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Preface

In this short introduction, I tackle a few key points.

Who Should Read This Book?
This book is ideally suited for people who have some working knowledge of the R
programming language. If you don’t have any knowledge of R, it’s an easy enough
language to pick up, and the code is readable enough that you can pretty much get
the gist of the code examples herein.

Scope of the Book
This book is an introductory text, so we don’t dive deeply into the mathematical
underpinnings of every algorithm covered. Presented here are enough of the details
for you to discern the difference between a neural network and, say, a random forest
at a high level.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.
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Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/intro_ML_withR.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

What Is a Model?

There was a time in my undergraduate physics studies that I was excited to learn what
a model was. I remember the scene pretty well. We were in a Stars and Galaxies class,
getting ready to learn about atmospheric models that could be applied not only to the
Earth, but to other planets in the solar system as well. I knew enough about climate
models to know they were complicated, so I braced myself for an onslaught of math
that would take me weeks to parse. When we finally got to the meat of the subject, I
was kind of let down: I had already dealt with data models in the past and hadn’t even
realized!

Because models are a fundamental aspect of machine learning, perhaps it’s not sur‐
prising that this story mirrors how I learned to understand the field of machine
learning. During my graduate studies, I was on the fence about going into the finan‐
cial industry. I had heard that machine learning was being used extensively in that
world, and, as a lowly physics major, I felt like I would need to be more of a computa‐
tional engineer to compete. I came to a similar realization that not only was machine
learning not as scary of a subject as I originally thought, but I had indeed been using
it before. Since before high school, even!

Models are helpful because unlike dashboards, which offer a static picture of what the
data shows currently (or at a particular slice in time), models can go further and help
you understand the future. For example, someone who is working on a sales team
might only be familiar with reports that show a static picture. Maybe their screen is
always up to date with what the daily sales are. There have been countless dashboards
that I’ve seen and built that simply say “this is how many assets are in right now.” Or,
“this is what our key performance indicator is for today.” A report is a static entity
that doesn’t offer an intuition as to how it evolves over time.

Figure 1-1 shows what a report might look like:
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op <- par(mar = c(10, 4, 4, 2) + 0.1)  #margin formatting

barplot(mtcars$mpg, names.arg = row.names(mtcars), las = 2, ylab = "Fuel
Efficiency in Miles per Gallon")

Figure 1-1. A distribution of vehicle fuel efficiency based on the built-in mtcars dataset
found in R

Figure 1-1 depicts a plot of the mtcars dataset that comes prebuilt with R. The figure
shows a number of cars plotted by their fuel efficiency in miles per gallon. This report
isn’t very interesting. It doesn’t give us any predictive power. Seeing how the efficiency
of the cars is distributed is nice, but how can we relate that to other things in the data
and, moreover, make predictions from it?

A model is any sort of function that has predictive power.

So how do we turn this boring report into something more useful? How do we bridge
the gap between reporting and machine learning? Oftentimes the correct answer to
this is “more data!” That can come in the form of more observations of the same data
or by collecting new types of data that we can then use for comparison.

Let’s take a look at the built-in mtcars dataset that comes with R in more detail:
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head(mtcars)

##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

By just calling the built-in object of mtcars within R, we can see all sorts of columns
in the data from which to choose to build a machine learning model. In the machine
learning world, columns of data are sometimes also called features. Now that we
know what we have to work with, we could try seeing if there’s a relationship between
the car’s fuel efficiency and any one of these features, as depicted in Figure 1-2:

pairs(mtcars[1:7], lower.panel = NULL)

Figure 1-2. A pairs plot of the mtcars dataset, focusing on the first seven rows

Each box is its own separate plot, for which the dependent variable is the text box at
the bottom of the column, and the independent variable is the text box at the begin‐
ning of the row. Some of these plots are more interesting for trending purposes than
others. None of the plots in the cyl row, for example, look like they lend themselves
easily to simple regression modeling.
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In this example, we are plotting some of those features against others. The columns,
or features, of this data are defined as follows:

mpg
Miles per US gallon

cyl
Number of cylinders in the car’s engine

disp
The engine’s displacement (or volume) in cubic inches

hp
The engine’s horsepower

drat
The vehicle’s rear axle ratio

wt
The vehicle’s weight in thousands of pounds

qsec
The vehicle’s quarter-mile race time

vs
The vehicle’s engine cylinder configuration, where “V” is for a v-shaped engine
and “S” is for a straight, inline design

am
The transmission of the vehicle, where 0 is an automatic transmission and 1 is a
manual transmission

gear
The number of gears in the vehicle’s transmission

carb
The number of carburetors used by the vehicle’s engine

You can read the upper-right plot as “mpg as a function of quarter-mile-time,” for
example. Here we are mostly interested in something that looks like it might have
some kind of quantifiable relationship. This is up to the investigator to pick out what
patterns look interesting. Note that “mpg as a function of cyl” looks very different
from “mpg as a function of wt.” In this case, we focus on the latter, as shown in
Figure 1-3:

plot(y = mtcars$mpg, x = mtcars$wt, xlab = "Vehicle Weight",
    ylab = "Vehicle Fuel Efficiency in Miles per Gallon")
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Figure 1-3. This plot is the basis for drawing a regression line through the data

Now we have a more interesting kind of dataset. We still have our fuel efficiency, but
now it is plotted against the weight of the respective cars in tons. From this kind of
format of the data, we can extract a best fit to all the data points and turn this plot
into an equation. We’ll cover this in more detail in later chapters, but we use a func‐
tion in R to model the value we’re interested in, called a response, against other fea‐
tures in our dataset:

mt.model <- lm(formula = mpg ~ wt, data = mtcars)

coef(mt.model)[2]

##        wt
## -5.344472

coef(mt.model)[1]

## (Intercept)
##    37.28513

In this code chunk, we modeled the vehicle’s fuel efficiency (mpg) as a function of the
vehicle’s weight (wt) and extracted values from that model object to use in an equa‐
tion that we can write as follows:

Fuel Efficiency = 5.344 × Vehicle Weight + 37.285
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Now if we wanted to know what the fuel efficiency was for any car, not just those in
the dataset, all we would need to input is the weight of it, and we get a result. This the
benefit of a model. We have predictive power, given some kind of input (e.g., weight),
that can give us a value for any number we put in.

The model might have its limitations, but this is one way in which we can help to
expand the data beyond a static report into something more flexible and more
insightful. A given vehicle’s weight might not actually be predictive of the fuel effi‐
ciency as given by the preceding equation. There might be some error in the data or
the observation.

