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Interaction between microbiota and immunity in health and
disease
Danping Zheng1,2, Timur Liwinski1,3 and Eran Elinav 1,4

The interplay between the commensal microbiota and the mammalian immune system development and function includes
multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major
components of the host’s innate and adaptive immune system, while the immune system orchestrates the maintenance of key
features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined
environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we
review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular
mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current
knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their
impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-
targeted therapeutic interventions.
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INTRODUCTION
The human body, including the gut, skin and other mucosal
environments, is colonized by a tremendous number of micro-
organisms, collectively termed the microbiome.1 The collective
genomes of bacteria and other microorganisms in this ecosystem,
including fungi, viruses, parasites,2 have been increasingly
investigated during the past two decades, facilitated by a rapid
development of culture-independent genomic techniques. Recent
advances in microbiome research revealed that the gut micro-
biome is not just a passive bystander, but actively impacts
multiple host functions, including circadian rhythmicity, nutritional
responses, metabolism and immunity.3,4

The mammalian immune system encompasses a complex
network of innate and adaptive components in all tissues, and
plays a vital role in host defense against various potentially
harmful external agents and endogenous perturbations of home-
ostasis. From an ecological perspective, mammals and their
commensal microorganisms co-evolved toward mutualism and
hemostasis.5 Such intimate relationship requires the proper
functioning of host immunity to prevent commensals from over-
exploitation of host resources while maintaining immune toler-
ance to innocuous stimuli.6,7 However, perturbation of the gut
microbiome by environmental incursions (such as antibiotic use,
diet or changes in geography), impairment of host-microbiome
interfaces, or alterations of the immune system can result in
systemic dissemination of commensal microorganism, suscept-
ibility to pathogenic invasion, and aberrant immune responses. In
addition to regulation of infection and commensal spread,
microbiome-immune interactions are implicated in a variety of

‘non-communicable’ gastrointestinal diseases including inflamma-
tory bowel disease (IBD)8 and celiac diseases,9 as well as extra-
intestinal disorders ranging from rheumatic arthritis,10 metabolic
syndrome,11 neurodegenerative disorder12 to malignancy.13 The
interactions between the gut microbiota and host immunity are
complex, dynamic and context-dependent. Here, we review and
exemplify important current knowledge and key concepts linking
the microbiome to development and function of the immune
system. We highlight some of the existing mechanistic dissections
of multifaceted microbiome-immunity dialogs in both homeo-
static and diseased states. Moreover, we discuss the challenges
and perspectives of microbiome-targeted strategies in study-
ing disease pathogenesis and developing new microbiome-
related treatments. As the large body of evidence related to host
immune-microbiome interactions cannot be summarized by a
single review, we aim to provide key concepts and examples of
such interactions and their potential effects on human health and
disease risk, while referring throughout the review to multiple
other recent reviews14–16 focusing on distinct aspects of these
emerging interactions.

THE ROLE OF THE MICROBIOME IN IMMUNE SYSTEM
DEVELOPMENT
Early-life colonization of the mammalian host’s mucosal surfaces
plays a pivotal role in maturation of the host’s immune system.17

Most critical events in education of host immunity may take place
during the first years of life, in which microbiota composition
displays the highest intra- and inter-individual variability before
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reaching a more stable adult-like configuration at the age of ~3
years.18–20 However, the 'window of opportunity' thus created, may
also render infants more susceptible to environmental incursions to
the microbiota, with potentially long-lasting harmful impacts on
immunity.21 The immaturity of the immune system in newborns
and infants is highlighted by an increased susceptibility to various
infectious pathogens,22 rendering infectious diseases the leading
cause for mortality in children.23 On the other hand, an increased
propensity towards excessive inflammation is also frequently
encountered in prematurely born infants, as exemplified by the
potentially devastating disorder necrotizing enterocolitis.24 Most
studies to date have not noted a reproducible microbial coloniza-
tion already occurring in utero,25 and it is generally believed that
the largest share of colonization occurs after birth, mainly
originating from the maternal microbiota.26 Multiple modulators
impact this initial colonization, including delivery mode that
impacts on the composition of the initial microbiota across
multiple body habitats.27 It is well established that in neonates
maternal antibodies delivered via breastmilk offer crucial passive
protection against pathogens.28 Interestingly, a recent work
showed that the commensal microbiota of pregnant mice drives
antibody-mediated protective immunity through breastfeeding.29

The study of mechanistic causal relationships between com-
mensal microbiota and host immunity is strongly informed by the
use of germ-free (GF) animal models. Early studies on GF animals
demonstrated that absence of commensal microbes is associated
with profound intestinal defects of lymphoid tissue architecture
and immune functions.30 αβ and γδ intra-epithelial lymphocytes
(IELs) are significantly reduced in GF mice compared to conven-
tional colonized animals, and can be strongly induced upon de
novo colonization.31 IgA antibodies are a mainstay of protective
humoral mucosal immunity and show substantial reduction in
newborns and GF animals, which is rapidly restored by microbial
colonization.32 Gestational maternal colonization increases intest-
inal group 3 innate lymphoid cells (ILC3s) and F4/80+CD11c+

mononuclear cells in the offspring.26 The lamina propria of the
small intestine contains a large number of IL-17+CD4+ T (Th17)
cells, which represent a class of potent immunomodulatory effec-
tor cells.33 Th17 cells are absent in GF mice and are inducible upon
microbial colonization, most notably with segmented filamentous
bacteria (SFB),33,34 but also other commensal bacteria.35 Induction
of Th17 cells by SFB is enabled by their adhesion to epithelial
cells.36 A bacterial polysaccharide derived from the ubiquitous
commensal Bacteroides fragilis directs the maturation of the
developing immune system in mice, including correction of
systemic T cell deficiencies and Th1/Th2 imbalances in lymphoid
tissues.37 An early B cell lineage in the intestinal mucosa is
regulated by extracellular signals from commensal microbes that
influence gut immunoglobulin repertoires.38 Intestinal microbial
diversity during early-life colonization is critical to establish an
immunoregulatory network that protects from induction of
mucosal IgE, which is linked to allergy susceptibility.39 The innate
immune receptor Toll-like receptor 5 (TLR5) serves as a sensor for
bacterial flagellin. Although in mice TLR5-mediated counter-
selection of colonizing flagellated bacteria is constrained to the
neonatal period, this critical process shapes gut microbiota
composition and thus impacts on immune homeostasis and
health in adult life.40

To summarize, it is increasingly recognized that critical host
immune-microbiota interactions operate during a critical time
window in early life, which may have long-lasting impacts on
multiple immune arms contributing to immune homeostasis and
susceptibility to infectious and inflammatory diseases later in life.
However, the mechanisms of these interactions are still relatively
poorly defined, and the long-term impacts of subtler dysbiosis
states during the neonatal period on adult immunity and risk of
immune-mediated diseases merit future studies in human. More
detailed insights into such modulatory effects, if present, may bear

impact on understanding, prevention and treatment of immune-
related disorders.

