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Having originated over 3.5 billion years ago1, microorganisms 
represent some of the oldest living organisms on Earth and 
are responsible for the creation of a more habitable environ-

ment through the production of oxygen from photosynthesis and 
other processes2,3. Since those ancient times, microorganisms have 
continued to shape our planet and our environment, and microor-
ganisms that inhabit individual organisms have a profound influ-
ence on physiology—with the ability to impact overall health and 
states of disease4–6. This includes the large proportion of microor-
ganisms that reside in the human gastrointestinal (GI) system that 
influence numerous physiologic processes including digestion, 
metabolism, cognitive development and function, and immune sys-
tem development and function7,8. Importantly, microorganisms in 
the GI tract and other niches can also contribute to the development 
of disease, including cancer.

One of the most transformative advances in cancer treatment 
over the past decade involves the use of immunotherapy, with this 
approach being integrated into the treatment of virtually every can-
cer type. Specifically, treatment with immune checkpoint blockade 
(ICB) has markedly improved survival across numerous cancer 
types9–13. However, the full therapeutic potential of ICB remains 
incompletely realized, as not all patients derive durable benefit, 
with a substantial proportion demonstrating primary or acquired 
resistance to treatment14. For example, up to 50% of patients with 
melanoma15, and 25–44% of patients with non-small-cell lung can-
cer16–18, experience primary ICB resistance. This leaves an opportu-
nity for the discovery of novel strategies to improve response and to 
overcome resistance to this powerful form of treatment.

Studies have identified host-associated genomic and molecular 
biomarkers associated with response to ICB19–24, and an emerging 
body of evidence has now also implicated host-intrinsic microor-
ganisms and their genes (collectively referred to as the microbi-
ome), particularly those microorganisms that reside within the GI 
tract, in influencing response to ICB25,26. Indeed, the composition 
of the gut microbiome appears to be both predictive and prognos-
tic of therapeutic response to ICB, as distinct gut microbial signa-
tures distinguish healthy individuals from patients with cancer27 
and responders from nonresponders in several ICB-treated can-
cer cohorts25,26. These findings have led to the development and 

implementation of new microbiome-based treatment strategies 
aimed at modulating patient gut microorganisms and their func-
tion to enhance clinical response to ICB28–30 and to abrogate toxicity 
to therapy31–33. Currently, several interventional strategies, such as 
fecal microbiome transplant (FMT), prebiotic, probiotic and antibi-
otic treatments and dietary interventions, have shown early promise 
as modulators of the gut microbiome. However, the ultimate thera-
peutic role of the gut microbiota relates to its functional status and 
its ability to favorably impact systemic immunity and overall host 
health. Therefore, characterizing the gut microbiome-associated 
systemic biological functions and underlying molecular mecha-
nisms will be crucial to discovery of novel, actionable targets for 
future intervention and clinical evaluation.

Looking beyond the gut microbiome, we are now entering the 
era of studying and manipulating the intratumoral microbiome 
to enhance clinical response to cancer treatments34–36. The tumor 
microenvironment (TME) is an attractive niche for microbial 
growth, and microorganisms have been identified within tumors of 
patients with cancer for over a century37, although the breadth of 
microorganisms and the depth of their influence has been some-
what incompletely appreciated to date, mainly owing to technologic 
limitations. Now, advances in next-generation sequencing (NGS) 
techniques are giving rise to a greater appreciation of the local diver-
sity and functional relevance of the intratumoral microbiome in 
solid malignancies. Its ultimate role, however, remains incompletely 
characterized, as certain microorganisms seem to promote tumori-
genesis, while others aid antitumor immune responses by serving as 
immune adjuvants. Indeed, unlike their gut-associated counterparts, 
the comprehensive characterization of response-associated intratu-
moral microbiome signatures is still in its infancy. Nevertheless, 
novel investigative and therapeutic opportunities now exist to target 
intratumoral microorganisms to intercept38,39, treat37,40 and perhaps 
even prevent cancer altogether41,42.

In this Review, we discuss the relevance of the gut and intratu-
moral microbiota in cancer development and treatment response, 
highlighting recent key studies that have moved the field forward. 
We highlight emerging and future strategies that seek to manipu-
late these microbiomes to enhance cancer treatment outcomes, and, 
finally, we discuss potential future strategies to develop microbial 

Targeting the gut and tumor microbiota in cancer
Elizabeth M. Park   1,2, Manoj Chelvanambi   2, Neal Bhutiani   2, Guido Kroemer   3,4,5,6, 
Laurence Zitvogel   7,8,9,10 and Jennifer A. Wargo   2,11 ✉

Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance 
and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorgan-
isms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously—hastening 
development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, 
the evaluation of a patient’s microbial composition and function and its subsequent targeted modulation represent key ele-
ments of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research 
toward harnessing the microbiome to better prevent and treat cancer.

Review ARticle | FOCUS
https://doi.org/10.1038/s41591-022-01779-2

NATurE MEdiCiNE | VOL 28 | APRIL 2022 | 690–703 | www.nature.com/naturemedicine690

mailto:jwargo@mdanderson.org
http://orcid.org/0000-0002-1670-2299
http://orcid.org/0000-0003-2130-3118
http://orcid.org/0000-0002-6288-2788
http://orcid.org/0000-0002-9334-4405
http://orcid.org/0000-0003-1596-0998
http://orcid.org/0000-0003-3438-7576
https://doi.org/10.1038/s41591-022-01779-2
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-022-01779-2&domain=pdf
http://www.nature.com/naturemedicine


FOCUS | Review ARticleNATuRe MedIcINe

targeting as a pillar of personalized cancer care over the next 5  
to 10 years.