You might have come across this kind of modeling procedure before in dealing with
the world of data. If you have, congratulations—you have been doing machine learn‐
ing without even knowing it! This particular type of machine learning model is called
linear regression. It’s much simpler than some other machine learning models like
neural networks, but the algorithms that make it work are certainly using machine
learning principles.

Algorithms Versus Models: What’s the Difference?
Machine learning and algorithms can hardly be separated. Algorithms are another
subject that can seem impenetrably daunting at first, but they are actually quite sim‐
ple at their core, and you have probably been using them for a long time without real‐
izing it.

An algorithm is a set of steps performed in order.

That’s all an algorithm is. The algorithm for putting on your shoes might be some‐
thing like putting your toes in the open part of the shoe, and then pressing your foot
forward and your heel downward. The set of steps necessary to produce a machine
learning algorithm are more complicated than designing an algorithm for putting on
your shoes, of course, but one of the goals of this book is to explain the inner work‐
ings of the most widely used machine learning models in R by helping to simplify
their algorithmic processes.

The simplest algorithm for linear regression involves putting two points on a plot and
then drawing a line between them. You get the important parts of the equation (slope
and intercept) by taking the difference in the coordinates of those points with respect
to some origin. The algorithm becomes more complicated when you try to do the
same procedure for more than two points, however. That process involves more
equations that can be tedious to compute by hand for a human but very easy for a
processor in a computer to handle in microseconds.

A machine learning model like regression or clustering or neural networks relies on
the workings of algorithms to help them run in the first place. Algorithms are the
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engine that underlie the simple R code that we run. They do all the heavy lifting of
multiplying matrices, optimizing results, and outputting a number for us to use.
There are many types of models in R, which span an entire ecosystem of machine
learning more generally. There are three major types of models: regression models,
classification models, and mixed models that are a combination of both. We’ve
already encountered a regression model. A classification model is different in that we
would be trying to take input data and arrange it according to a type, class, group, or
other discrete output. Mixed models might start with a regression model and then
use the output from that to help it classify other types of data. The reverse could be
true for other mixed models.

The function call for a simple linear regression in R can be written as: lm(y ~ x), or
read out loud as “give me the linear model for the variable y as a function of the fea‐
ture x.” What you’re not seeing are the algorithms that the code is running to make
optimizations based on the data that we give it.

In many cases, the details of these algorithms are beyond the scope of this book, but
you can look them up easily. It’s very easy to become lost in the weeds of algorithms
and statistics when you’re simply trying to understand what the difference between a
logistic regression machine learning model is compared to a support vector machine
model.

Although documentation in R can vary greatly in quality from one machine learning
function to the next, in general, one can look up the inner workings of a model by
pulling up the help file for it:

?(lm)

From this help file, you can get a wealth of information on how the function itself
works with inputs and what it outputs. Moreover, if you want to know the specific
algorithms used in its computation, you might find it here or under the citations lis‐
ted in the “Author(s)” or “References” sections. Some models might require an exten‐
sive digging process to get the exact documentation you are looking for, however.

A Note on Terminology
The word “model” is rather nebulous and difficult to separate from something like a
“function” or an “equation.” At the beginning of the chapter, we made a report. That
was a static object that didn’t have any predictive power. We then delved into the data
to find another variable that we could use as a modeling input. We used the lm()
function which gave us an equation at the end. We can quickly define these terms as
follows:

Report
A static object with no predictive power.
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Function
An object that has some kind of processing power, likely sits inside a model.

Model
A complex object that takes an input parameter and gives an output.

Equation
A mathematical representation of a function. Sometimes a mathematical model.

Algorithm
A set of steps that are passed into a model for calculation or processing.

There are cases in which we use functions that might not yield mathematical results.
For example, if we have a lot of data but it’s in the wrong form, we might develop a
process by which we reshape the data into something more usable. If we were to
model that process, we could have something more like a flowchart instead of an
equation for us to use.

Many times these terms can be used interchangeably, which can be confusing. In
some respects, specific terminology is not that important, but knowing that algo‐
rithms build into a model is important. The lm() code is itself a function, but it’s also
a linear model. It calls a series of algorithms to find the best values that are then out‐
put as a slope and an intercept. We then use those slopes and intercepts to build an
equation, which we can use for further analysis.

Modeling Limitations
Statistician George Box is often quoted for the caveat, “All models are wrong, but
some are useful.” A model is a simplified picture of reality. In reality, systems are
complex and ever changing. The human brain is phenomenal at being able to dis‐
cover patterns and make sense of the universe around us, but even our senses are
limited. All models, be they mathematical, computational, or otherwise are limited by
the same human brain that designs them.

Here’s one classic example of the limits of a model: in the 1700s, Isaac Newton had
developed a mathematical formulation describing the motions of objects. It had been
well tested and was taken, more or less, to be axiomatic truth. Newton’s universal law
of gravitation had been used with great success to describe how the planets move
around the Sun. However, one outlier wasn’t well understood: the orbit of Mercury.
As the planet Mercury orbits the Sun, its perihelion (the closest point to the Sun of its
orbit) moves around ever so slightly over time. For the longest time, physicists
couldn’t account for the discrepancy until the early twentieth century when Albert
Einstein reformulated the model with his General Theory of Relativity.

Even Einstein’s equations break down at a certain level, however. Indeed, when new
paradigms are discovered in the world of science, be they from nature throwing us a
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1 Box, G. E. P., J. S. Hunter, and W. G. Hunter. Statistics for Experimenters. 2nd ed. John Wiley & Sons, 2005.

curve ball or when we discover anomalous data in the business world, models need to
be redesigned, reevaluated, or reimplemented to fit the observations.

Coming back to our mtcars example, the limitations of our model come from the
data, specifically the time they were collected and the number of data points. We are
making rather bold assumptions about the fuel efficiencies of cars today if we try to
input just the weight of a modern vehicle into a model that was built entirely from
cars manufactured in the 1970s. Likewise, there are very few data points in the set to
begin with. Thirty-two data points is pretty low to be making be-all-end-all state‐
ments about any car’s fuel efficiency.

The limitations we have to caveat our mtcars model with are therefore bound in time
and in observations. We could say, “This is a model for fuel efficiency of cars in the
1970s based on 32 different makes and models.” We could not say, “This is a model
for any car’s fuel efficiency.”