INTERACTION BETWEEN MICROBIOTA AND IMMUNE SYSTEM
IN HOMEOSTASIS
Host-induced compartmentalization of intestinal microbiota
The best-studied interface for host-microbiota interactions is the
intestinal mucosa. A remarkable feature of the intestinal immune
system is its ability to establish immune tolerance towards an
enormous and constantly changing wealth of harmless micro-
organisms while concomitantly preserving immune responses
against pathogenic infection or commensal intrusion into the
sterile body milieu.41 In a healthy state, the host’s immune
response to the intestinal microbiota is strictly compartmentalized
to the mucosal surface.42 A single layer of epithelium separates
the intestinal lumen from underlying tissues. Many mechanisms
are employed to achieve microbiota compartmentalization. A
dense mucus layer separates the intestinal epithelium from
resident microbes.43 The mucus barrier is organized around the
hyperglycosylated mucin MUC2. However, MUC2 not only offers
protection by static shielding, but also constrains the immuno-
genicity of intestinal antigens by imprinting enteric dendritic cells
(DCs) towards an anti-inflammatory state.44 Tight junctions are a
critical structure in restricting trans-epithelial permeability. Micro-
bial signals, e.g., via the metabolite indole, promote fortification of
the epithelial barrier through upregulation of tight junctions and
associated cytoskeletal proteins.45 In addition, secretory IgA
antibodies and antimicrobial peptides (AMPs) maintain the
mucosal barrier function (see below).32,46 Intestinal DCs are
believed to play a critical role in compartmentalizing enteric
microbiota, through mechanisms involving sampling of gut
bacteria for antigen presentation.47

Crosstalk between the innate immune system and the microbiota
Microbiota and innate immunity engage in an extensive bidirec-
tional communication (Fig. 1). One of the phylogenetically oldest
systems of innate immunity is represented by AMPs. The majority
of intestinal AMPs is produced by Paneth cells, which represent
specialized secretory cells of the small intestinal mucosa.48

Intestinal AMPs exhibit manifold interactions with the microbiota
and are an essential component in shaping its configuration.49

Adding to the complexity of intestinal AMPs, antimicrobial
secretion from pancreatic acini seems to be critical for main-
tenance of intestinal homeostasis, as mice featuring reduced
secretion of pancreas-derived cathelicidin-related AMP secondary
to lack of the potassium channel Orai1 demonstrate a dramatically
increased mortality due to increased systemic microbial transloca-
tion and inflammation.50

Pattern recognition receptors (PRRs), such as Toll-like receptors
(TLRs), were initially described to sense microbial signals during
infection to elicit a protective immune response. However, ligands
for PRRs are not exclusive to pathogens and are abundantly
produced by commensal microbiota during healthy colonization
(reviewed in7). TLRs are involved in host defense against
pathogens, regulate the abundance of commensal microbes and
maintain tissue integrity.51 TLR expression in the intestinal
epithelium is characterized by a high diversity in terms of spatial,
cell type-specific, and temporal patterns.52 TLR5 is of particular
importance in shaping the gut microbiota,53–56 which might be
confined to a critical time window during neonatal life.40

Polysaccharide A (PSA) produced by the commensal Bacteroides
fragilis is another well-studied example of a single molecule
promoting symbiosis and host immune system education.57–59

PSA is recognized by the TLR2/TLR1 heterodimer in cooperation
with Dectin-160, a C-type lectin PRR.61 Downstream to TLR1/TLR2
and Dectin-1 signaling, the phosphoinositide 3-kinase (PI3K)
pathway is activated leading to inactivation of glycogen synthase
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kinase 3β (GSK3β), which in turn induces cAMP response element-
binding protein (CREB)-dependent expression of anti-
inflammatory genes.60 Moreover, Dectin-1 may regulate intestinal
immunity by controlling Treg cell differentiation through mod-
ification of microbiota configuration.62 Additional PRRs suggested
to shape the gut microbiota composition are NOD-like receptors
(NLRs). Nucleotide-binding oligomerization domain-containing
protein 1 (NOD1) serves as an innate sensor assisting generation
of adaptive lymphoid tissues and maintenance of intestinal
homeostasis.63 The bacterial sensor NOD2 prevents inflammation
of the small intestine by restricting the growth of the commensal
Bacteroides vulgatus.64 Stimulation of NOD2 by commensal
bacteria promotes gut epithelial stem cell survival and epithelial
regeneration.65

MyD88 is an adapter for multiple innate immune receptors that
recognize microbial signals, and of the signaling pathways

induced by the effector molecules interleukin-1 (IL-1) and IL-18
through their respective receptors.66 Mice deficient in MyD88
display an altered microbiota composition.56 MyD88 controls the
epithelial expression of several AMPs, including RegIIIγ, which
restricts the number of surface-associated gram-positive bacteria
and limits activation of adaptive immunity.67 Moreover, MyD88
regulates T cell differentiation, promotes microbiota homeostasis
through stimulation of IgA and controls the expansion of Th17
cells by restricting growth of SFB in mice.68

Some NLRs assemble into multiprotein complexes abundant in
many different cell types termed inflammasomes, whose pleio-
trophic immune functions are reviewed extensively elsewhere.69

Inflammasomes activate inflammatory caspases, which promote
the maturation of IL-1β and IL-18, and induce a lytic type of cell
death termed pyroptosis.69 NOD-, LRR (leucine‐rich repeat)- and
pyrin domain-containing 6 (NLRP6) is such protein assembling

Fig. 1 Intestinal microbiota-immunity interplay in homeostasis. Selected mechanistically well-characterized microbiota-immune system
interactions are depicted. Microbiome-derived TLR and NOD ligands and metabolites (e.g., SCFA, AhR ligands) act directly on enterocytes and
intestinal immune cells, but can also reach remote tissues via the systemic circulation to modulate immunity. Foxp3+ Treg cells and Tfh/ex-
Th17 cells localize in Peyer’s patches to promote class switch of B cells and production of secretory (s)IgA. These contribute to
compartmentalization of commensal microbiota and regulate homeostatic microbiota composition. Intestinal colonization by SFB and many
other commensals promotes differentiation of CD4+ Th17 cells. Moreover, SFB colonization elicits signaling via the ILC3/IL-22/SAA1/2 axis to
induce IL-17A production by RORγt+ Th17 cells. ILC3-derived IL-22 contributes to containment of specific microbiota members by promoting
IL-17A production by Th17 cells. Furthermore, deletion of ILC3-expressed MHCII activates commensal-specific CD4+ T cells to prevent an
immune response against harmless colonizers. Early-life microbial colonization limits the expansion of iNKT cells, in part via production of
sphingolipids, to prevent potential disease-promoting activity within the intestinal lamina propria and the lungs. Colonization with Bacteroides
fragilis, a prominent member of mammalian intestinal microbiota, is able to promote CD4+ T cell differentiation and to balance Th1 and Th2
populations, an effect that relies on its PSA. PSA is taken up by lamina propria DCs through a TLR2-dependent mechanism and presented to
naïve CD4+ T cells. In the simultaneous presence of activated TGF-β, these cells can differentiate to regulatory T cells (iTreg). IL-10 produced by
these cells promotes immune homeostasis. Contrarily, IL-23 licensed through the same cascade promotes expansion of pro-inflammatory
Th17 cells.
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inflammasome in the intestinal mucosa. The NLRP6 inflamma-
some has been linked with regulation of microbiome composition
and maintenance of intestinal homeostasis.70 NLRP6 inflamma-
some signaling is co-modulated by microbiota-derived metabo-
lites, which regulates epithelial IL-18 secretion and AMP
expression profiles.71 Moreover, the NLRP6 inflammasome gov-
erns intestinal ‘sentinel’ goblet cell mucus secretion, which offers
critical protection against pathogens.72,73 Beyond its role with
regard to the bacterial kingdom, NLRP6 regulates intestinal
antiviral innate immunity.74 Importantly, the impact of NLRP6 on
microbiota community structure is dependent on the background
microbiota in the vivarium, with dysbiosis occurring in mice
lacking NLRP6 only in the presence of distinct microbiome
configuration containing pathobionts such as Helicobacter spp.75

