tyr705) which in turn activates the
STAT3 response element within the enhancer of the PD-1 gene which leads to
increased PD-1 expression by T cells. The binding of T cell-expressed PD-1 to
cancer cell-expressed PD-L1 induces signaling in CD8 T cells that inactivates the
effector function of T cells, leading to an exhausted T cell state. P-STAT3 =

Phosphorylated-Signal Transducer And Activator Of Transcription 3 (Tyr705),
PD-1 = Programmed cell death protein 1, PD-L1 = Programmed Death-1 (PD-1)
Ligand 1.
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multiple changes in the T cell that inhibit T cell effector activity towards
cancer cells [229]. Preclinically, the effect of PD-1 inhibitors on tumor
growth in obese compared with lean mice was investigated [229].
Mechanistically, PD-1 antibodies, by binding to PD-1 on T cells, block
PD-1 binding to PD-L1 on cancer cells [221]. PD-1 blocking drugs by
preventing the binding of T cell PD-1 to cancer cell PD-L1 disinhibits the
T cell, and the now active CD8+ T cell kills cancer cells [221]. Of in-
terest, is that inhibiting PD-1 with PD-1 antibody, inhibited the growth
of melanoma and mammary tumors in obese mice more than it inhibited
the growth of these tumors in lean mice [229]. A similar response has
been reported in humans with melanoma, such that obese patients are
more responsive to PD-1 inhibitors than lean patients [229]. From an
immunity standpoint, the PD-1 inhibitor not only inhibited the growth
of tumors in obese mice, but it also increased the number of activated
CD8+ T cells, and M1-phase macrophages, and reduced the number of
immunosuppressive MDSCs in the TME and peripheral tissues [230].
These findings show that blocking PD-1 activity in obese mice with
cancer, restored several aspects of anti-tumor immunity and that this
was correlated with a reduction in the growth of tumors in obese mice,
and the anti-tumor effect was stronger in obese, than lean mice [229].
The greater efficacy of blocking PD-1 translates to humans, given that
the efficacy of PD-1 inhibitors in obese humans with cancer is better
than the efficacy of PD-1 inhibitors in lean humans with cancer [231].
This human response has been shown for melanoma, lung cancer, and
renal cancer in human obesity [231]. Mechanistically, it is hypothesized
that CD8+ T cells are more responsive to PD-1 blockers in obesity
because CD8+ T cells are more suppressed by PD-1 signaling in obese
compared with lean mice or humans [231].

6.2. Obesity inhibits the acquisition of free fatty acids by T cells in the
TME

There is competition between T cells and cancer cells for nutrients in
the TME [232]. Cancer cells out-compete T cells for nutrients by upre-
gulating the expression of nutrient transporters and increasing their
utilization of nutrients [232]. This, in turn, establishes a gradient by
which nutrients flow from the tumor interstitium into cancer cells,
instead of moving into T cells [232]. The reduced flow of nutrients into T
cells prevents the expansion and effector activity of T cells in the TME
and this compromises anti-tumor immunity and the tumor evades the
immune system. Prior reports have focused on the reduced flow of
glucose and amino acids into T cells due to enhanced uptake of these
nutrients by cancer cells [232]. In obesity, however, the gradient is free
fatty acids, such that these lipids flow into and are rapidly utilized by
cancer cells. In contrast, the movement of free fatty acids into CD8+ T
cells in the TME is suppressed [233]. The reduced flow of lipids into
CD8+ T cells is associated with reduced CD8+ T cell infiltration in tu-
mors and poor CD8+ T cell effector activity in obese mice compared with
lean mice with tumors [233]. Interestingly, this process of free fatty
acids preferentially being moved into cancer cells at the expense of
CD8+ T cells is induced by the downregulation of prolyl hydroxylase 3
(PHD3) in cancer cells in obesity [233] (Fig. 3). In lean mice, PHD3 is
highly expressed in cancer cells, and it blocks the movement of free fatty
acids into the mitochondria; therefore, lipids are not readily utilized by
cancer cells in lean mice, and this allows lipids to distribute into CD8+ T
cells within the TME, and this is associated with improved anti-tumor
immunity in lean mice [233]. However, in obesity, PHD3 is down-
regulated in cancer cells [233] (Fig. 3). In response to PHD3 down-
regulation, free fatty acids flow into the mitochondria of cancer cells in
obesity, and this increased utilization of free fatty acids by the mito-
chondria for fatty acid oxidation drives a gradient by which free fatty
acids in the tumor interstitium are transported into cancer cells, not
CD8+ T cells, and this is associated with inhibited CD8+ T cell effector
activity in the tumors of obese mice [233]. Interestingly, genetically
preventing the downregulation of PHD3 in cancer cells in obesity in-
hibits lipid uptake by cancer cells, restores CD8+ T cell effector activity,