The gut microbiome across the spectrum of health, disease 
and cancer
Beyond the well-established contribution of specific GI bacteria 
in local carcinogenesis (such as Heliobacter pylori in gastric cancer 
and Fusobacterium nucleatum in colorectal cancer (CRC))34,43,44, it is 
now quite clear that the microorganisms within the GI tract (gut) 
can also shape overall immunity and influence states of health and 
disease (including cancer) at the systemic level45,46 (Table 1). This 
is mediated by a dynamic interaction between components of sys-
temic immunity and markers of inflammation, tissue-based and 
tumor immunity, and the gut and tumor microbiomes. Importantly, 
microbiota are now identified as an enabling factor in the most 
recent iteration of the ‘Hallmarks of Cancer’47.

Mechanisms of action on systemic immunity and cancer treat-
ment response. Numerous studies now demonstrate a link between 
the gut microbiome and ICB response25,26,28,48–50. Microorganisms 
within the gut influence host immunity and response to cancer 
treatment via several hallmark mechanisms. These include the 
following: (1) effects on other microorganisms in the gut causing 
shifts in the ecosystem51, (2) effects on the intestinal wall includ-
ing enterocytes (with the induction of autophagy and apoptosis) 
and the gut-associated lymphoid tissue52,53, (3) local or systemic 
stimulation of pattern-recognition receptors perceiving adjuvant 
signals54,55, (4) systemic neuroendocrine effects via the secretion 
of gut hormones56, (5) systemic metabolic effects through the syn-
thesis of polyamines and B vitamins57, and (6) the induction of 
immune responses against microbial antigens that are cross-reactive 
with tumor-associated antigens58,59 (Fig. 1)28,58–83. While these hall-
marks influence both response and resistance to various cancer 
treatments, it is crucial to note that they are highly context depen-
dent—highlighting the importance of considering patient-specific 
and tumor-specific factors when evaluating the microbiome’s role 
in individual cancer care.

Preclinical evidence. Preclinical and clinical evidence for the 
influence of gut microorganisms on systemic immunity is per-
vasive. For example, gnotobiotic mice (which have been raised 
in a germ-free environment) bear an immature immune system 
and lack mature secondary and tertiary lymphoid organs—with 
an inability to respond to vaccination84. Moreover, in mice raised 
in specific pathogen-free conditions, the reduction of bacterial  

diversity within the GI tract by a combination of broad-spectrum 
antibiotics negatively impacts the efficacy of chemotherapeu-
tic agents such as cyclophosphamide85 or oxaliplatin86, which 
both act in part through immunologic mechanisms. The use of 
broad-spectrum antibiotics also negatively impacts outcomes to 
treatment with ICB targeting cytotoxic T lymphocyte-associated 
protein 4 (CTLA-4)50 or programmed cell death protein 1/pro-
grammed death ligand 1 (PD-1/PD-L1) in preclinical models25,26,48. 
Notably, FMT from patients with cancer to antibiotic-pretreated 
mice converts the animals into ‘avatars’ with the potential ability 
to predict response or nonresponse of the patient to PD-1 block-
ade26,48, although such an approach is not widely used and war-
rants further investigation and validation.

Clinical evidence. In line with evidence from preclinical mod-
els, numerous studies show that patients with cancer treated with 
broad-spectrum antibiotics shortly before or during ICB treatment 
have shorter progression-free survival (PFS) and overall survival 
compared to those not receiving antibiotics25,26,87–90. This sup-
ports the hypothesis that an unperturbed and diverse microflora 
is essential for efficient cancer immunosurveillance and, similarly, 
a disequilibrated microbiota has negative consequences on the 
cancer–immunity cycle51. Indeed, previous work has shown an 
increased relative abundance of certain microbial taxa in the gut of 
patients with active cancer versus cancer-free individuals across sev-
eral cancer types (Fig. 2a)27, although causal relationships between 
these gut microorganisms and carcinogenesis are not established, 
and further investigation is clearly warranted. Additionally, specific 
microbial taxa have been associated with response to ICB across 
several cancer types studied—with some unifying bacterial taxa 
identified across these cohorts (Fig. 2b)26,29,30,32,91–100.

However, despite some overlap in gut microorganisms associ-
ated with response to ICB in published studies across cancer types, 
this overlap is modest and cannot be explained by differences in 
sequencing approaches101. This highlights opportunities to identify 
more unifying immune-activating and response-associated charac-
teristics of the gut microbiome from a functional standpoint and/or 
by more deep and thorough characterization of human cohorts, and 
via mechanistic studies in preclinical models.

Impact on treatment-related toxicity. In addition to identi-
fying microbial signatures associated with response, specific 
microbial taxa and dysbiosis in the gut have also been associated 
with treatment-related toxicity (relating to ICB, stem cell trans-
plant, and other cancer treatments)32,33,102–107. These findings have  

Table 1 | influence of gut-based and tissue-based microorganisms across the spectrum of health, disease and cancer

Health inflammation associated 
disease (non-cancer)

Pre-cancer Early cancer Advanced cancer

Systemic immunity ++++ ++ ++ + Minimal

Systemic inflammation Minimal + ++ ++ ++++
Tissue immunity ++++ ++ ++ + Minimal

Gut microbiome High diversity 
with functional 
redundancy

Intermediate diversity 
with moderate functional 
redundancy

Intermediate diversity 
with moderate functional 
redundancy

Low diversity with 
poor functional 
redundancy

Very low diversity 
with no functional 
redundancy

No/few pathogenic 
microorganisms

Few pathogenic 
microorganisms

Few pathogenic 
microorganisms

Moderate pathogenic 
microorganisms

High pathogenic 
microorganisms

Tissue microbiome Low density Moderate density Moderate density High density Very high density