Different models have different specific limitations as well. We will dive into more
statistical detail later, but developing something like a simple linear regression model
will come with some kind of error with it. The way we measure that error is very dif‐
ferent compared to how we measure the error for a model like a kmeans clustering
model, for example. It’s important to be cognizant of error in a model to begin with,
but also how we compare errors between models of different types.

When George Box says all models are wrong, he means that all models have some
kind of error attributed to them. Regression models have a specific way of measuring
error called the coefficient of determination, often referred to as the “R-squared” value.
This is a measure of how close the data fits the model fitted line with values ranging
from 0 to 1. A regression model with an R2 = 0.99 is quite a good linear fit to the data
it’s modeling, but it’s not a 100% perfect mapping. Box goes on to say:1

Now it would be very remarkable if any system existing in the real world could be
exactly represented by any simple model. However, cunningly chosen parsimonious
models often do provide remarkably useful approximations. For example, the law PV =
RT relating pressure P, volume V, and temperature T of an “ideal” gas via a constant R
is not exactly true for any real gas, but it frequently provides a useful approximation
and furthermore its structure is informative since it springs from a physical view of the
behavior of gas molecules. For such a model there is no need to ask the question “Is the
model true?” If “truth” is to be the “whole truth,” the answer must be “No.” The only
question of interest is, “Is the model illuminating and useful?”

Without getting too deep into the weeds of the philosophy of science, machine learn‐
ing modeling in all its forms is just an approximation of the universe that we are
studying. The power in a model comes from its usefulness, which can stem from how
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accurate it can make predictions, nothing more. A model might be limited by its
computational speed or its ability to be simply explained or utilized in a particular
framework, as well. It’s important, therefore, to experiment and test data with many
types of models and for us to choose what fits best with what our goals are. Imple‐
menting a regression model on a computational backend of a server might be far sim‐
pler to implement than a random forest regression model, for which there might be a
trade-off in accuracy of a small amount.

Statistics and Computation in Modeling
When we think of machine learning, in a naive sense we think almost exclusively
about computers. As we shall see throughout the book, machine learning has its basis
in mathematics and statistics. In fact, you could do all machine learning calculations
by hand by using only math. However, such a process becomes unsustainable
depending on the algorithm after only a few data points. Even the simple linear
regression model we worked on earlier this chapter becomes exponentially more
complicated when we move from two to three data points. However, modern pro‐
gramming languages have so many built-in functions and packages that it’s almost
impossible to not have a regression function that takes one line of code to get the
same result in a fraction of the time. You have seen this application thus far with the
lm() function call in R already. Most of the time, a robust statistical understanding is
paramount to understanding the inner workings of a machine learning algorithm.
Doubly so if you are asked by a colleague to explain why you used such an algorithm.

In this book, we explore the mathematics behind the workings of these algorithms to
an extent that it doesn’t overwhelm the focus on the R code and best practices therein.
It can be quite eye opening to understand how a regression model finds the coeffi‐
cients that we use to build the equation, especially given that some of the algorithms
used to compute the coefficients can show up in other machine learning models and
functions wholly different from linear regression.

With linear regression as our example, we might be interested in the statistics that
define the model accuracy. There are numerous to list, and some that are too statisti‐
cal for an introductory text, but a general list would include the following:

Coefficient of determination
Sometimes listed as R2, this is how well the data fits to the modeled line for
regression analyses.

p-values
These are measures of statistical validity, where if your p-value is below 0.05, the
value you are examining is likely to be statistically valid.
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Confidence intervals
These are two values between which we expect a parameter to be. For example, a
95% confidence interval between the numbers 1 and 3 might describe where the
number 2 sits.

We can use these to understand the difference between a model that fits the data well
and one that fits poorly. We can assess which features are useful for us to use in our
model and we can determine the accuracy of the answers produced by the model.

The basic mathematical formulation of regression modeling with two data points is
something often taught at the middle school level, but rarely does the theory move
beyond that to three or more data points. The reason being that to calculate coeffi‐
cients that way, we need to employ some optimization techniques like gradient
descent. These are often beyond the scope of middle school mathematics but are an
important underpinning of many different models and how they get the most accu‐
rate numbers for us to use.

We elaborate on concepts like gradient descent in further detail, but we leave that for
the realm of the appendixes. It’s possible to run machine learning models without
knowing the intricate details of the optimizations behind them, but when you get into
more advanced model tuning, or need to hunt for bugs or assess model limitations,
it’s essential to fully grasp the underpinnings of the tools you are working with.

Data Training
One statistical method that we cover in detail is that of training data. Machine learn‐
ing requires us to first train a data model, but what does that mean exactly? Let’s say
that we have a model for which we have some input that goes through an algorithm
that generates an output. We have data for which we want a prediction, so we pass it
through the model and get a result out. We then evaluate the results and see if the
associated errors in the model go down or not. If they do, we are tuning the model in
the right direction, otherwise if the errors continue to build up, we need to tweak our
model further.

It’s very important for us to not train our machine learning models on data that we
then pass back into it in order to test its validity. If, for example, we train a black box
model on 50 data points and then pass those same 50 data points back through the
model, the result we get will be suspiciously accurate. This is because our black box
example has already seen the data so it basically knows the right answer already.

Often our hands are tied with data availability. We can’t pass data we don’t have into a
model to test it and see how accurate it is. If, however, we took our 50-point dataset
and split it in such a way that we used a majority of the data points for training but
leave some out for testing, we can solve our problem in a more statistically valid way.
The danger with this is splitting into training and test sets when we have only a small
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number of data points to begin with. But if we were limited in observations to start,
using advanced machine learning techniques might not be the best approach anyway.

Now if we have our 50-point dataset and split it so that 80% of our data went into the
training set (40 data points) and the rest went into our test set, we can better assess
the model’s performance. The black box model will be trained on data that’s basically
the same form as the test set (hopefully), but the black box model hasn’t seen the
exact data points in the test set yet. After the model is tuned and we give it the test set,
the model can make some predictions without the problem of being biased as a result
of data it has seen before.

Methods of splitting up data for training and testing purposes are known as sampling
techniques. These can come in many flavors like taking the top 40 rows of data as the
training set, taking random rows from our data, or more advanced techniques.

Cross-Validation
Training data is very valuable to tuning machine learning models. Tuning a machine
learning model is when you have a bunch of inputs whose values we can change
slightly without changing the underlying data. For example, you might have a model
that has three parameters that you can tune as follows: A=1, B=2, C=“FALSE”. If your
model doesn’t turn out right, you can tweak it by changing the values to A=1.5,
B=2.5, C=“FALSE”, and so forth with various permutations.