Another notable example of NLR assembling inflammasomes is
NLRP3. Regulation of NRLP3 inflammasome signaling is required
to maintain intestinal homeostasis. In patients with ulcerative
colitis, a surplus of anti-commensal IgG engages gut-resident
FcγR-expressing macrophages, inducing NLRP3- and reactive
oxygen species-dependent production of the pro-inflammatory
cytokine IL-1β.76 Upon intestinal injury, certain members of the
microbiota such as Proteus mirabilis stimulate monocytes to
induce NLRP3-dependent IL-1β release, which elicits intestinal
inflammation.77 Moreover, sensing of intact bacterial peptidogly-
can and peptidoglycan fragments by the innate immune system
through numerous PRRs is necessary for proper development of
immune cells and other tissues (reviewed in78). Another crucial
PRR interacting with the microbiota through inflammasome
signaling is the absent in melanoma 2 (AIM2). The AIM2
inflammasome was described to regulate intestinal homeostasis
through the IL-18/IL-22/STAT3 pathway.79 Mammalian peptido-
glycan recognition proteins (PGRPs) protect the host from colitis
by promoting balanced microbiota configuration and by prevent-
ing production of IFNγ by NK cells in response to injury.80 These
protective effects are in part achieved synergistically with NOD2.81

IPAF is an important member of the NOD‐LRR family of proteins. It
recognizes intracellular flagellin and activates inflammasomes,
stimulates caspase‐1, and promotes IL‐1β production in a TLR5‐
independent manner in Salmonella-infected macrophages.82

However, its role in host-commensal interplay is still not clearly
defined. Other PRRs potentially implicated in regulating host-
microbiome symbiosis requiring further exploration are RIG-I-Like
Receptors (RLRs)83 and OAS-Like Receptors (OLRs).84

An underappreciated area of microbiota research is represented
by commensal protists. In an elegant study on transkingdom
interactions, the authors demonstrate that the murine commensal
protist Trichomonas musculis protects against enteric bacterial
infection by activating epithelial inflammasome signaling, and
thus promoting DC-driven Th1 and Th17 immunity.85

Monocytes and macrophages are crucial innate immune
effector cells and have vital homeostatic roles.86 Recent research
started to shed light on the relationships between these
monocytes/macrophages and the commensal microbiota. A large
microbiota-derived polysaccharide has been shown to induce an
anti-inflammatory gene signature in murine intestinal macro-
phages.87 Moreover, butyrate can drive monocyte-to-macrophage
differentiation through histone deacetylase 3 (HDAC3) inhibition,
thereby amplifying antimicrobial host defense.88 Recently, it has
been demonstrated that a soluble microbiome-derived metabo-
lite, trimethylamine N-oxide (TMAO), can drive murine macro-
phage polarization in an NLRP3 inflammasome-dependent
manner.89

Innate lymphoid cells (ILCs) are a more recently discovered
heterogenous innate immune cell population specialized in the
rapid secretion of polarized cytokines and chemokines to combat
infection and promote mucosal tissue repair.90 ILCs have been
categorized into three distinct types based on transcription factors
and cytokine signatures. However, an in-depth single-cell

transcriptome and chromatin state profiling hints towards a much
more diverse landscape of ILCs.91 ILCs represent a rapidly growing
new research area reviewed more comprehensively
elsewhere.92,93 The phenotypic diversity and functional plasticity
of the host’s intestinal ILCs are shaped by integrating signals from
the microbiome.91 One factor regulating proliferation and function
of group 3 ILCs is the microbial metabolite sensor Ffar2.94

Recently, a dichotomous regulation of group 3 ILCs by a pair of
Helicobacter species in mice was identified. These species
activated ILCs but negatively regulated the proliferation of group
3 RORγt+ ILCs that are crucial for host immunity and inflamma-
tion.95 Type 3 ILCs mediate immune surveillance of microbiota
configuration to facilitate early colonization resistance through a
transcriptional regulator ID2-dependent regulation of IL-22.96

NCR+ ILC3 cells were demonstrated to be essential for maintaining
cecal homeostasis in mice during Citrobacter rodentium infec-
tion.97 A commensal linked with risk for allergic disease in
children, Ruminococcus gnavus, induces infiltration of the colon
and lung parenchyma by eosinophils and mast cells in mice via a
cascade implicating type 2 ILCs, hinting at a crucial role of ILCs in
immune tolerance.98

Interactions between the adaptive immune system and the
microbiota
In addition to the impacts of host-microbiota interactions on
innate immune function, recent research also uncovered mechan-
isms governing mutualism between the microbiome and the
adaptive immune system (Fig. 1). One example involves B cells,
crucial mediators of gut homeostasis by producing a large array of
secretory IgA antibodies responsive to commensals.46 Several
grams of IgA are secreted every day in the human intestines.99

Secretory IgA can be produced either in a T cell-independent or a
T cell-dependent manner. IgA produced in a T cell-dependent way
plays a more important role in shaping gut microbial commu-
nities.100 The relationship between intestinal IgA and microbiota is
mutualistic, in that a diversified and selected IgA repertoire con-
tributes to maintenance of a diversified and balanced microbiome,
which facilitates the expansion of Foxp3+ regulatory T cells
sustaining homeostatic IgA responses in a regulatory loop.101

Interestingly, intestinal secretory IgA antibodies preferentially coat
colitogenic bacteria, therefore preventing perturbation of enteric
homeostasis and inflammation.102 In the absence of B cells, or of
IgA, intestinal epithelia upregulate epithelium-inherent immune
defense mechanisms mediated by interferon-inducible response
pathways, which are associated with subsequent changes in
microbiome composition. Interestingly, the simultaneous repres-
sion of Gata4-related metabolic functions in this scenario results in
impaired intestinal absorption and metabolic alterations.103

Recently, a new subset of subepithelial mesenchymal cells
expressing the cytokine RANKL were identified to serve as
intestinal M cell inducers, thereby fostering IgA production and
gut microbiota diversification.104

Studies conducted during the past decade provided a more
detailed picture of the crosstalk between the gut microbiome and
CD4+ regulatory T cells. A subset of colonic regulatory CD4+

T cells lack differentiation in GF mice resulting from the absence of
bacterial consortia capable of fermenting dietary fiber into short-
chain fatty acids (SCFAs).105–107 Reactivity to intestinal bacteria
seems to be a 'healthy' property of both intestinal and systemic
human CD4+ T cells, which may support homeostasis by providing
a large pool of immune cells protective against pathogens.108 Of
these cells, the Th17 subset is intensely studied because of its
ambiguous roles in both host protection and inflammatory
disorders.109 The intestine harbors functionally distinct Th17 cell
populations and their inflammatory propensity is largely deter-
mined by distinct bacteria eliciting their differentiation. Th17 cells
elicited by SFB are non-inflammatory, while Th17 cells induced by
Citrobacter are a potent source of inflammatory cytokines.110
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While it is well established that microbiota is involved in Th17
differentiation in the intestine36 and the skin111, oral barrier Th17
cell development seems to be largely independent from microbial
colonization.112 Another example of microbiome regulation of
adoptive T cell responses involves CD8+ (cytotoxic) T cells, whose
effector functions are paramount in elimination of intracellular
pathogens and cancer cells. While these cells require priming by
professional antigen-presenting cells (APCs) and are amplified by
CD4+ T cell signaling113, antigen-activated CD8+ T cells show no
transition into memory cells in GF mice, as microbiota-derived
SCFAs are required to promote their memory potential.114 A
fraction of primary bile acids secreted into the intestine escape
into the colon where they are converted into secondary bile acids
by the microbiota, and may have various signaling functions that
are yet to be fully explored. A recent work showed that
microbiota-derived secondary bile acids regulate gut RORγ+