Nonpathogenic Pathogenic Pathogenic Pathogenic Pathogenic

For systemic immunity, plus symbols indicate the level of immunity observed (with ++++ indicating the highest level); ‘Minimal’ indicates the lowest level. For systemic inflammation, plus symbols indicate 
the level of inflammation observed (with ++++ indicating the highest level); ‘Minimal’ indicates the lowest level. For tissue immunity, plus symbols indicate the level of immunity localized within the tissue 
(with ++++ indicating the highest level); ‘Minimal’ indicates the lowest level.
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provided opportunities to restore a healthy microbiota or tar-
get specific microorganisms using techniques such as FMT ther-
apy or targeted microbial-modulating therapy, respectively, to 
reduce therapy-related toxicity. In preclinical models of CRC, 
for example, FMT has been shown to mitigate adverse events of 
5-fluorouracil-based chemotherapy108. FMT and indole 3-propionic 
acid (a microbial metabolite with intracellular signaling activity) 
have each been demonstrated to protect against radiation-related 
toxicity in preclinical models109,110, and Bifidobacterium administra-
tion has been associated with decreased CTLA-4-associated intesti-
nal toxicity111.

Beyond bacteria. Although many of the studies to date have focused 
on bacterial taxa associated with response and toxicity, additional 
microorganisms (for example, viruses/bacteriophages112,113 and 
fungi114) must also be considered for study in the future. This 
would require the incorporation of metagenomic sequencing 
approaches, as traditional microbiome profiling relies on sequenc-
ing 16S ribosomal RNA (rRNA), which is unique to bacteria. 
Whole-metagenome sequencing may facilitate the identification 
of several additional microorganisms associated with response115, 
and may also be supplemented with additional functional assess-
ments such as RNA sequencing (RNA-seq)116, small-read sequenc-
ing117, and metabolomic sequencing118,119. Such approaches may 
yield novel and critical mechanistic insight to inform future strate-
gies aimed at targeting the function of these microorganisms, rather 
than relying solely on phylogenetics. Currently, a lack of standard-
ized approaches for sample preparation, sequencing, data process-
ing and analysis poses a substantial challenge and will need to be 
addressed in future efforts120,121. Despite these challenges, profiling 
and targeting of gut microorganisms will almost certainly become 
a part of the very fabric of personalized medicine and health 
approaches in the next decade.

Tissue-resident and intratumoral microorganisms—friend 
or foe?
In addition to microorganisms within the gut, microorganisms 
in other niches may profoundly influence host physiology122–125. 
This includes microorganisms on external surfaces and mucosal 
sites, and also tissue-resident microorganisms126. Microorganisms 
have also been identified in tumor tissues for over a century, and 
although some insights have been gained regarding the mechanisms 
through which they impact carcinogenesis and therapy response, 
there remains a substantial amount to learn.

Recently, advances in NGS have greatly facilitated the identi-
fication of microorganisms in tissues throughout the body and 
their relationship with health and disease, including cancer127,128, 
although complexities exist in the mining of NGS data collected 
for other purposes129–131. For example, poly(A) mRNA capture, 
which is commonly performed to enrich eukaryotic transcripts 
before RNA-seq, limits the utility of robustly curated traditional 
RNA-seq datasets to study the microbiome, as they are devoid 
of valuable prokaryotic transcripts132. Additional complexities 
exist even when NGS approaches are specifically used to identify 
microorganisms in tissues and tumors, as the relative biomass 
(and, therefore, the starting signal) in these peripheral sites is 
substantially lower than that within the gut133. Additionally, con-
tamination from environmental sources during tissue acquisi-
tion, processing, and sequencing poses another major challenge 
in correctly analyzing microbial presence130, although advanced 
in silico ‘decontamination’ algorithms are being developed to 
address this challenge134. Nonetheless, while accurate profiling of 
microorganisms in carefully curated samples remains critical37, 
deep sequencing of microorganisms residing in human tissues 
represents an area of fruitful investigation with opportunities to 
target tissue-based and tumor-based microorganisms in cancer 
and other diseases.