Many models have built-in ways to ingest data, perform some operations on it, and
then save the tuned operations to a data structure that is used on the test data. In
many cases during the training phase, you might want to try other statistical techni‐
ques like cross-validation. This is sort of like another mini-step of splitting into train‐
ing and test sets and running the model, but only on the training data. For example,
you take your 50-point total dataset and split 80% into a training set, leaving the rest
for your final test phase. We are left with 40 rows with which to train your data
model. You can split these 40 rows further into a 32-row training set and an 8-row
test set. By doing so and going through a similar training and test procedure, you can
get an ensemble of errors out of your model and use those to help refine its tuning
even further.

Some examples of cross-validation techniques in R include the following:

• Bootstrap cross-validation
• Bootstrap 632 cross-validation
• k-fold cross-validation
• Repeated cross-validation
• Leave-one-out cross-validation

12 | Chapter 1: What Is a Model?



• Leave-group-out cross-validation
• Out-of-bag cross-validation
• Adaptive cross-validation
• Adaptive bootstrap cross-validation
• Adaptive leave-group-out cross-validation

We expand on these methods later; their usage is highly dependent on the structure
of the data itself. The typical gold standard of cross-validation techniques is k-fold
cross-validation, wherein you pick k = 10 folds against which to validate. This is the
best balance between efficient data usage and avoiding splits in the data that might be
poor choices. Chapter 3 looks at k-fold cross-validation in more detail.

Why Use R?
In this book, we provide a gentle introduction to the world of machine learning as
illustrated with code and examples from R. The R language is a free, open source pro‐
gramming language that has its legacy in the world of statistics, being primarily built
off of S and subsequently S+. So even though the R language itself has not been
around for too long, there is some historical legacy code from its predecessors that
have a good syntactic similarity to what we see today. The question is this: why use R
in the first place? There are so many programming languages to choose from, how do
you know which one is the best for what you want to accomplish?

The Good
R has been growing in popularity at an explosive rate. Complementary tools to learn
R have also grown, and there are no shortage of great web-based tutorials and courses
to choose from. One package, swirl, can even teach you how to use R from within
the console itself. Many online courses also do instruction through swirl as well.
Some cover simple data analysis, others cover more complex topics like mathematical
biostatistics.

R also has great tools for accessibility and reproduction of work. Web visualizations
like the package shiny make it possible for you to build interactive web applications
that can be used by non-experts to interact with complex datasets without the need to
know or even install R.

There are a number of supported integrated development environments (IDEs) for R,
but the most popular one is R Studio, as shown in Figure 1-4.
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Figure 1-4. R Studio is a free integrated development environment (IDE) for R that is
very stable and user-friendly for those new to the language

In fact, this book is being written in R Studio, using R Markdown. R supports a ver‐
sion of Markdown, a lightweight language that you can convert to all sorts of forms
for display on the web or rendered to PDF files. It’s a great way to share code via pub‐
lishing on the web or to write professional documentation. Doing so gives you the
ability to write large swaths of text but also provide graphical examples such as those
shown earlier in the chapter.

Another powerful feature of the language is support for data frames. Data frames are
like a SQL database in memory that allow you to reshape and manipulate data to
summarize and carry out lots of valuable data processing. Unlike a traditional matrix
of data in which every column is the same data type, data frames allow you to mix
them up. There will be countless times as you work with data when you will have a
“Name” field with character data in it, followed by some numerical columns like “ID”
or “Sales.” Reading that data into some languages can cause a problem if you can’t mix
and match the data types of the columns.

In the next example, we have three vectors of different types: one numeric, one a vec‐
tor of factors, and one a vector of logical values. Using data frames, you can combine
all of these into a single dataset. More often than not, in the data science world we
work with data of mixed types in the same table. Oftentimes, that can be helpful for
subsetting the table based on certain criteria for analytical work.
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v1 = c(1, 2, 3)
v2 = c("Jerry", "George", "Elaine")
v3 = c(TRUE, FALSE, TRUE)

data_frame = data.frame(v1, v2, v3)

str(data_frame)

## 'data.frame':    3 obs. of 3 variables:
##  $ v1: num  1 2 3
##  $ v2: Factor w/ 3 levels "Elaine","George",..: 3 2 1
##  $ v3: logi  TRUE FALSE TRUE

Data manipulation takes a majority of the time for those involved in data analysis,
and R has several packages to facilitate that work. The dplyr package is a fantastic
way to reshape and manipulate data in a verbiage that makes intuitive sense. The
lubridate package is a powerful way to do manipulation on tricky datetime-
formatted data.

With the dplyr package comes the pipe operator, %>%. This helpful tool allows you to
simplify code redundancy. Instead of assigning a variable var1 an input and then
using that input in another stage named var2, and so on, you can use this pipe opera‐
tor as a “then do” part of your code.

R and Machine Learning
R has a lot of good machine learning packages. Some of which you can see on the
CRAN home page. Yet the list of actual machine learning models is much greater.
There are more than 200 types of machine learning models that are reasonably popu‐
lar in the R ecosystem, and there are fairly strict rules governing each one.

The appendix includes a comprehensive list of more than 200 functions; their pack‐
age dependencies, if they are used for classification, regression, or both; and any key‐
words used with them.

We have selected R for this book because machine learning has its basis in statistics,
and R is well suited to illustrate those relationships. The ecosystem of statistical mod‐
eling packages in R is robust and user-friendly for the most part. Managing data in R
is a big part of a data scientist’s day-to-day functionality, and R is very well developed
for such a task. Although R is robust and relatively easy to learn from a data science
perspective, the truth is that there is no single best programming language that will
cover all your needs. If you are working on a project that requires the data to be in
some specific form, there might be a language that has a package already built for that
structure of data to a great degree of accuracy and speed. Other times, you might
need to build your own solution from scratch.

R offers a fantastic tool for helping with the modeling process, known as the function
operator, ~. This symbolic operator acts like an equals sign in a mathematical formula.
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Earlier we saw the example with a linear model in which we had lm(mtcars$mpg ~
mtcars$wt). In that case, mtcars$mpg was our response, the item we want to model as
the output, and mtcars$wt was the input. Mathematically, this would be like y =
f(x) in mathematical notation compared with y ~ x in R code.

This powerful operator makes it possible for you to utilize multiple inputs very easily.
We might expect to encounter a multivariate function in mathematics to be written as
follows:

y = f(x1, x2, x3, ...)