regulatory T cell homeostasis.115

Follicular helper T (Tfh) cells are specialized to assist B cells, and
are crucial for germinal center formation, affinity maturation, and
generation of high-affinity antibody responses and memory B
cells.116 Tfh cells are implicated in maintenance of microbiota
homeostasis as highlighted by studies showing that impairment of
Tfh cells resulting from lack of expression of co-receptor
programmed cell death 1 (PD-1) or ATP-gated ionotropic P2RX7
receptor can alter gut microbiota composition.117,118 The relation-
ship between Tfh cells and the microbiota is reciprocal, as Tfh cell
differentiation is impaired in GF mice and can be restored by
administration of Toll-like receptor 2 (TLR2) agonists that activate T
cell-intrinsic MyD88 signaling.119 In mice, SFB can induce Tfh cell
differentiation in Peyer’s patches by limiting the access of IL-2 to
CD4+ T cells, thereby amplifying the master regulator Bcl-6 of Tfh
cells.120 The microbiota-Tfh axis may also be relevant in auto-
immune diseases, as in mice SFB-induced Tfh cell differentiation can
boost autoantibody production and thus exacerbate arthritis.120

Additionally, recent studies began to uncover the relationships
between the microbiota and tissue-resident DCs, which represent
an important class of APCs shaping immune responses. DCs are
able to send their dendrites outside the epithelium to directly
capture bacteria.121 Recently, a Syk kinase-coupled signaling
pathway in DCs was described to be critical for microbiota-
induced production of IL-17 and IL-22 by CD4+ T cells.122

Moreover, a noncanonical NF-κB-inducing kinase (NIK) was
recently reported to be a crucial mediator of mucosal DC function.
In the same study, DC-specific NIK altered enteric IgA secretion
and microbiota homeostasis, rendering mice vulnerable to enteric
pathogens.123

A relatively unexplored set of immune cells with crucial
relationship to the commensal microbiota is represented by
invariant natural killer T cells (iNKTs). The gut microbiota affects
the phenotypes and functions of iNKTs in mice, with iNKTs from
GF animals showing a less mature phenotype and decreased
activation by antigens.124 Mono-colonization of neonatal GF mice
with the commensal Bacteroides fragilis or exposure to a purified
sphingolipid originating from B. fragilis was able to restore iNKT
cell numbers in GF mice and to protect the animals from
oxazolone-induced colitis.125

INFLUENCE OF ENVIRONMENTAL MICROBIOME
PERTURBATION ON THE IMMUNE SYSTEM
The gut microbiome is shaped by a wealth of environmental
factors whose impacts dominate over host genetics.126 These
environmental factors, including diet, antibiotic use, westernized
lifestyle, etc., are potential triggers of inflammatory and auto-
immune diseases.127 Understanding of environmental gut micro-
biome modulation and its impact on disease propensity is still in
its infancy. Currently, the best-studied environmental sources of
microbiome variation are antibiotic treatment and diet.

Antibiotic-induced microbiome disturbances
Antibiotics are an indispensable treatment against infectious
diseases and their introduction has dramatically changed health-
care and human life expectancy. However, evidence suggests that
antibiotic use during childhood is associated with the develop-
ment of a range of immune-mediated diseases, including allergies
and IBD.21,128 Intake of antibiotics profoundly affects the composi-
tion and function of the gut microbiota, and may introduce long-
lasting adverse effects on the host.129 Different immune cell
subsets and functions can be altered by antibiotic-driven gut
microbial dysbiosis. In rats, administration of antibiotics inhibits
intestinal mucosal mast cell activation and suppresses dietary lipid
uptake.130 Broad-spectrum antibiotic-mediated microbial pertur-
bation and depletion of microbiota-derived SCFAs causes
hyperactivation of intestinal macrophages and expansion of
proinflammatory T helper cells and increases susceptibility to
infection.131 Furthermore, antibiotic treatment permits over-
growth of enteric fungi, thereby promoting pulmonary M2
macrophage polarization, which in turn promotes allergic airway
inflammation.132 Microbiota disruption by antibiotics results in
enhanced pathogen-specific Th1 cell responses and tissue
pathology in an CX3CR1+ MNP-dependent manner.133 Signifi-
cantly reduced RORγt+ Tregs in GF or antibiotic-treated mice
promote Th2 type-associated immune responses and inflamma-
tion upon helminth infection.134 In humans with pre-existing
immune system impairment, microbiome depletion through
broad-spectrum antibiotics not only results in a diminished
antibody response to seasonal influenza vaccination, but also
leads to augmented circulatory inflammatory signatures and
altered plasma metabolome profiles.135 The long-term health
consequences of antibiotic-induced microbiome alterations in
humans merit more long-term observational studies and clinical
trials.

Diet-induced microbiome alterations
Recent studies began to unravel the links between dietary
microbiota modulation and host immunity. Western style diets
profoundly affect gut microbiome configuration and adversely
impact on host immunity.136 For example, a diet high in saturated
fats increases the levels of taurocholic acid, a secondary bile acid,
and in turn fosters the expansion of Bilophila wadsworthia. This
pathobiont promotes Th1 type immune responses and increases
susceptibility to colitis in IL10–/– mice.137 High-fat diet can also
aggravate disease severity in chemically induced murine colitis by
disturbing the homeostasis of intestinal DCs, possibly by reducing
butyrate and retinoic acid levels.138 Dietary long-chain fatty acids
may exacerbate autoimmunity in the central nervous system (CNS)
by modulating the gut microbiome and metabolome.139 In mice,
intake of dietary carbohydrates,105 certain probiotics,140 artificial
sweeteners141 and emulsifiers142 can modulate host immunity and
inflammation, in part mediated by compositional changes of the
gut microbiome. In humans, individuals with higher fecal
abundance of the bacterial genus Dialister and lower levels of
Coriobacteriaceae family members show reduced serum levels of
the pro-inflammatory cytokine IL-6 after short-term consumption
of whole grains.143

In addition to dietary quantity and content, the timing of dietary
intake has been recently shown to affect microbiome composition
and in turn immunity. Intermittent fasting ameliorates disease
severity in a murine model of autoimmune encephalomyelitis and
in patients with multiple sclerosis by microbiota-mediated
balancing of IL-17-producing and regulatory T cells.144 In a murine
colitis model, a fasting-mimicking diet exerted a protective effect
through modulation of the gut microbiome including an increase
of Lactobacillus.145 In contrast, mistimed dietary intake accelerates
alcohol-associated colonic carcinogenesis by reducing the number
of butyrate- and SCFA-producing bacteria, which causes mucosal
Th17/regulatory T cell imbalance.146
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Of note, the impact of the microbiome on immunity in
laboratory mice can be vastly divergent from that in humans,
which is in part explained by differences in microbiota between
mice raised in laboratory versus wild environments. Mice with a
natural wild microbiota are more resilient to environmental
challenges and show responses to immunotherapy that are more
resemblant of humans.147 Therefore, it is important to study the
impact of environmental exposures on the host immune system in
a context of such human-like microbiota configuration, which may
promote better understanding of immune system-microbiota
interactions and their translation into clinical applications.

DYSREGULATION OF MICROBIOME-IMMUNITY INTERACTION
IN DISEASE
Aberrant interactions between the microbiome and the host’s
immune system in genetically susceptible individuals may
contribute to the development of complex immune-mediated
diseases (Fig. 2). Among these, the most extensively studied
examples include IBD, systemic autoimmune diseases, cardiome-
tabolic diseases and cancer. Additionally, the microbiome-
immunity link has been suggested to modulate other ‘multi-
factorial’ diseases (e.g., neurodegenerative diseases) but requires
further human studies. More importantly, the causal effect of the
microbiome on immune dysregulation in most human disorders
listed above remains to be proven.