and inhibits the growth of tumors in obese mice [233]. Clinically,
analysis of the Cancer Genome Atlas showed the levels of PHD3 were
negatively correlated with BMI in the context of cancer [233]. These
findings provide the premise for a future study investigating what factor
(s) in obesity reduce PHD3 expression in cancer cells. Hypothetically,
preventing obesity-stimulated downregulation of PHD3 in cancer cells
would inhibit tumor growth by restoring anti-tumor immunity. In
addition to altering fatty acid and lipid metabolism, obesity decreases
amino acid metabolism in tumor-resident CD8+ T cells in MC38 colon
tumors [234]. This is secondary to reduced activity of the amino acid
transporter, SLC7A5, on tumor resident T cells in response to obesity
[234]. Conversely, leucine uptake by breast cancer cells is stimulated by
obesity-associated breast adipokines [235]. Increased leucine uptake by
breast cancer cells is mediated by increased SLC7A5 activity in response
to obesity-associated adipokines [235]. These findings show that
tumor-associated T-cell activity and cellular metabolism are inter-
connected and dysfunctional in obesity.

6.3. Natural killer (NK) cells

NK cells are inhibited in obesity [236,237]. In the context of cancer,
NK cells synapse with a tumor cell, and polarize their cytolytic granules
to release a payload of proteases and hydrolases onto cancer cells, which
kills the cancer cell [238]. In obesity, NK cells synapse with tumor cells,
yet they fail to polarize and, therefore, fail to release their cytolytic
granules onto cancer cells, and the cancer cell is not lysed [236]. This
defect in the polarization of lytic granules is linked to a defect in
glycolysis and oxidative metabolism in NK cells in obesity [236]. The
defect in glycolysis and oxidative metabolism is due to the accumulation
of triglyceride storage droplets in the cytoplasm of NK cells in murine
and human obesity [236,237]. In obesity, NK cells accumulate cyto-
plasmic lipid droplets via a transcriptional mechanism that promotes
lipid absorption and synthesis [237]. In NK cells, excess lipid accumu-
lation in the cytoplasm inhibits the activity of mTOR and destabilizes
P300 and cMYC protein [237]. The mTOR pathway, P300, and cMYC
drive metabolism in NK cells [236,237]. The metabolic defect in NK cells
in obesity is therefore linked to the loss of mTOR, P300, and cMYC [236,
237]. The mechanisms that reduce NK activity in obesity are summa-
rized in Fig. 4. Clinically, bariatric surgery improved NK cell activity in
humans [239]. Glucagon-like-peptide-1 agonist (GLP-1) treatment in

Fig. 3. T cell inactivation in obesity.
There is a competition between T cells and cancer cells for limiting amounts of
FFAs in the tumor interstitium. In lean mice, reduced utilization of FFAs by
cancer cells due to upregulation of PHD3 promotes the flow of FFAs into T cells.
In obese mice, reduced PHD3 promotes FFA utilization by cancer cells, which
diverts the flow of FFAs away from T cells. PHD3 = Prolyl hydroxylase 3, FFA =

Free Fatty Acids, FAO = Fatty Acid Oxidation.
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humans also boosted NK activity [240]. These clinical findings are
encouraging and suggest that moving to a low-fat diet and losing weight
might be lifestyle changes that improve NK activity.