In R, that formulation is very straightforward:

y ~ x_1 + x_2 + x_3

What we are doing here is saying that our modeling output y is not only a function of
x_1, but many other variables, as well. We will see in dedicated views of machine
learning models how we can utilize multiple features or inputs in our models.

The Bad
R has some drawbacks, as well. Many algorithms in its ecosystem are provided by the
community or other third parties, so there can be some inconsistency between them
and other tools. Each package in R is like its own mini-ecosystem that requires a little
bit of understanding first before going all out with it. Some of these packages were
developed a long time ago and it’s not obvious what the current “killer app” is for a
particular machine learning model. You might want to do a simple neural network
model, for example, but you also want to visualize it. Sometimes, you might need to
select a package you’re less familiar with for its specific functionality and leave your
favorite one behind.

Sometimes, documentation for more obscure packages can be inconsistent, as well.
As referenced earlier, you can pull up the help file or manual page for a given func‐
tion in R by doing something like ?lm() or ?rf(). In a lot of cases, these include
helpful examples at the bottom of the page for how to run the function. However,
some cases are needlessly complex and can be simplified to a great extent. One goal of
this book is to try to present examples in the simplest cases to build an understanding
of the model and then expand on the complexity of its workings from there.

Finally, the way R operates from a programmatic standpoint can drive some profes‐
sional developers up a wall with how it handles things like type casting of data struc‐
tures. People accustomed to working in a very strict object-oriented language for
which you allocate specific amounts of memory for things will find R to be rather lax
in its treatment of boundaries like those. It’s easy to pick up some bad habits as a
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result of such pitfalls, but this book aims to steer clear of those in favor of simplicity
to explain the machine learning landscape.

Summary
In this chapter we’ve scoped out the vision for our exploration of machine learning
using the R programming language.

First we explored what makes up a model and how that differs from a report. You saw
that a static report doesn’t tell us much in terms of predictability. You can turn a
report into something more like a model by first introducing another feature and
examining if there is some kind of relationship in the data. You then fit a simple lin‐
ear regression model using the lm() function and got an equation as your final result.
One feature of R that is quite powerful for developing models is the function operator
~. You can use this function with great effect for symbolically representing the formu‐
las that you are trying to model.

We then explored the semantics of what defines a model. A machine learning model
like linear regression utilizes algorithms like gradient descent to do its background
optimization procedures. You call linear regression in R by using the lm() function
and then extract the coefficients from the model, using those to build your equation.

An important step with machine learning and modeling in general is to understand
the limits of the models. Having a robust model of a complex set of data does not
prevent the model itself from being limited in scope from a time perspective, like we
saw with our mtcars data. Further, all models have some kind of error tied to them.
We explore error assessment on a model-by-model basis, given that we can’t directly
compare some types to others.

Lots of machine learning models utilize complicated statistical algorithms for them to
compute what we want. In this book, we cover the basics of these algorithms, but
focus more on implementation and interpretation of the code. When statistical con‐
cepts become more of a focus than the underlying code for a given chapter, we give
special attention to those concepts in the appendixes where appropriate. The statisti‐
cal techniques that go into how we shape the data for training and testing purposes,
however, are discussed in detail. Oftentimes, it is very important to know how to
specifically tune the machine learning model of choice, which requires good knowl‐
edge of how to handle training sets before passing test data through the fully opti‐
mized model.

To cap off this chapter, we make the case for why R is a suitable tool for machine
learning. R has its pedigree and history in the field of statistics, which makes it a good
platform on which to build modeling frameworks that utilize those statistics.
Although some operations in R can be a little different than other programming
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languages, on the whole R is a relatively simple-to-use interface for a lot of compli‐
cated machine learning concepts and functions.

Being an open source programming language, R offers a lot of cutting-edge machine
learning models and statistical algorithms. This can be a double-edged sword in
terms of help files or manual pages, but this book aims to help simplify some of the
more impenetrable examples encountered when looking for help.

In Chapter 2, we explore some of the most popular machine learning models and
how we use them in R. Each model is presented in an introductory fashion with some
worked examples. We further expand on each subject in a more in-depth dedicated
chapter for each topic.
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CHAPTER 2

Supervised and Unsupervised
Machine Learning

In the universe of machine learning algorithms, there are two major types: supervised
and unsupervised. Supervised learning models are those in which a machine learning
model is scored and tuned against some sort of known quantity. The majority of
machine learning algorithms are supervised learners. Unsupervised learning models
are those in which the machine learning model derives patterns and information
from data while determining the known quantity tuning parameter itself. These are
more rare in practice, but are useful in their own right and can help guide our think‐
ing on where to explore the data for further analysis.

An example of supervised learning might be something like this: we have a model
we’ve built that says “any business that sells less than 10 units is a poor performer, and
more than 10 units is a good performer.” We then have a set of data we want to test
against that statement. Suppose that our data includes a store that sells eight units.
That is less than 10, so according to our model definition, it is classified as a poor
performer. In this situation, we have a model that ingests data in which we’re interes‐
ted and gives us an output as decided by the conditions in the model.

In contrast, an unsupervised learning model might be something like this: we have a
bunch of data and we want to know how to separate it into meaningful groups. We
could have a bunch of data from a survey about people’s height and weight. We can
use some algorithms in the unsupervised branch to figure out a way to group the data
into meaningful clusters for which we might define clothing sizes. In this case, the
model doesn’t have an answer telling it, “For this person’s given height and weight, I
should classify them as a small pant size”; it must figure that out for itself.
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Supervised Models
Supervised models are more common than their unsupervised counterparts. They
come in three major flavors:

Regression
These models are very common, and it’s likely that you encountered one in high
school math classes. They are primarily used for looking at how data evolves with
respect to another variable (e.g., time) and examining what you can do to predict
values in the future.

Classification
These models are used to organize your data into schemes that make categorical
sense. For instance, consider the aforementioned store labeling example—stores
that sell more than 10 units per week could be classified as good performers,
whereas those selling fewer than that number would be classified as poor.

Mixed
These models can often rely on parts of regression to inform how to do classifica‐
tion, or sometimes the opposite. One case might be looking at sales data over
time and whether there is a rapid change in the slope of the line in some time
period.

Regression
Regression modeling is something you most likely have done numerous times
without realizing you’re doing machine learning. At its core, a regression line is one
for which we fit to data that has an x and a y element. We then use an equation to
predict what the corresponding output, y, should be for any given input, x. This is
always done on numeric data.