Inflammatory bowel disease
IBD, mainly encompassing Crohn’s disease (CD) and ulcerative
colitis, is a chronic, recurrent inflammatory disorder of the

gastrointestinal tract, characterized by a growing global preva-
lence.148 Multiple lines of evidence point towards central roles
of gut microbiome perturbations in the pathogenesis of IBD.
These include a reduced bacterial diversity and marked shifts in
abundance of certain bacterial taxa, including decreased abun-
dance of Bacteroides, Firmicutes, Clostridia, Lactobacillus, Rumino-
coccaceae and increased abundance of Gammaproteobacteria and
Enterobacteriaceae,149,150, coupled with altered microbiome-
associated metabolite profiles.151,152 The breakdown of the tightly
regulated intestinal barrier leads to translocation of bacterial
symbionts into the mucosal layer, fueling aberrant host immune
responses and tissue injury.153 As such, disruptions of gut barrier
integrity, including the mucus layer, epithelial cell junctions, and
AMP secretion are all believed to be involved in IBD pathogen-
esis.154 For example, mice deficient in Muc2 may develop
spontaneous colitis,155 and mucus layer defects due to Muc2
mutation drive early gut dysbiosis in colitis-prone mice.156

Genome-wide association studies revealed so far more than
200 susceptibility loci for IBD, many of which encode proteins
involved in innate and adaptive immune sensing and response to
bacterial signals. Among these, mutation in the NOD2 gene was
the first to be confirmed to be strongly associated with
susceptibility to CD.157,158 NOD2 is an intracellular PRR capable
of recognizing bacterial peptidoglycan-conserved motifs. NOD2
acts as a critical regulator of the intestinal commensal microbiota,
by controlling the expression and secretion of AMPs159 (see
above) and suppressing the expansion of certain proinflammatory
bacterial species such as Bacteroides vulgatus.64 The dysregulated
microbiome-immunity interaction in the context of NOD2 muta-
tion is assumed to play important roles in CD pathogenesis.

Fig. 2 Dysregulation of microbiome-immunity interaction in disease. Under the influence of certain environmental factors and host genetic
susceptibility, aberrant interactions between the microbiome and the host’s immune system contribute to the development of various
immune-mediated disorders. In IBD as an example, antibiotic use or dietary changes, in the presence of genetic susceptibility (e.g., NOD2
mutation), may lead to alterations of the gut microbiome configuration, including decreased richness and perturbed taxonomic and
metabolite composition. These microbiome alterations are strongly associated with aberrant mucosal immune responses, including
upregulated Th17, Th1 and Th2 type responses, downregulated T regulatory cells, and dysregulated humoral immunity. This may finally result
in chronic, clinically-overt intestinal inflammation and tissue injury.
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Likewise, mutations in autophagy-related 16-like 1 (ATG16L1),
another CD-associated risk allele, not only result in impaired
exocytosis in Paneth cells,160 but potentiate inflammatory
responses and necrosis of intestinal epithelial cells through
modulation of IL-22 signaling.161 The role of inflammasome
signaling in regulating the crosstalk between the microbiome
and immunity is likewise implicated in pre-clinical IBD models. For
example, perturbation of the NLRP6 inflammasome pathway
results in susceptibility to murine colitis through expansion of
members of the Prevotellaceae family in some vivaria,70 and
promotes intestinal inflammation in IL10–/– mice by enhancing
colonization with Akkermansia muciniphila.162 The contribution of
adaptive immune responses to the expansion of IBD-associated
pathobionts, including aberrant roles of effector T cells, regulatory
T cells and antibody-mediated humoral immunity, has been
reviewed extensively elsewhere.153

Notwithstanding all of these data, whether microbiome
alterations represent the cause or consequence of intestinal
inflammation remains unclarified to date. Some emerging
evidence supports a causal role of gut dysbiosis in IBD, since
transfer of disease-associated microbiota triggers CD-like inflam-
mation in genetically susceptible GF recipient mice.163 Microbiota
from IBD patients transplanted to GF mice likewise induces
imbalances in intestinal Th17 and RORgt+ regulatory T cells.164

More strikingly, one single pathobiont, Mucispirillum schaedleri,
was demonstrated to be sufficient to trigger a Th1 cell-driven
intestinal inflammation in mice deficient in both NOD2 and
CYBB.165 Similarly, ectopic colonization of oral Klebsiella spp.
derived from IBD patients, induces Th1-type intestinal inflamma-
tion in IL10–/– mice.166 Furthermore, abnormal T cell and B cell
adaptive immunity can be transmitted to GF mice from infant-
harbored microbiome born to IBD-prone mothers.167 Increasing
knowledge on molecular impacts of distinct commensals and their
small-molecule products on the clinical features of IBD may enable
the development of future targeted interventions.

Rheumatoid arthritis
Rheumatoid arthritis (RA) is a systemic autoimmune disorder
mainly involving the joints, characterized by synovial inflamma-
tion and bone cartilage destruction. The pathogenesis of this
highly debilitating disease is currently unclear. Genetic (e.g., HLA-
DRB1), microbiome and environmental factors have been
implicated in the pathogenesis of RA. An increased abundance
of Prevotella copri was reported in treatment-naïve new-onset RA
patients168,169 and in individuals at high risk for RA.170 Another
study identified a strong link between three rare genera
(Collinsella, Eggerthella and Faecalibacterium) and RA, among
which Collinsella is associated with proinflammatory IL-17A
production.171 In a Chinese cohort, RA patients displayed an
over-representation of Lactobacillus salivarius and reduced levels
of Haemophilus spp. in intestinal, dental and saliva specimens.172

Microbiome-derived metabolites, most notably SCFAs, interact
with a variety of immune pathways implicated in RA.173

Spontaneous development of T cell-mediated autoimmune
arthritis in IL1rn–/– mice requires the activation of TLR2 and TLR4
by microbial ligands.174 Dysbiotic microbiota from IL1rn–/– mice
elicits a IL17 response by intestinal lymphocytes.175 Moreover,
genetically susceptible mice colonized with dysbiotic microbiota
from RA patients show an enhanced Th17 type response.169

Similarly, inoculation of SFB into GF mice is sufficient to induce
Th17 activation and to instigate autoimmune arthritis.176 In
addition to the enteric bacteria, the periodontal pathobiont
Porphyromonas gingivalis can induce a TLR2- and IL-1-mediated
Th17 response and thereby exacerbate autoimmune arthritis.177

Future studies are required to determine the influence of RA
treatment on the microbiome and the causal role of microbiome
alterations potentially modulating human RA.