6.4. Myeloid-derived suppressor cells (MDSCs)

Chronic inflammation, infections, and cancer induce granulocytes
and monocytes to develop into MDSCs [222,223]. MDSCs inhibit
inflammation and suppress anti-tumor immunity [222,223].
Obesity-associated leptin expands the number of MDSCs in peripheral
blood and the TME in mice [241]. Tumor-associated MDSCs express
PD-L1, which inhibits the activity of tumor-associated CD8+ T cells
[241]. Clinically, obese women with TNBC had increased circulating
MDSCs compared with lean women with TNBC [242]. In obese mice,
renal tumors had increased MDSCs compared with renal tumors in lean
mice [243]. Renal tumors in obese mice produced increased concen-
trations of C–C Motif Chemokine Ligand 2, which is an MDSC chemo-
attractant [243]. In obese mice, an increase in the number of MDSCs in
the peritoneal cavity is associated with increased ovarian tumor burden
[244]. In mice and humans, obesity-stimulated MDSC is associated with
increased progression of oral squamous cell carcinoma [245]. In mice,
obesity is broadly associated with an increase in the number of myeloid
cells and a decrease in the number of lymphoid cells being produced in
bone marrow [246]. In murine obesity, a subset of monocytes develops
into APCs that activate neutrophils that travel to the lung and release
neutrophil extracellular traps that “trap” metastatic mammary cancer
cells in the lung [246]. This monocyte-neutrophil-based mechanism
could, in part explain why breast cancer metastasis is increased in
obesity [246].

6.5. Macrophages

Macrophages are the most abundant immune cell type in adipose

tissue and within the TME [247,248]. Macrophages respond to tissue
signals to polarize towards an anti-inflammatory or proinflammatory
activation state [249]. Macrophages in adipose tissue in obesity are
classically M1 activated and release proinflammatory cytokines that
drive chronic inflammation and cancer susceptibility [248]. Conversely,
macrophages within the TME are alternatively polarized towards an M2
phenotype that produces cytokines that mediate antitumor immunity
within the TME [247]. Consequently, TAMs that are M2-activated are
associated with poor cancer prognosis [247]. Classically activated M1
macrophages also populate the TME and suppress cancer development
by producing proinflammatory cytokines and presenting antigens to
cytotoxic T cells [247]. Preclinical findings show a high-fat diet is
associated with enhanced infiltration of M2-like macrophages and reg-
ulatory T cells into prostate tumors in mice [250]. Preclinical findings
also show that high-fat diet-induced obesity correlates with upregulated
expression of PD1 on TAMs, which reduces antigen presentation and
phagocytic activity in murine MC38 colorectal tumors [251]. The
obesity suppressive effects on TAMs were reversed by anti-PD1 antibody
treatment [251]. Clinically, obesity is associated with an increase in the
percentage of immunosuppressive M2-activated macrophages in breast
adipose tissue [252]. These findings show that obesity regulation of
TAMs promotes cancer development. The obesity signal that regulates
TAMs, however, is unknown.

7. Cancer-associated adipocytes

Adipocytes in direct contact with cancer cells exhibit morphological,
functional, and de-differentiation processes that are unique compared
with adipocytes that are located far from the tumor—and because these
changes are unique, adipocytes that are in direct contact with cancer
cells are referred to as being cancer-associated adipocytes (CAAs)
[253–255]. CAAs undergo lipolysis in the TME [253,255]. In CAAs, this
is mediated by the activation of hormone-sensitive lipase by

Fig. 4. Inhibition of NK cells in obesity.
In lean mice, mTOR signaling, P300, and MYC transcriptional proteins mediate the increase in cellular metabolism that is needed for NK polarization and the release
of cytotoxic enzymes onto cancer cells. In obese mice, the uptake of lipids by NK cells leads to the formation of cytoplasmic lipid droplets (LDs) that inhibit mTOR
signaling and destabilize P300 and MYC. This compromises cellular metabolism that is needed for the polarization and release of cytolytic enzymes by NK cells onto
cancer cells. NK = Natural Killer, mTOR = mechanistic target of rapamycin, P300 = E1A Binding Protein P300, MYC = MYC Proto-Oncogene, BHLH Transcription
Factor, GzmB = Granzyme B, PFN = Profilin 1, LD = lipid droplet.
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cancer-secreted factors [254,256]. The induction of hormone-sensitive
lipase in CCAs is partially mediated by adrenergic receptors in
ovarian, but not breast cancer [254,256]. Free fatty acids are steadily
liberated from lipid droplets by adipose tissue lipase expressed by cancer
cells [254–257]. In cancer cells, free fatty acids are oxidized, which is
not coupled to ATP synthesis but is essential for cancer cell invasiveness
[256]. The flow of free fatty acids from adipocytes to cancer is enhanced
in obesity [257].