Immunity
Immune development
Immune maturation
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Pharmacodynamics
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Fig. 1 | Hallmarks of the impact of the gut microbiome on immunity, health and disease. Work over the past decade has demonstrated a multifaceted 
association between the gut microbiome and health across several domains: immunomodulation, endocrine modulation, molecular mimicry, microbial 
metabolites, dietary metabolites, alteration of pharmacodynamics, and MAMPs. Each of these plays a role in health and disease, including cancer. Effects 
or mechanisms associated with a favorable antitumor response are listed without any symbol, while those associated with a pro-tumor state are indicated 
with an asterisk. Context-dependent effects are indicated with two asterisks. Examples of effector organisms are listed below effects or mechanisms 
where their activity has been demonstrated.
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Fig. 2 | Gut oncomicrobiome signatures associated with cancer diagnosis or response to iCB. a, Shotgun metagenomic-based analysis of fecal material 
collected from over 1,900 individuals with cancer across eight different malignancies of varying stages was compared with that from over 5,500 healthy 
individuals, as described in recent work by Yonekura et al.27. Linear discriminant analysis (LDA) of effect size (LEfSe), together with pairwise comparison 
of relative taxonomic abundances, was used for this comparison across the selected cohorts. This demonstrated an overrepresentation of selected taxa 
(blue) in the gut microbiota of healthy individuals, as well as a relative overrepresentation of other taxa (red) in the gut microbiota of individuals with 
cancer. b, Data are shown from 14 studies analyzing the impact of the taxonomic composition of stools from individuals with cancer at baseline on the 
clinical outcome (ORR or PFS based on radiologic evaluation according to Response Evaluation Criteria in Solid Tumors (RECIST 1.1)) following ICB therapy 
(in neoadjuvant settings or for advanced disease) across various cancer types and stages (III and/or IV), as well as geographical sites (France, Europe, 
the United States, Canada, Japan and China). Studies were chosen based on the following criteria: sizeable cohorts, ICB treatment excluding concomitant 
chemotherapy or tyrosine kinase inhibitors, excluding antibiotic-treated individuals, using 16S rRNA and/or shotgun metagenomic sequencing. Only 
bacteria or archaea (after false discovery rate (FDR) corrections when indicated) with a significant association with an outcome were retained using 
LefSe (discriminant logarithmic LDA score > 1.5) to estimate discriminative features in fecal microbiomes at family and/or genus and/or species level(s). 
Beneficial and harmful microorganisms associated (or not) with clinical benefit are featured in blue and red, respectively. Only families, genera or taxa that 
were found at least twice in independent studies and were associated with the same general effect (beneficial versus deleterious) are highlighted in b. 
CMML, chronic myelomonocytic leukemia; HCC, hepatocellular carcinoma; NSCLC, non–small-cell lung cancer; HBC, hepatobiliary carcinoma.
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Why might microorganisms be found in tissues and tumors 
within an organism? Indeed, neoplastic/cancerous and precan-
cerous lesions can prove particularly hospitable environments for 
colonization and persistence of microorganisms. Rapid angiogen-
esis and tumor necrosis contribute to the development of a highly 
hypoxic and nutrient-rich TME that can support the specific colo-
nization of facultative and/or anaerobic bacterial strains36. These 
microorganisms can profoundly influence cancer development, 
progression, therapy response and antitumor immunity via a num-
ber of mechanisms60,62,70,135–163 (Fig. 3).

Tissue-based and tumor-based microorganisms and carcinogen-
esis. Across tumor types, characterization of the TME has resulted 
in the detection of a distinct intratumoral microbiome for each 
cancer type. Intratumoral microorganisms typically colonize intra-
cellularly, within cancer, stromal, and immune cells of the TME37. 
Interestingly, historical evidence has elucidated several mechanisms 
through which intratumoral microorganisms drive carcinogenesis.

First, tissue-resident microorganisms may promote tumorigen-
esis by altering various aspects of the host’s genome. For example, 
tissue-resident bacteria can directly induce DNA damage through 
the genotoxins they express. Notably, colibactin-expressing 
Escherichia coli164, and cytolethal distending toxin-expressing pro-
teobacteria165 and Campbylobacter jejuni136, induce double-stranded 
DNA breaks, while strains such as Bilophila wadsworthia, F. 
nucleatum, and Desulfovibrio desulfurican135 induce DNA oxi-
dative stress through production of reactive oxygen species. In 
addition to directly inducing DNA damage, tissue-resident micro-
organisms such as EspF-expressing E. coli166 and H. pylori167,168 can  

disrupt mechanisms of DNA mismatch repair to further exacerbate 
genomic instability and drive tumorigenesis. Independently, the cell 
cycle may also be directly disrupted by tissue-resident viruses to 
promote tumorigenesis, as evidenced by the mechanisms underly-
ing human papillomavirus (HPV)-driven141 and Epstein–Barr virus 
(EBV)-driven142 malignancies. Microorganisms (and their rem-
nants, as in the case of endogenous retroviruses), have also been 
shown to drive tumorigenesis through other mechanisms related 
to the host genome, such as by altering the local epigenetic land-
scape143,144 or hijacking host transcription138.

Second, tissue-based microorganisms can promote tumor for-
mation by inducing a pro-tumorigenic inflammatory milieu within 
the tissue. Several species, such as enterotoxigenic Bacteroides fra-
gilis (ETBF)169, F. nucleatum146, E. coli148, and Stenotrophomonas/S
elenomonas149, produce toxins capable of initiating inflammatory 
responses and recruiting immune subsets that collectively contrib-
ute to hyperproliferation in the local tissue. In colonocytes, B. fra-
gilis toxin initiates a STAT3–nuclear factor-κB (NFkB)-dependent 
pro-inflammatory signaling cascade to produce cytokines such as 
interleukin (IL)-17 and IL-23, which has been shown to recruit 
pro-tumoral myeloid cells169. Additionally, H. pylori promotes 
hyperproliferative inflammation in gastric tissue through expres-
sion of its cytotoxin-associated gene A (CagA)170, while F. nuclea-
tum achieves the same phenotype in colorectal tissue, through 
expression of the protein FadA171. Select microorganism-associated 
molecular patterns (MAMPs) have also been shown to promote 
tumorigenesis. For example, flagellin-dependent Toll-like receptor 
(TLR) 5 activation in bone marrow-derived leukocytes enhanced 
carcinogenesis in a model of chemical-induced skin cancer153.
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Fig. 3 | Hallmarks of the impact of tissue-based and tumor-based microorganisms in cancer. Increasing evidence has demonstrated an association and 
interactions between tissue-based and tumor-based microorganisms and host cells across several domains: host genetics, local immunity, metabolites, 
and MAMPs. Each of these plays a role in tumor progression and response to antitumor therapies. Effects, mediators, or mechanisms associated with 
antitumor response are listed without any symbol, while those associated with a pro-tumor state are indicated with an asterisk. Context-dependent 
effects, mediators, or mechanisms are indicated with two asterisks.
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The impact of microorganisms on tumor progression also 
extends beyond bacteria. The mycobiome, comprising the fungal 
components of a given microenvironment, has been associated with 
the development of pancreatic ductal adenocarcinoma (PDA)114. 
The migration of fungi, particularly Malassezia spp. from the gut 
to the pancreas, promotes PDA development through complement 
activation by mannose-binding lectin114.