Cardiometabolic disease
Chronic low-grade inflammation is considered a hallmark of
metabolic disorders, including diabetes mellitus, obesity, athero-
sclerosis and non-alcoholic fatty liver disease (NAFLD). In
metabolically highly active organs such as the liver or adipose
tissue, the crosstalk between immune cells and parenchymal cells
plays a critical role in the pathogenesis of metabolic diseases.178

Growing evidence shows that gut microbiome-derived metabo-
lites can reach systemic circulation through the gut barrier and
fuel metabolic inflammation.179 Various TLRs in the liver recognize
bacterial ligands and trigger downstream inflammatory cascades.
Activation of these TLRs can contribute to the development of
NAFLD and nonalcoholic steatohepatitis (NASH), with the most
extensively studied pathway being LPS-TLR4 signaling.180 In
addition to TLRs, the NLRP6 and NLRP3 inflammasomes may
exert protective effects against NAFLD/NASH through modulation
of the gut microbiota.181 Multiple interactions between the host’s
immune system and the gut microbiota were reported to be
involved in type 1 diabetes (T1D). For example, GF non-obese
diabetic mice lacking MyD88 signaling robustly develop T1D,
while microbial colonization of these mice attenuates the
disease.56 Depletion of Akkermansia muciniphila causes systemic
translocation of endotoxin-activated CCR2+ monocytes. These in
turn activate innate pancreatic B1a cells, resulting in increased
insulin resistance.182 Furthermore, the crosstalk between the
microbiome and immunity plays a crucial role in obesity. For
example, microbiome-derived tryptophan metabolites modulate
white adipose tissue inflammation in obesity, mediated through
the miR-181 family of microRNAs.183 Recently, the innate immune
sensor NLRP12 was shown to decrease high fat diet-induced
obesity in mice by preserving SCFA-producing members of the
Lachnospiraceae family.184 One of the most perilous common
sequelae of cardiometabolic disease is atherosclerosis and its
complications. The gut microbiota-derived metabolite TMAO has
been linked to atherosclerotic heart disease in both mice and
humans.185 Interestingly, TMAO augments arthrosclerosis by
upregulating the macrophage scavenger receptors CD36 and
SR-A1, and by reinforcing cholesterol accumulation in macro-
phages and foam cell formation.186

Cancer
Interactions between the gut microbiota and the immune system
are believed to impact on cancer immune surveillance. In the
context of colon cancer, NK cell killing of tumors is directly
inhibited by the presence of Fusobacterium nucleatum in the
tumor microenvironment. This is in part mediated by binding of
the bacterium’s Fap2 protein to the human TIGIT receptor.187

Higher amounts of F. nucleatum in human colorectal cancer tissue
are furthermore associated with a lower density of CD3+ T cells, a
population associated with a more favorable clinical outcome.188

In remote tissues such as the liver, the intestinal commensal
Clostridium species utilize bile acids as messengers to enhance the
antitumoral effect of hepatic CXCR6+ NKT cells, affecting both
primary and metastatic liver tumors.189 The microbiome has been
recently suggested to also modulate anticancer immunotherapy
responses. For example, higher abundances of the commensals
Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus
faecium stimulate a more favorable T cell-mediated response to
anti-PD-1 therapy in both preclinical models and patients suffering
from metastasized melanoma.190–192 Another study revealed a
positive correlation between fecal Akkermansia muciniphila
abundance and PD-1 blockade efficacy in patients with epithelial
tumors, potentially dependent on CCR9+CXCR3+CD4+ T lympho-
cyte recruitment and IL-12 secretion.193 Immune responses to
other anticancer treatments, including CTLA-4 blockade194 and
cyclophosphamide,195 were also associated with distinct gut
microbiome configurations. Unraveling the role of the gut
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microbiome in anticancer immune surveillance and immunother-
apy may hold great promise in optimizing treatment responses in
cancer patients, and has been reviewed elsewhere in greater
detail.13,196

Aside from the gut microbiome, most recent research begins to
explore the role of intra-tumor tissue microbiome in regulating
cancer immunity. For example, intra-tumor microbiota in pan-
creatic adenocarcinoma (PDAC) in mice and humans promotes
carcinogenesis through induction of a tolerogenic immune
program, including suppressive differentiation in monocytes via
selective TLRs and T cell anergy.197 In addition, the presence of
Gammaproteobacteria in murine colon cancer and human PDAC
contributes to resistance against therapy with gemcitabine.198

Interestingly, the intra-tumor microbiome in long-term survivors
of PDAC patients exhibits higher microbial diversity, which may
induce potent immune infiltration and antitumor immunity.199

These studies indicate the potential of tumor tissue-resident
microbiota as a therapeutic target, which warrants further
mechanistic studies.

CROSSTALK BETWEEN MICROBIOTA AND EXTRA-INTESTINAL
ORGAN IMMUNITY
Although most studies in the field to date focused on the interplay
of microbiota and mucosal immunity in the intestine, interactions
of both the gut microbiota and extra-intestinal microbiota com-
munities with extra-intestinal organ immunity have been gain-
ing increased attention (Fig. 3). Emerging evidence highlights that
the local microbiomes of extra-intestinal mucosal surfaces provide
niche-specific functions, including modulation of organ-specific
immune responses.

Skin
Alike the intestine, the skin (the body’s largest organ) represents a
dynamic and complex ecosystem, harboring and interacting with
a plethora of locally-entrenched commensal microorganisms. High

throughput sequencing-based studies revealed a diversity of site-
specific but temporally stable microbial communities in the
healthy human skin200,201 featuring inter-individual variability.202

The skin microbiota induces protective and regulatory immu-
nity that contributes to host-microbe mutualism. Skin-resident
commensals not only effectively control the equilibrium of T
effector and regulatory T cells in the tissue, dependent of IL-1 and
MyD88 signaling,111 but also regulate components of the
cutaneous complement system203 as well as the expression of
various cutaneous AMPs.204 Certain aspects of the regulation of
cutaneous innate and adaptive immunity by the skin microbiome
feature strain specificity. One of the most highly abundant skin
commensals, Staphylococcus epidermidis, can specifically induce
homing of CD8+ T cells primed by CD103+ DCs into the epidermis
and can promote skin antimicrobial responses in an IL17-
dependent manner.205 Furthermore, the S. epidermidis-specific
CD8+ T cell response is restricted to non-classical MHC class I
molecules, which also promote tissue repair.206 During skin injury,
TLR2 recognition of S. epidermidis cell wall component lipoteichoic
acid suppresses skin inflammation and inhibits release of
inflammatory cytokines, thereby promoting wound healing.207 It
should be noted that colonization with skin commensal during the
neonatal period is crucial for establishing immune tolerance
through massive accumulation of active T regulatory cells in the
neonatal skin, collaboratively driven by hair follicle
morphogenesis.208,209 Moreover, epidermal keratinocytes also
actively participate in cutaneous immune defenses. Microbial
metabolites, such as SCFAs produced by the commensal skin
bacterium Propionibacterium acnes, can modulate keratinocyte
inflammatory activity through inhibition of the keratinocytes’
histone deacetylases.210 Furthermore, cutaneous commensals
such as coagulase-negative Staphylococcus strains produce anti-
microbials that protect from pathobionts such as Staphylococcus
aureus.211

Skin dysbiosis has been associated with different inflammatory
skin disorders, including atopic dermatitis212 and psoriasis.213

Fig. 3 Microbiome-immunity interaction in extra-intestinal organs. The gut microbiome and microbiome-associated metabolites
translocate from the intestinal lumen to various organs (e.g., liver, brain or lung) through the circulatory system, and subsequently induce
tissue-specific local immune responses. In the liver, bacterial LPS is recognized by TLR4 in different cell types, leading to upregulation of
various pro-inflammatory chemokines and adhesion molecules. MAMPs influence the number, function and maturation of Kupffer cells, and
glycolipid antigen-containing probiotics can activate hepatic NKT cells. The gut-resident pathobiont Klebsiella pneumoniae can translocate and
induce Th17 cell responses in the liver. In the CNS, microbiome-derived SCFAs regulate microglial homeostasis, and promote regulatory T cells
to counter-regulate CNS autoimmunity. In the lung, SCFA-induced primed myeloid cells translocate to the lung and shape the pulmonary
immunological landscape. Clostridium orbiscindens-derived product desaminotyrosine modulates type I IFN signaling. In addition, exposure to
different lung-resident microbes (e.g., Pseudomonas, Lactobacillus, pneumotypeSPT) is associated with an enhanced Th17 type response.
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Whether skin dysbiosis is the cause or consequence of these
disorders is not yet clarified, but it has been proposed that locally
amplified immune responses to particular skin microbes, or
increased microbial load, in the setting of impaired skin barrier
and genetic predisposition, might contribute to pathology.214 For
example, skin colonization with Staphylococcus aureus promotes
skin allergy in a mouse model of atopic dermatitis through δ-
Toxin-induced mast cell activation.215 Furthermore, epidermal
JunB is critical for immune-microbiota interactions, as mice lacking
JunB expression in skin epithelial cells are characterized by
augmented Th2 and Th17 type immune responses, accompanied
by increased S. aureus colonization.216 However, many open
questions remain to be explored, including the molecular basis of
cutaneous microbiota-immune interactions and mechanisms by
which the cutaneous immune system discriminates between
skin commensals and pathogens.