Let’s take a look at an example regression problem:

head(mtcars)

##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

This is one of the many built-in datasets featured in R: the mtcars dataset. It contains
data about 32 cars from a 1974 issue of Motor Trend magazine. We have 11 features
ranging from the car’s fuel efficiency in miles per US gallon, to weight, and even
whether the car has a manual or automatic transmission. Figure 2-1 plots the fuel
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efficiency of the cars (mpg) in the dataset as a function of their engine size, or dis‐
placement (disp) in cubic inches:

plot(y = mtcars$mpg, x = mtcars$disp, xlab = "Engine Size (cubic inches)",
    ylab = "Fuel Efficiency (Miles per Gallon)")

Figure 2-1. A plot of the listed vehicle fuel efficiencies as a function of engine size from
the mtcars dataset that comes prepackaged with R

We can see from the plot that the fuel efficiency decreases as the size of the engine
increases. However, if you have some new engine for which you want to know the
efficiency, the plot in Figure 2-1 doesn’t really give you an exact answer. For that, you
need to build a linear model:

model <- lm(mtcars$mpg ~ mtcars$disp)
coef(model)

## (Intercept) mtcars$disp
## 29.59985476 -0.04121512

The cornerstone for regression modeling in R is the lm() function. We are also using
another powerful operator featured in R: the formula operator as denoted by ~. You
might recall that regression modeling is of the form y = mx + b, where the output y is
determined from a given slope m, intercept b, and input data x. Your linear model in
this case is given by the coefficients that you just computed, so the model looks like
the following:
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Fuel Efficiency = –0.041 × Engine Size + 29.599

You now have a very simple machine learning model! You can use any input for the
engine size and get a value out. Let’s look at the fuel efficiency for a car with a 200-
cubic-inch displacement:

-0.041 * 200 + 25.599

## [1] 17.399

Another, more accurate, way to do this is to call the coefficients from the model
directly:

coef(model)[2] * 200 + coef(model)[1]

## mtcars$disp
##    21.35683

You can repeat this with any numerical input in which you’re interested. Yet you
might want to expand this analysis to include other features. You might want a model
that computes engine efficiency as a function not only of engine size, but maybe the
number of cylinders, horsepower, number of gears, and so on. You might also want to
try different functions to fit to the data, because if we try and fit a theoretical engine
size of 50,000 cubic inches, the fuel efficiency goes negative! We explore these types of
modeling approaches in greater depth in Chapter 4, which focuses exclusively on
regression models in R.

Training and Testing of Data
Before we jump into the other major realm of supervised learning, we need to bring
up the topic about training and testing data. As we’ve seen with simple linear regres‐
sion modeling thus far, we have a model that we can use to predict future values. Yet,
we know nothing about how accurate the model is for the moment. One way to
determine model accuracy is to look at the R-squared value from the model:

summary(model)

##
## Call:
## lm(formula = mtcars$mpg ~ mtcars$disp)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -4.8922 -2.2022 -0.9631  1.6272  7.2305
##
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.599855   1.229720  24.070  < 2e-16 ***
## mtcars$disp -0.041215   0.004712  -8.747 9.38e-10 ***
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## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.251 on 30 degrees of freedom
## Multiple R-squared:  0.7183, Adjusted R-squared:  0.709
## F-statistic: 76.51 on 1 and 30 DF,  p-value: 9.38e-10

The function call summary() on our model object gives us a lot of information. The
accuracy parameter that’s most important to us at the moment is the Adjusted R-
squared value. This value tells us how linearly correlated the data is; the closer the
value is to 1, the more likely the model output is governed by data that’s almost
exactly a straight line with some kind of slope value to it. The reason we are focusing
on the adjusted part instead of the multiple is for future scenarios in which we use
more features in a model. For low numbers of features the adjusted and multiple R-
squared values are basically the same thing. For models that have many features, we
want to use multiple R-squared values, instead, because it will give a more accurate
assessment of the model error if we have many dependent features instead of just one.

But what does this tell us as far as an error estimate for the model? We have standard
error values from the output, but there’s an issue with the model being trained on all
the data, then being tested on the same data. What we want to do, in order to ensure
an unbiased amount of error, is to split our starting dataset into a training dataset and
test dataset.

In the world of statistics, you do this by taking a dataset you have and splitting it into
80% training data and 20% test data. You can tinker with those numbers to your taste,
but you always want more training data than test data:

split_size = 0.8

sample_size = floor(split_size * nrow(mtcars))

set.seed(123)
train_indices <- sample(seq_len(nrow(mtcars)), size = sample_size)

train <- mtcars[train_indices, ]
test <- mtcars[-train_indices, ]

This example sets the split size at 80% and then the sample size for the training set to
be 80% of the total number of rows in the mtcars data. We then set a seed for repro‐
ducibility, then get a list of row indices that we are going to put in our training data.
We then split the training and test data by setting the training data to be the rows that
contain those indices, and the test data is everything else.

What we want to do now is to build a regression model using only the training data.
We then pass the test data values into it to get the model outputs. The key component
here is that we have the known data against which we can test the model. That allows
us to get a better level of error estimate out:
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model2 <- lm(mpg ~ disp, data = train)

new.data <- data.frame(disp = test$disp)

test$output <- predict(model2, new.data)

sqrt(sum(test$mpg - test$output)^2/nrow(test))

## [1] 4.627365

Let’s walk through these steps to calculate the actual error of the model. Before, if you
were to look at the residual standard error, you would see a value of 3.521. However,
this value is dubious because it was calculated using the same data that was used to
train the model. To remedy that, we’ve split the original mtcars data into a training
set that we used exclusively for making the regression model, and a test set which we
used to test against.

First, we calculate a new linear model on the training data using lm(). Next, we form
a data frame from our test data’s disp column. After that, we make predictions on our
test set and store that in a new column in our test data. Finally, we compute a root-
mean-square error (RMSE) term. We do this by taking the difference between our
model output and the known mpg efficiency, squaring it, summing up those squares,
and dividing by the total number of entries in the dataset. This gives us the value for
the residual standard error. The new value is different from what we’ve seen before
and is an important value for understanding how well our model is performing.

Classification
In contrast to regression modeling, which you have likely previously done without
realizing it, classification is a less frequently encountered part of the machine learning
spectrum. Instead of predicting continuous values, like numbers, in classification
exercises we’ll predict discrete values.