Finally, byproducts of microbial metabolism can also contribute 
to carcinogenesis. Secondary metabolites, such as the secondary bile 
acids lithocholic acid157,158 and deoxycholic acid159, and catabolites, 
such as acetate160 and butyrate62, each play a carcinogenic role by 
enhancing either epithelial–mesenchymal transition and/or cell 
proliferation in several models of cancer172. Deoxycholic acid, which 
has been implicated in CRC, hepatocellular carcinoma, and esopha-
geal cancer, is produced at increased levels in response to high-fat 
diets173, which further provides a mechanistic basis for the asso-
ciation of certain high-risk diets with cancer development in the  
digestive tract.

Tissue-based and tumor-based microorganisms and their role 
in the antitumor immune response. Beyond having a role in the 
tumorigenesis of some tissue types, tissue-based microorganisms 
can also influence the immune landscape within a developed cancer 
lesion by altering local cytokine and immune cell profiles. It must 
be noted that these effects are, however, highly context dependent, 
as different microorganisms have been shown to polarize contrast-
ingly different types of local immune responses that can either favor 
or inhibit tumor growth.

In many instances, intratumoral microorganisms drive tumor 
progression by promoting tolerogenic immunity. First, micro-
organisms may achieve this through conditional activation 
of pattern-recognition receptors. For example, bacterial lipo-
polysaccharide, which has been found within both cancer cells 
and immune cells in the TME37, can bind to TLR4 on infiltrat-
ing monocytes to skew their differentiation to an immunosup-
pressive M2 phenotype174,175, and also on tumor cells to promote 
recruitment of CD11b+Gr1+ myeloid-derived suppressor cells and 
CD1d+CD5+ regulatory B cells, which can collectively suppress 
local antitumor T cell responses176. Additionally, in CRC, NOD1 
activation by microbial peptidoglycans has been shown to induce 
myeloid-derived suppressor cell-driven immunosuppression in an 
arginase 1-dependent manner155.

Intratumoral microorganisms may also mediate immunosup-
pression by altering the local cytokine milieu or upregulating immu-
noregulatory ligands on tumor cells. In PDA, Proteobacteria promote 
immune evasion by upregulating immunoregulatory cytokines such 
as IL-10, thereby decreasing polarization of interferon (IFN)-γ+ 
type 1 helper T cells and skewing development of tumor-infiltrating 
monocytes toward an M2 phenotype177. Moreover, recent work 
has demonstrated an upregulation of immunoregulatory pathways 
involving PD-1 and CTLA-4 in virally mediated tumors178. In head 
and neck squamous cell carcinoma (HNSCC), for example, HPV 
integration has been shown to upregulate expression of the genes 
encoding PD-L1 (CD274) and PD-L2 (PDCD1LG2), resulting in the 
suppression of antitumor immune responses178.

On the other hand, intratumoral microorganisms may also 
support antitumor immunity. In separate instances, intratumoral 
activation of TLR2 (ref. 151), TLR6 (ref. 152), STING154, and NOD1 
(ref. 156) by MAMPs has demonstrated enhanced and efficacious 
immunosurveillance of the cancerous lesion. Recent evidence also 
suggests that microorganisms can serve as the focal point of local 
lymphocytic activation, leading to the formation of highly thera-
peutic tertiary lymphoid structures (TLSs) within the TME. In a 
mouse model of CRC, experimental colonization with Helicobacter 
hepaticus (Hhep) reduced tumor burden by inducing classical, ger-
minal center-containing TLSs179. Strikingly, these classical TLSs 

harbored both Hhep and Hhep-specific follicular helper T cells, sug-
gesting that intratumoral Hhep was the focal point of TLS-derived 
antitumor immunity. Microorganism-associated cancers such as 
HPV-positive HNSCC are characterized by extended survival, 
increased TLS frequencies and enhanced B cell activity (increased 
somatic hypermutation and preferential class switching to IgG1 
isotypes), as compared to HPV-negative HNSCC, where antibod-
ies derived from TLS-associated tumor-infiltrating B cells also show 
heightened recognition of HPV proteins E2, E6 and E7 (refs. 180,181). 
Furthermore, microbial peptides have also been described to be 
presented on the surface of melanoma tumor cells and to be recog-
nized by T cells182. Together, these results suggest that intratumoral 
microbial antigens can be found within the TME and may induce 
robust local immune responses, especially within TLS, where highly 
therapeutic and cross-functional immunity can be primed.

Targeting gut and tumor microbiota in cancer: current and 
emerging strategies
Given their integral role in shaping immunity and other physi-
ologic processes, one can anticipate that interventional strategies 
that manipulate gut and tissue-resident/tumor-resident microbiota 
through targeted reconstitution, and/or augment current treat-
ment with administration of microorganism-derived products, 
will become an integral part of cancer treatment—one day evolv-
ing into a major pillar of cancer care. Several strategies can now be 
used to target gut and tumor microorganisms183, including (but not 
limited to) FMT, targeted microbial strategies using either single 
strains or designer consortia, diet-based and prebiotic, probiotic 
and postbiotic-based interventions, targeted antibiotic approaches, 
and phage-based approaches. Numerous clinical trials investigat-
ing these approaches in patients with cancer are now underway 
and/or have been completed (Supplementary Table 1), and the dif-
ferent strategies and opportunities to iterate on these approaches 
to treat, intercept and ultimately prevent cancer altogether are dis-
cussed below.