Lung
Emerging evidence highlights an important crosstalk between the
gut microbiome and the lung (‘gut-lung axis’). Alterations in the
gut microbiome or microbiome-derived metabolites may impact
on lung immunity in the context of pulmonary diseases. Gut
commensals regulate antiviral immunity at the respiratory mucosa
through inflammasome activation upon influenza A virus infec-
tion.217 Accordingly, GF mice show an impaired pulmonary
pathogen clearance.218 Microbiome-derived SCFAs promote bone
marrow hematopoiesis, and the primed myeloid cells subse-
quently migrate to the lung, shaping the lung’s immunological
landscape and conferring protection against airway inflamma-
tion.219 Desaminotyrosine, a product derived from the gut
commensal Clostridium orbiscindens, exerts distal effects on the
lung to protect against influenza through modulation of type I IFN
signaling.220

Additionally, recent evidence points towards a potential of a
locally entrenched lung microbiota possibly impacting pulmonary
immunity.221 In mice, the rapid formation of an airway micro-
biome within the first 2 postnatal weeks is critical for immune
tolerance to inhaled allergens through PD-L1-related mechan-
isms.222 The human microbiome in the lower respiratory tract
forms within the first 2 postnatal months, alongside lung immune
maturation.223 Alterations of the lung microbiota has been
implicated in exacerbation of chronic pulmonary diseases,
including chronic obstructive pulmonary disease, asthma and
cystic fibrosis.224 Notably, exposure to different lung microbes is
associated with different cellular immune responses. For example,
enrichment of Pseudomonas and Lactobacillus in mouse models of
chronic lung inflammation,225 or pneumotypeSPT derived from
a diseased human bronchoalveolar system,226 is related to an
enhanced Th17 type response. Pathobionts such as members of
Proteobacteria induce severe TLR2-independent airway inflamma-
tion and lung immunopathology.227 More recent evidence
suggests that certain lung commensals may instigate the
development of pulmonary adenocarcinoma by activating γδ
T cells that produce IL17. This highlights the putative role of a lung
microbiome-immunity crosstalk in lung cancer.228 However, the
study of the lung microbiome and the interplay between
commensal microbial communities and pulmonary immunity is
only in its infancy, with many more mechanistic insights expected
to be revealed in future studies.

Liver
The liver features direct anatomical connection to the gastro-
intestinal tract via the portal venous circulation and bile duct
system, thereby being constantly exposed to bacterial products of
gut microbiome origin (‘gut-liver axis’). Intestinal commensals and
their products were repeatedly reported to translocate from the
intestinal lumen to the liver in certain contexts, in which they may
impact hepatic immune responses. For example, microbial-

associated molecular patterns (MAMPs) from gut bacteria can
directly influence the number, function and maturation of hepatic
Kupffer cells (KCs), a critical componentof the hepatic innate
immune system.229 Intestinal pathogens may exacerbate immu-
nological hepatic injury by activating DCs and NKT cells in the
liver.230 Similarly, glycolipid antigen-containing probiotics were
reported to stimulate hepatic NKT cells in a strain- and dose-
dependent manner.231 Hepatic stellate cells, the main fibrosis-
inducing cell line in the liver, can also be directly stimulated by
bacterial lipopolysaccharide (LPS), mainly through induction
of TLR4 signaling. This results in an upregulation of multiple
chemokines and adhesion molecules.232 Innate immune sensing
of gut-derived microbial products by different TLRs, including
TLR4, TLR9, TLR5, and their downstream impacts on liver
inflammation in the context of NAFLD/NASH have been recently
reviewed elsewhere.180

Liver inflammation impacted by gut microbiota was also
described in primary sclerosing cholangitis (PSC), a chronic
inflammatory and cholestatic liver disease. The enteric pathobiont
Klebsiella pneumonia cultured from PSC patient specimens was
demonstrated to damage the intestinal epithelial barrier,
thereby inducing bacterial translocation that promotes Th17 cell
responses in the murine liver.233 Interestingly, a recent study
showed alterations of the bile microbiota in PSC patients,
characterized by reduced biodiversity, higher abundance of the
pathobiont Enterococcus faecalis, and increased levels of the
noxious secondary bile acid taurolithocholic acid.234 However, it
remains unclear whether these alterations are causally involved in
PSC or are merely a consequence of biliary disease.
Recent studies also demonstrated carcinogenic effects of

microbiome-derived small molecules via regulation of immune
responses in liver malignancy, including secondary bile acid
mediating upregulation of hepatic NKT cells,189 deoxycholic acid
modulating the inflammatory secretome,235 lipoteichoic acid
regulating prostaglandin E2 expression,236 and LPS signaling
through TLR4.237

Central nervous system
The development of a healthy brain and balanced neuro-
immunity relies on integration of numerous endogenous and
environmental cues. Among these, molecular signals originating
from the gut microbiome may play prominent roles in modulating
brain cell function.238 Microglia are among the primary innate
immune cells in the CNS, and are instrumental in CNS immune
defense and contribute to brain development and homeostasis.239

The microbiota contributes to microglia homeostasis, potentially
mediated by signaling through SCFAs.240 GF mice display marked
defects in microglia structure and function and hence fea-
ture impaired CNS innate immune responses.240,241 Interestingly,
the maternal microbiome impacts on microglial development
during prenatal stages, and microglial perturbations associated
with the absence of microbiota manifest in a sex-dimorphic
manner.242 Both microbial dysbiosis and microglial dysfunction
have been described in several neurological diseases, including
behavioral, inflammatory and neurodegenerative disor-
ders.243 Whether microbiota-microglia interactions contribute to
the pathogenesis of these disorders merits further studies.
Moreover, diet-derived SCFAs were reported to promote

regulatory T cells to counter-regulate autoimmunity in the
CNS,139 and the intestinal microbiota modulates meningeal IL-
17+ γδ T cells, which impact on the pathogenesis of ischemic
brain injury.244 Despite tremendous recent advances, the study of
the interplay between the microbiome and neuro-immunity in
health and disease is still in its infancy. Some studies shed light on
possible mechanisms driving such putative 'gut-brain axis' in the
context of neuro-immunity. For example, depletion of gut
commensal bacteria by antibiotic treatment dampens the
progression of experimental autoimmune encephalomyelitis in
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mice, which is suggested to be mediated by induction of IL-10-
producing regulatory T cells.245 Offsprings of pregnant female
mice that harbor certain gut bacteria with a propensity to induce T
helper 17 response are at increased risk of developing neurodeve-
lopmental disorders.246 Interestingly in a murine maternal
immune activation model, IL-17a-mediated inflammatory
responses were shown to exert beneficial roles in improving
social behaviors in offsprings of adult mice.247 Potential micro-
biota involvement in these mechanisms merits further stu-
dies. Continued research efforts in this direction may hold great
therapeutic promise in uncovering new regulatory pathways
impacting a variety of inflammatory, developmental and degen-
erative neurological diseases.