Logistic Regression
In contrast to regression, sometimes you want to see if a given data point is of a cate‐
gorical nature instead of numeric. Before, we were given a numeric input and calcula‐
ted a numeric output through a simple regression formula. Figure 2-2 presents the
same mtcars dataset to visually explain the difference:

plot(x = mtcars$mpg, y = mtcars$am, xlab = "Fuel Efficiency (Miles per Gallon)",
    ylab = "Vehicle Transmission Type (0 = Automatic, 1 = Manual)")
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Figure 2-2. This plot of vehicle transmission type as a function of fuel efficiency is very
different looking than the plot of efficiency versus engine size

The data looks very different compared to what we saw earlier. In the mtcars dataset,
each car is given a 0 or a 1 label to determine whether it has an automatic transmis‐
sion as defined by the column name am. A car with an automatic has a value 1,
whereas a manual transmission car has a value of 0. Fitting a linear regression model
to this data would not work, because we cannot have half a transmission value.
Instead, we need to rely on a logistic regression model to help classify whether new
efficiency data belongs to either the automatic or manual transmission groups.

We have a slightly different question to answer this time: how is the fuel efficiency
related to a car’s transmission type? We can’t rely on the regression modeling proce‐
dure here, unfortunately. We could try to fit a regression line to the data, but the
results would be very misleading. Instead, we need to use a classification algorithm.
In this case, we will use a logistic regression algorithm.

Logistic regression is different than linear regression in that we get discrete outputs
instead of continuous ones. Before, we could get any number as a result of our regres‐
sion model, but with our logistic model, we should expect a binary outcome for the
transmission type; it either is an automatic transmission, or it isn’t. The approach
here is different, as well. First, you need to load the caTools library:

library(caTools)
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This library contains many functions, but, most important, it has a function for logis‐
tic regression: LogitBoost. First, you need to give the model the label against which
we want to predict as well as the data that you want to use for training the model:

Label.train = train[, 9]
Data.train = train[, -9]

You can read the syntax of train[,-9] as follows: “The data we want is the mtcars
dataset that we split into a training set earlier, except column number 9.” That hap‐
pens to be the am column we used earlier. This is a more compact way of subsetting
the data instead of listing out each column individually for input:

model = LogitBoost(Data.train, Label.train)
Data.test = test
Lab = predict(model, Data.test, type = "raw")
data.frame(row.names(test), test$mpg, test$am, Lab)

##      row.names.test. test.mpg test.am        X0           X1
## 1         Datsun 710     22.8       1 0.9820138 0.0179862100
## 2         Merc 450SE     16.4       0 0.9996646 0.0003353501
## 3 Cadillac Fleetwood     10.4       0 0.9996646 0.0003353501
## 4  Chrysler Imperial     14.7       0 0.9996646 0.0003353501
## 5           Fiat 128     32.4       1 0.8807971 0.1192029220
## 6     Toyota Corolla     33.9       1 0.8807971 0.1192029220
## 7      Toyota Corona     21.5       0 0.9820138 0.0179862100

Walking through the preceding steps, we first set the label and data by picking the
columns that represented each. We got those from the training dataset that we split
up earlier. We then passed those into the LogitBoost function and made a prediction
similar to how we did with a linear regression analysis. The output here is slightly dif‐
ferent, though. Here, we have a given engine efficiency in miles per gallon (mpg) and
a known value if the car is an automatic transmission (1) or not (0). We then have
two columns, X0 and X1, which are probabilities that are output by the model if the
car is an automatic transmission (X0) or a manual transmission (X1). Ways to tune
this model to be more accurate could include collecting more data in the training
dataset, or tuning the options available in the LogitBoost function itself.

Supervised Clustering Methods
Clustering is when you have a set of data and want to define classes based on how
closely they are grouped. Sometimes, groupings of data might not be immediately
obvious, and a clustering algorithm can help you find patterns where they might
otherwise be difficult to see explicitly. Clustering is a good example of an ecosystem
of algorithms that can be used both in a supervised and unsupervised case. It’s one of
the most popular forms of classification, and one of the most popular clustering
models is the kmeans algorithm.
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Let’s examine the iris dataset by looking at the plot of petal width as a function of
petal length (Figure 2-3):

plot(x = iris$Petal.Length, y = iris$Petal.Width, xlab = "Petal Length",
    ylab = "Petal Width")

Figure 2-3. A plot of petal width as a function of petal length from the iris dataset that
also comes pre-built within R

What if we wanted to try to find three distinct groups in which to classify this data‐
set? The human brain is remarkably good at finding patterns and structure, so the
clumping of data in the lower-left corner of Figure 2-3 stands out as one obvious
cluster of data. But what about the rest? How do we go about breaking the data in the
upper-right part of the plot into two more groups? One clustering algorithm that can
accomplish this is the kmeans() approach to clustering.

This algorithm works by first placing a number of random test points in our data—in
this case, two. Each of our real data points is measured as a distance from these test
points, and then the test points are moved in a way to minimize that distance, as
shown in Figure 2-4:
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data = data.frame(iris$Petal.Length, iris$Petal.Width)

iris.kmeans <- kmeans(data, 2)

plot(x = iris$Petal.Length, y = iris$Petal.Width, pch = iris.kmeans$cluster,
    xlab = "Petal Length", ylab = "Petal Width")
points(iris.kmeans$centers, pch = 8, cex = 2)

Figure 2-4. The same data as in Figure 2-3, but with the clustering algorithm applied

In Figure 2-4, we can see how the algorithm works by splitting the data into two
major groups. In the lower left is one cluster, denoted by the small triangles, and in
the upper right there is another cluster labeled with circular data points. We see two
big asterisks that mark where the cluster centers have finally stopped iterating. Any
point that we further add to the data is marked as being in a cluster if it’s closer to one
versus another. The points in the lower left are pretty well distinct from the others,
but there is one outlier data point. Let’s use one more cluster, shown in Figure 2-5, to
help make a little more sense of the data:

iris.kmeans3 <- kmeans(data, 3)

plot(x = iris$Petal.Length, y = iris$Petal.Width, pch = iris.kmeans3$cluster,
    xlab = "Petal Length", ylab = "Petal Width")

points(iris.kmeans3$centers, pch = 8, cex = 2)
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Figure 2-5. By applying another cluster to the data, we can see even more groups by
which to classify our dataset

Now you can see that the larger group of data has been split further into two clusters
of data that look to be about equal in size. There are three clusters in total with three
different centers to the data. You could keep going by adding more and more cluster
centers to the data, but you would be losing out on valuable information that way. If
every single data point in the set were its own cluster, it would wind up being mean‐
ingless as far as classification goes. This is where you need to use a gut intuition to
determine the appropriate level of fitting to the data. Too few clusters and the data is
underfit: there isn’t a good way to determine structure. Too many clusters and you
have the opposite problem: there’s far too much structure to make sense of simply.