In mice, in vivo adipocyte tracing studies show CAAs do not undergo
apoptosis; instead, they transition to a fibroblast-like morphology [255].
This transition of an adipocyte to fibroblast-like cells is viewed as a
de-differentiation process [253,255]. CAAs can re-differentiate to an
adipocyte if removed from the tumor and placed in cell culture [255].
Thus, cancer-secreted factors maintain CAAs [255]. An interesting
question is whether delipidation occurs first, which triggers
de-differentiation, or if de-differentiation triggers delipidation, or the
two processes are independent responses to direct interaction with
cancer cells. In mice, genetically blocking adipocyte lipolysis prevents
cancer-induced adipocyte de-differentiation in the context of mammary
cancer [255]. This finding suggests that adipocyte delipidation leads to
adipocyte de-differentiation in response to direct contact with cancer
cells [255]. Mice with adipocytes that are refractory to lipolysis are also
protected from tumorigenesis because implanted mammary tumors in
these mice fail to grow and are significantly smaller than tumors
implanted in mice with adipocytes that undergo lipolysis in response to
being in direct contact with cancer cells [255]. Independent of lipid
transfer, the de-differentiation of adipocytes in response to cancer cells
might benefit the tumor by increasing total cellular heterogeneity within
the TME [255] (Fig. 5). Specifically, cells that were adipocytes but are
no longer adipocytes because they are in contact with cancer cells are a
heterogeneous population of six different cell types in various stages of
cellular transition that resemble inflammatory cells, macrophages,
myofibroblasts, adipocyte progenitor cells, andmesenchymal cells in the
murine TME [255] (Fig. 5). Single-cell RNA-seq studies show that these
tumor-stimulated adipocyte-derived cells respond to hypoxia and alter
pathways involved in the extracellular matrix and inflammation [255].
This heterogenous adipocyte response to cancer may be one mechanism
by which de-differentiation of adipocytes promotes tumorigenesis by
increasing cell heterogeneity in the tumor microenvironment [255]
(Fig. 5). Targeting adipocytes in direct contact with cancer cells could
foster new cancer therapies in obesity.

8. Conclusions and future directions

In obesity, chronic overfilling of adipocytes with lipids exceeds
capillary support to adipose tissue, which in turn leads to the death of
adipocytes that, in the process of dying, release chemokines and cyto-
kines that recruit M1-stage macrophages to adipose tissue that mediate
chronic low-level inflammation and skew T cell differentiation towards
proinflammatory TH1 and TH17 T cells (Section 2). The inflammation is
more severe in visceral adipose tissue. However, there is also an increase
in low-grade inflammation in peripheral tissues that are prone to cancer,
such as the breast, in obesity. There are many examples where obesity
inhibits anti-tumor immunity, including exhaustion and lipid depriva-
tion of CD8+ T cells, inactivation of NK cells, and increased numbers of
MDSCs (Section 6). Although obesity affects anti-tumor immunity
through several mechanisms, it is not clear which perturbations are the
most important for cancer progression and which mechanisms are
cancer-type-specific. Many anti-tumor immunity mechanisms have been
established in mouse models of obesity with correlates to human data. It
will be essential to translate these findings to human cancer in obesity.
The risk of cancer in obesity for many cancers is associated with a low
hazard ratio [21]. Thus, obesity alone is not a promising biomarker for
cancer. However, combining obesity with other cancer biomarkers
might identify a subset of obese patients who are at high risk for
aggressive cancer.

Given that obesity is a heterogeneous condition, a better under-
standing of which associated comorbidities drive T-cell dysfunction
could lead to better-targeted interventions for cancer therapy. Identi-
fying the obesity signal that drives T cell dysfunction could foster the
development of novel therapeutic approaches to restore tumor-
associated T cell function in obesity. Although the link between
dysfunctional tumor-infiltrating T cells and obesity is relatively well
characterized, less is known about how obesity regulates immuno-
surveillance of early cancer development. A more precise understanding
of the mechanisms of T-cell responsiveness to immune checkpoint
therapy in obesity may identify biomarkers that better predict patient
response to immune-based treatment for cancer therapy [258].
Considering the sensitivity of tumor-associated T cells to diet, a better
understanding of the mechanism could lead to therapies that incorpo-
rate diet to improve anti-tumor immunity [259].
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