Fecal microbial transplantation. Perhaps the most drastic, yet 
effective, means by which to modulate the gut microbiome involves 
FMT—whereby the entire gut microbial complement from a donor 
(usually a healthy individual or exceptional responder to treatment) 
is transplanted into a recipient, such as a patient with cancer. This 
approach has demonstrated success in reversing resistance to treat-
ment with ICB; two recent pivotal studies in patients with meta-
static melanoma showed that FMT from patients who experienced 
a complete response to ICB into patients who were resistant was 
associated with reversal of ICB resistance in these patients29,30. In 
these studies, successful colonization of the recipient gut by the 
donor microbiota increased the abundance of bacteria such as 
Ruminococcaceae and Bifidobacteriaceae in the recipient gut, and 
these changes were associated with improved clinical responses. 
Additionally, this improved response after FMT was characterized 
by enhanced immune infiltration in the tumor and gut of treated 
patients, as well as enrichment for specific therapy-associated serum 
metabolites29,30. Given these findings, rigorous research efforts 
are now underway to determine whether the ideal FMT donor in 
cancer trials is a patient who successfully eliminated their cancer 
in response to immunotherapy, or a highly fit, healthy individual 
who has never had cancer. Additional trials combining ICB treat-
ment with FMT from complete responder donors and/or healthy 
donors are currently underway (NCT03772899, NCT04521075, 
NCT04924374 and NCT04951583) and are demonstrating promis-
ing early results184.

The clinical relevance of FMT has also extended beyond ICB 
treatment and has improved other therapeutic applications as 
well. In clinical trials, preliminary results from an early phase 
I study have identified FMT as a promising modality to treat 
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steroid-refractory GI tract graft-versus-host disease (a complica-
tion of hematopoietic stem cell transplantation to treat leukemia), 
whereby FMT recipients demonstrated greater clinical remission 
of graft-versus-host disease185. Thus, FMT as an approach to miti-
gate treatment-related toxicity is also being explored in several 
clinical trials (NCT03819296, NCT04038619, NCT04721041 and 
NCT04163289). It should be noted that FMT trials experience sev-
eral challenges (such as identifying appropriate FMT donors, iden-
tifying optimal preparative regimens before transplant, dose and 
route of administration, among others)183,186, although the results of 
these trials are being used to inform the development of more effec-
tive next-generation microbiome-based strategies.

Defined microbial consortia and probiotics. While FMT 
approaches involve transplantation of the entire donor microbiota, 
recent efforts to modulate the gut microbiota are focusing on the 
specific transplantation of single microbial species and/or designer 
microbial consortia to enhance response to ICB and other forms 
of cancer treatment (Supplementary Table 1). Early results have 

demonstrated some evidence of success. For example, in a small, 
open-label trial, 58% of patients with metastatic renal cell carci-
noma (RCC) who were treated with CBM588 (a formulation that 
includes a strain of Clostridium butyricum) in combination with 
ICB responded to treatment, compared to 20% of patients who 
received only ICB187. Additionally, PFS was significantly increased 
in CBM588-receiving patients to 12.7 months, compared with 
2.5 months on ICB alone187, thus highlighting that the addition of 
bifidogenic bacterial product can enhance the clinical outcome of 
patients with RCC. In a similar vein, several hypothesis-generating 
preclinical and clinical studies suggest that strains of Akkermansia 
muciniphila32, Bifidobacteria49, Enterococcus gallinarum188, or a con-
sortium of multiple commensal strains189, also warrant further clini-
cal evaluation.

However, despite the aforementioned early success with CBM588 
(ref. 187), the feasibility and efficacy of this overall approach is still 
to be determined. Indeed, several trials are currently underway 
evaluating microbial consortia or targeted-microbial strategies 
in conjunction with current cancer therapeutics (for example, 
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NCT03686202 and NCT05079503), and results from these trials are 
eagerly awaited. Nonetheless, such approaches have demonstrated 
remarkable efficacy in non-cancer indications such as Clostridium 
difficile colitis190,191 and are expected to hold distinct advantages over 
FMT in the longer-term effort to optimize gut microbiota modula-
tion in the treatment of cancer.

Additional probiotic-based treatments have also been tested, 
but caution should be taken in considering their use with ICB (and 
other therapies) in the treatment of patients with cancer. Recent evi-
dence suggests that the use of commercially available probiotics is 
associated with worse outcomes in preclinical cancer models and in 
human cancer cohorts treated with ICB28. Nonetheless, there are tre-
mendous opportunities to develop informed, ‘next-generation’ pro-
biotics, as recent studies suggest that specific microorganisms in the 
gut may enhance antitumor immune responses—in part through 
the induction of highly therapeutic TLSs in the TME, which have 
been favorably associated with patients’ response to ICB across 
cancer types180,192–194. Together, these lines of investigation open up 
new possibilities in transplanting and targeting specific therapeutic 
microorganisms to enhance antitumor immunity in the treatment, 
interception and prevention of cancer.