Intra-organ low-biomass microbiomes
There is growing recent interest in utilizing next-genera-
tion sequencing to characterize sparsely populated low-biomass
microbiomes in seemingly ‘sterile’ organs, such as the skin,206

lungs,248 reproductive organs249 and bile ducts.234 However,
caution is required in interpreting such findings, as many studies
that attempt to investigate low-biomass microbiome samples are
challenged by high false positive signals resulting from contam-
ination and sequencing-related challenges and artefacts.250

Contaminating microbial DNA may originate from multiple
environmental sources, such as laboratory extraction, amplifica-
tion and library preparation kits.251 Notably, the notion of the
existence of a placental microbiome and its link to reproductive
health was recently challenged by a thorough comparison of
results using different kits, blank controls and complementary
approaches of microbial detection not exclusively relying on
sequencing.252,253 In order to avoid fallacious conclusions,
strategies to control contamination must be considered when
working with low microbial biomass tissues, including experi-
mental and computational measures.250,254–256 Although promis-
ing, these strategies largely still await proof that signals uncovered
from low-biomass microbiomes reliably translate into verifiable
mechanistic biological insights.

CHALLENGES AND PITFALLS IN IMMUNE-MICROBIOME
RESEARCH
Recent research has greatly enhanced our understandings of the
intimate but complicated crosstalk between the microbiome and
the immune system. Nevertheless, many unknowns and chal-
lenges remain, in disentangling microbiome-immunity interac-
tions in homeostasis and disease.
Exploring the roles of the commensal microbiome in impacting

immunity in health and in disease requires more mechanistic
studies. Indeed, current evidence from animal models indicates a
bidirectional relationship to exist between microbiome perturba-
tion and immune dysregulation. As such, distinct microbiota and
metabolites drive immune activation, and chronic inflammation
conversely may shape the dysbiotic configuration and functions of
microbial communities. However, a direct causal relationship
between the microbiome and immunity before the onset or
during early stages of disease has not been established in most
medical conditions. Moreover, the role of other previously
underappreciated microorganisms, including viruses, fungi, para-
sites and their impact on the host immunity, emerges as an
important but challenging subject to be explored in future studies.
As an example, while recent research begins to uncover the role
of fungi257,258 and viruses259,260 in IBD pathogenesis, the interplay
between the mycobiome, virome and microbiome adds a layer of
complexity in mining their impacts on innate and adaptive
immune responses. Furthermore, many diseases of unknown
etiology, including IBD, autoimmune arthritis and cancer, are
influenced by both genetic and environmental factors (e.g., diet,
smoking, etc.).261 It is imperative to investigate how the

microbiome and the immune system interact in a context of
environmental triggers and host genetics. Integration of multi-
omics data sets, including metagenomics, single-cell transcrip-
tomics, epigenomics, proteomics and metabolomics, will aid in
elucidating how the gut microbiome and the immune system are
cross-regulated in these differing and complex contexts. Impor-
tantly in all of these efforts, the microbiome research community
massively uses laboratory mice that harbor a divergent microbiota
from ‘wild’ animals and humans, thereby featuring a limited
translational potential and reproducibility as compared to ‘real-life’
settings. The newly created ‘wilding mice’ with low genetic
variability but a highly natural and resilient microbiota,147 may
enable better mechanistic dissection of host-microbiome interac-
tions and provide a valuable preclinical tool to phenocopy human
immune responses. Indeed, a recent study has shown that the gut
microbiota in wild mice can better recapitulate the natural
phenotypes in humans, as laboratory mice receiving wild
microbiota exhibit less susceptibility to influenza virus infection
and colitis-induced tumorigenesis, which is associated with less
infiltration of immune cells and enhanced anti-inflammatory
responses.262 Future studies should consider incorporating similar
approaches to better resemble natural microbiome-immune
interplay in order to increase the translational potential of such
studies.
In addition, many studies focusing on microbiome-immunity

interaction have utilized 16S rRNA sequencing to characterize the
microbiome, but this modality is limited by its genus-level and
purely compositional resolution. Given that strain level resolution
and functional insights are better served by shotgun metage-
nomic sequencing, the field is expected to increasingly rely on this
more sophisticated methodology (in addition to metatranscrip-
tomics, metabolomics, metaproteomics and culturomics) in
decoding immune-microbiota interactions. Finally, the micro-
biome configuration and immune responses are both increasingly
appreciated to be highly variable among human individuals, with
more variances typically explained by inter-individual variation
than by disease state. This inherent inter-individual variability and
associated complexity constitutes a major experimental chal-
lenge but also presents an opportunity for microbiome research
by enabling utilization of artificial intelligence and machine
learning in decoding individualized patterns in the microbiome
impacting on human health. As such, it will be intriguing to
predict the ‘personalized’ host immune responses based on gut
microbiome profiles, which will ultimately facilitate the develop-
ment of personalized microbiome-targeted treatments for immu-
nological diseases.

PERSPECTIVES
A massive effort during the past decade in studying microbiome-
immune interactions has led to better understanding of
their molecular basis, while pointing to the importance of these
interactions in impacting a variety of human immune-related
diseases. Such insights are already spurring the development of
microbiome-targeted therapeutic strategies in immune-mediated
diseases. For example, in an aim to restore a healthy microbiome
configuration in patients suffering from dysbiosis linked to
immune-mediated disease, fecal microbiome transplantation
(FMT), which has so far been widely used in Clostridium difficile
infections, is considered also as potential treatment in this clinical
context. However, there is still no general consensus on which
features constitute a ‘healthy’ microbiome. The efficacy of FMT in
diseases such as IBD, is therefore still under evaluation and many
challenges remain to be overcome, including optimization of fecal
processing and patient safety. Given that the prophylactic and
therapeutic efficacy of traditional individual probiotics in promot-
ing human health is limited, the use of ‘next-generation
probiotics’, or rationally defined microbial consortia, potentially
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may provide a promising alternative.263 In addition to modalities
aimed at replacing an entire microbiome, new techniques are
aimed at editing the microbiome in a more precise way.264 For
example, selective and precise depletion of certain pathobionts by
bacteriophage therapy is being actively pursued.265 Diet-based
alteration in nutrient availability may constitute another feasible
microbiome-modulating approach, given the strong influence of
diet on gut microbiome composition and function. It may be
intriguing to determine the efficacy of personalized diets, selective
diets or manipulation of dietary timing in treating immunological
disease, and to investigate how these diets influence host immune
responses.266 Additionally, the large wealth of microbiome-
derived metabolites found in high concentration throughout the
gut and in the systemic circulation may offer an opportunity to
modulate these potentially bioactive molecules (also called
'postbiotics'). Their supplementation or signaling blockade in
defined immune contexts may offer new avenues of microbiome-
directed treatments.267 Chemical genetic screening of gut
microbiome metabolites268 might facilitate identification of
bioactive metabolites that are important for host physiology or
are implicated in immune-mediated diseases. Collectively, devel-
opment of these microbiome-based therapies necessitates
an enhanced understanding of the complex and intricate
interactions between the microbiome and immunity. A successful
translation of microbiome-based treatments into clinical practice
requires standardized, stringent and unbiased preclinical and
clinical intervention studies.
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