Targeted antibiotic, phage-based, small-molecule and 
CRISPR-based strategies. As previously noted, the use of 
broad-spectrum antibiotics and massive disruption of the gut 
microbiota is associated with worse outcomes to ICB25,26 and other 
therapies195–197. However, it is possible that a carefully selected 
antibiotic regimen targeting potentially deleterious or patho-
genic microorganisms—while facilitating expansion of beneficial 
microorganisms (with functional redundancy and better com-
munity structure)—can promote favorable responses in the host. 
Along these lines, selective depletion of specific disease-associated 
taxa using CRISPR–Cas9-encoding phages has been proposed198, 
and its promising use in cancer treatments is only in its infancy. 
Additionally, small-molecule approaches are also being developed 
to modulate gut microbial composition and function, and these 
strategies obviate several complexities associated with scalable 
manufacturing of microbial consortia and skilled administration 
of these live biotherapeutics to patients. Such approaches have 
been successfully applied in preclinical models of atherosclerosis, 
whereby targeted remodeling of the gut microbiome via adminis-
tration of small-molecule peptides was associated with decreased 
total cholesterol, reduced atherosclerotic plaques and reduced 
pro-inflammatory cytokines such as IL-6, tumor necrosis factor, 
and IL-1β199. These types of approaches are expected to expand over 
the next several years and will greatly shape the therapeutics land-
scape as we move forward in this field.

Diet and prebiotic strategies. Alongside the aforementioned strat-
egies for directly modulating the gut microbiota, diet is a critical 
means through which microbial composition and function may be 
regulated. While the role of diet and dietary interventions have been 
widely studied in the context of cancer over the past several decades, 
limitations arise from the lack of rigorous standardization of proce-
dures and the reporting of correlational rather than causal relation-
ships between diet and observed clinical effects200. However, strong 
evidence from preclinical studies suggests that many dietary strat-
egies, including long-term caloric restriction, short-term starva-
tion, ketogenic diets (or oral supplementation with the ketone body 
3-hydroxybutyrate), high-fiber diets, and oral administration of spe-
cific micronutrients, may improve anti-cancer immunosurveillance 
in the context of immunotherapy treatment28,81,201–206. Additionally, 
multiple clinical studies evaluating such dietary interventions in 
patients with cancer have been launched (Supplementary Table 1) 
and have successfully informed the inclusion of dietary recommen-
dations (such as recommendations to follow a Mediterranean diet) 

in clinical trials aimed at modulating the gut microbiome using 
FMT207 and other strategies. Such studies are critical, as this rep-
resents a tractable strategy to modulate the function of gut micro-
organisms either in the setting of other microorganism-targeting 
strategies or in the setting of other cancer treatment. There is 
already evidence that a high-fiber diet is associated with improved 
clinical outcomes with ICB in preclinical models28,81 and in clinical 
cohorts28 by means of enhancing T cell activation and monocytic 
reprogramming within the TME. Certainly, this represents a modi-
fiable host factor that can be actively modulated by patients them-
selves, although critical guidance from physicians and data-driven 
approaches to monitor and support patient adherence are critical 
as we integrate such dietary changes into the fabric of cancer care.

In addition to modifying the diet itself, there are tremendous 
opportunities to incorporate the use of prebiotics. Prebiotics are 
chemically defined, nondigestible fibers such as inulin or inulin 
propionate ester, which have been shown to affect the functional 
status of gut microorganisms in preclinical models208. For example, 
polyphenol supplementation has been associated with increased 
butyrate production along with increased bifidobacteria and lac-
tobacilli populations209. It remains important to note, however, 
that the effects of these prebiotics depend largely on the bacterial 
populations present in the gut, as, for example, carbohydrate fer-
mentation differs between Prevotella-dominant microbiomes and 
those in which Bacteroides dominate210. Nonetheless, the prebiot-
ics have the potential to modulate physiology in myriad ways via 
modulation of bacterial metabolite production and alteration of 
the microbial ecosystem—all of which can be harnessed for thera-
peutic potential211.

Therapeutic strategies involving tissue-based and tumor-based 
microorganisms. The notion of treating cancer by directly intro-
ducing microorganisms into the cancerous lesion has been around 
for over a century and is supported by anecdotal observations of 
tumor regression in patients with cancer who developed infec-
tions212,213. A century later, rigorous efforts to use microorganisms to 
treat cancer were underway with the use of microbial strains or tox-
ins such as Coley’s toxins (comprising a mixture of toxins derived 
from Streptococcus pyogenes and Serratia marcescens)214, which 
showed a nominal but promising therapeutic benefit214,215. Emerging 
data in the twenty-first century, many of which have been discussed 
above, have now renewed enthusiasm in this idea and have birthed 
several experimental studies aimed at introducing or altering intra-
tumoral microorganisms for the treatment of cancer.

Several microbial agents, such as wild-type or modified live 
viruses that have the ability to selectively lyse cancer cells (oncolytic 
viruses, such as the granulocyte–macrophage colony-stimulating 
factor-producing virus T-VEC)216 and bacteria modified to induce 
therapeutic benefit (for example, Clostridium noyvi-NT, which has 
toxin-producing genes removed)217, to name a few, have been used 
in clinical trials and have demonstrated promising antitumor effi-
cacy in a number of cancer settings (Supplementary Table 1). For 
example, the aforementioned T-VEC oncolytic virus in combina-
tion with pembrolizumab resulted in a 30% overall response rate 
(ORR) among patients with sarcoma218. Similarly, the Pexa-Vac 
oncolytic virus, combined with cemiplimab, also yielded a 
37.5% response rate among patients with RCC219. Modified bac-
teria have proven effective as well; the engineered Listeria strain 
ADXS11-001, which secretes the fusion protein HPV-16 E7 to 
target HPV-positive cells, showed an HPV-specific response rate 
of 33% in HNSCC220. These same engineered bacteria, when used 
in patients with HPV-positive anal squamous cell carcinoma in 
combination with radiation and chemotherapy, resulted in 8 of 9 
patients (89%) showing no evidence of disease after 34 months221. 
These examples highlight the potential efficacy of microbial agents 
in treating existing tumors. Other strategies aim to prevent cancer  
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from occurring, such as vaccination against cancer-associated 
infectious agents, including EBV and HPV41,222.

Encouraging findings (including those mentioned above) that 
demonstrate efficient homing of designer microbial agents, which 
allows them to accurately target tumor cells or the TME, may serve 
as a foundation for the development of future therapies in which 
microbe-based therapies or vaccines yield not only localized tumor 
treatment but also systemic protection against metastatic dis-
ease223. Furthermore, the identification and validation of unifying, 
therapy-associated intratumoral signatures within cancer types 
could accelerate development of broadly usable off-the-shelf treat-
ments for cancer.

Future outlook: personalized approaches
With the emergence of the microbiota as an important driver of 
health and disease, there is now a unique opportunity to integrate 
profiling and targeting of microbiota in the gut and other niches 
into precision cancer care and, ultimately, into overall precision 
health (Fig. 4). Currently, personalized cancer care incorporates 
profiling of the precancerous or cancerous tissue for histopathologic 
features (visually, by a pathologist) alongside profiling for genomic 
or proteomic alterations (such as RAS, MSH/MLH, and HER-2) via 
either targeted genotyping or NGS approaches13,224, as well as lim-
ited immune cell profiling (for PD-L1, CD8 and other markers) 
at baseline and during treatment to help guide therapy and assess 
response225–227. In the near future, certain markers will likely be ana-
lyzed via noninvasive interrogation of tumor-derived, circulating 
cell-free DNA228.

Currently, profiling of microbiota in the gut, tissue/tumor, and 
other niches (including blood-based microbial signatures) is per-
formed solely in the context of research studies, although initiatives 
to include assessment of microbiota as biomarkers of response229–231 
and even as therapeutic targets232 are increasing. Assessment 
of markers of systemic inflammation (such as C-reactive pro-
tein and IL-6) and markers of systemic immunity (such as the 
neutrophil-to-lymphocyte ratio) are being explored but are not 
part of current clinical standards233,234. Additionally, assessment of 
dietary patterns and other lifestyle factors (such as sleep and stress) 
is not consistently incorporated when the treatment of pre-cancer, 
cancer, and other disease states is being considered.

However, the tides are turning. Strategies are now emerging that 
incorporate a more holistic approach to the prevention and treat-
ment of cancer235, with opportunities to promote health via advances 
in monitoring, feedback, and early intervention across multiple 
fronts. Certainly, in the next 5 to 10 years, one could envision a 
more comprehensive approach to care of individuals with cancer 
that incorporates assessment of tissue/tumor and blood for somatic 
and germline mutations, along with tissue-based and blood-based 
microbial signatures (Fig. 4). Along these lines, deeper assessment 
of systemic-based and tissue/tumor-based immunity is warranted 
beyond present-day markers, with opportunities to target novel 
immune mechanisms to prevent and treat cancer via improved 
immunosurveillance236,237. Additionally, profiling of microbiota in 
the gut (and potentially other niches) holds great promise as we 
move toward a more holistic approach to the treatment of cancer 
and other diseases, as does interrogation of markers of systemic 
inflammation (beyond present-day markers), and assessment of 
lifestyle and other factors233,238. Such strategies will be greatly facili-
tated through the use of emerging technological advances such as 
artificial gut-on-a-chip models, wearable technologies, ingestible 
capsules for sampling the microbiome, metabolomic profiling, and 
smart toilets, to name a few239,240. Additionally, the integration of 
multi-omics data via artificial intelligence241,242 will offer opportuni-
ties for refining treatment, interception, and prevention strategies 
via mathematic modeling and other approaches243–245, while iterat-
ing and building on current-day approaches246.

Focusing on the gut microbiota, individuals with a markedly 
dysbiotic profile, characterized by low diversity and an abundance 
of ‘unfavorable’ and/or pathogenic microorganisms with poor func-
tional status may optimally benefit from comprehensive interven-
tions such FMT or a complete designer consortium. In contrast, 
individuals with a moderately dysbiotic gut microbiota profile, 
characterized by intermediate diversity and some favorable species 
with relatively preserved functional status, may benefit from tar-
geted microbial interventions, while those with a favorable microbi-
ome are unlikely to benefit from such interventions and should be 
supported with dietary intervention (which should be consistently 
implemented across all treatment groups). Together with other 
strategies, the approaches described above will result in more opti-
mized personalized cancer care and improved precision health.

Conclusion
Our understanding of the role of host microorganisms on normal 
physiology and disease has evolved markedly over the past decade, 
revealing opportunities to target microorganisms in the gut and 
other niches to treat disease and ultimately to promote overall 
health. However, the field is in its nascency, and tremendous oppor-
tunities exist to further elucidate the mechanisms through which 
these microorganisms impact physiological and pathological pro-
cesses, as well as optimal means for targeting them through dietary 
intervention and other approaches. Although challenges remain, 
we anticipate that over the next 5 to 10 years, profiling and target-
ing of microbiota in the gut and other niches will become part of 
the very fabric of integrated cancer care, as well as the management 
of other diseases.
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