Continuing on the topic of supervised learning, let’s take a look at Figure 2-6 and
compare this result to the actual answer and see how good our prediction really is:

par(mfrow = c(1, 2))

plot(x = iris$Petal.Length, y = iris$Petal.Width, pch = iris.kmeans3$cluster,
    xlab = "Petal Length", ylab = "Petal Width", main = "Model Output")

plot(x = iris$Petal.Length, y = iris$Petal.Width,
    pch = as.integer(iris$Species),
    xlab = "Petal Length", ylab = "Petal Width", main = "Actual Data")
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Figure 2-6. Because we have species data against which to test, we can compare our
model output, left, with our actual data on the right

Figure 2-6 illustrates how the three-cluster kmeans algorithm works against the actual
species labels in the data. It seems to be a fairly good match. We can see the same data
represented in tabular format, called a confusion matrix:

table(iris.kmeans3$cluster, iris$Species)

##
##     setosa versicolor virginica
##   1      0          2        46
##   2      0         48         4
##   3     50          0         0

You can read this confusion matrix with the output clusters as the rows, and the
actual values from the data as the columns. For cluster 1, there are 48 versicolor and
six virginica plants. Cluster 2 has only setosa plants, and cluster 3 has two versicolor
and 44 virginica plants. If the algorithm were 100% perfect, we would expect each
column to have all of its data in one of the three rows that pertain to the clusters, but
this isn’t a bad result for a cursory example. It shows that there are only six predic‐
tions that were off in cluster 1, and two predictions that were off in cluster 3.
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Mixed Methods
Thus far, we’ve discussed regression, which takes in continuous numeric data and
then outputs continuous numeric data, and classification, which takes in continuous
numeric data and then outputs discrete data, or vice versa. There are many machine
learning algorithms in R, and some are focused entirely on regression, whereas others
are focused entirely on classification. But there’s a third class that can utilize both.
Some of these methods can use regression to help inform a classification scheme, or
data can be first taken as labels and used to constrain regression models.

Tree-Based Models
So far, we’ve seen a linear regression and logistic regression example. Part of the uni‐
verse of machine learning models includes tree-based methods. Simply put, a tree is a
structure that has nodes and edges. For a decision tree, at each node we might have a
value against which we split in order to gain some insight from the data. This is best
explained visually by looking at Figure 2-7:

library(party)
tree <- ctree(mpg ~ ., data = mtcars)
plot(tree)

Figure 2-7. An example of a simple decision tree applied to the mtcars dataset
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Figure 2-7 demonstrates a plotted conditional inference tree. We are plotting engine
fuel efficiency (mpg), but we’re using all features in the dataset to build the model
instead of just one; hence, the mpg ~ . call in the ctree() function. The output is a
distribution (in the form of a box-and-whisker plot) of the fuel efficency as a function
of the major features that influence it. The ctree function calls on certain methods to
figure these out; this way, you don’t have a bunch of branches in the tree that don’t
amount to anything other than to clog up the view. In this case, the features that are
most important to mpg are disp (the engine displacement) and wt (the car’s weight).
You read this chart from top to bottom.

At node 1, there is a split for cars that weigh less than 2.32 tons and those that weigh
more. For the cars that weigh more, we split further on the engine displacement. For
engine displacements that are less than 258 cubic inches in volume, we go to node 4.
For engine displacements that have more than 258 cubic inches, we go to node 5.
Notice that for each feature there is a statistical p-value, which determines how statis‐
tically relevant it is. The closer the p-value is to 0.05 or greater, the less useful or rele‐
vant it is. In this case, a p-value of almost exactly 0 is very good. Likewise, you can see
how many data points make up each class at the bottom of the tree.

Let’s consider a car that has a weight of four tons, and a small engine size of 100 cubic
inches. At node 1, we go along the righthand path to node 3 (because the weight is
greater than 2.32 tons) and then go left to node 4 based on the theoretical data we just
made up. We should expect the fuel efficiency of this car to be somewhere between 13
and 25 miles per gallon.

What if you try to use this new data structure for prediction? The first thing that
should pop up is that you are looking at the entire dataset instead of just the training
data. Figure 2-8 shows the tree structure for the training data first:

tree.train <- ctree(mpg ~ ., data = train)
plot(tree.train)
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Figure 2-8. By taking the same data and splitting it into a training set, you simplify the
picture somewhat. The methodology remains the same for testing purposes, however.

By looking at just the training data, you have a slightly different picture in that the
tree depends only on the car’s weight. In the following example, there are only two
classes instead of the tree as before:

test$mpg.tree <- predict(tree.train, test)
test$class <- predict(tree.train, test, type = "node")
data.frame(row.names(test), test$mpg, test$mpg.tree, test$class)

##      row.names.test. test.mpg      mpg test.class
## 1         Datsun 710     22.8 23.46667          2
## 2         Merc 450SE     16.4 16.09231          3
## 3 Cadillac Fleetwood     10.4 16.09231          3
## 4  Chrysler Imperial     14.7 16.09231          3
## 5           Fiat 128     32.4 23.46667          2
## 6     Toyota Corolla     33.9 23.46667          2
## 7      Toyota Corona     21.5 23.46667          2

This chunk of code does both a regression and a classification test in two easy lines of
code. First, it takes the familiar predict() function and applies it to the entirety of
the test data and then stores it as a column in the test data. Then, it performs the
same procedure, but adds the type="node" option to the predict() function to get a
class out. It then sticks them all together in a single data frame.
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What you can see from the end result is that it doesn’t take a lot of work for some
algorithms to provide both a continuous, numeric output (regression) as well as a dis‐
crete class output (classification) for the same input data.

Random Forests
Random forests are a complex topic that we can best approach by using an example
about movies. Suppose that you and a friend play a game in which your friend asks
you a series of questions to determine whether you would like a movie. Following the
logic of the decision tree earlier, you might split on criteria like director, movie run‐
time, leading actress, and so on. So you might go along the lines of, “Is the movie a
comedy?” followed by, “Does Cate Blanchett star in it?” to, “Is it longer than two
hours?” This is the basis for how decision trees work, as we’ve already demonstrated.

Your friend might be able to find a movie you like based on those criteria, but that’s
just one friend’s assessment of your inputs. You want to ask a bunch of your friends,
as well. Suppose that you go through the question game again with a few more
friends and then they vote if you are interested in a movie. By asking many of your
friends instead of just one, you build an ensemble classifier, or a forest.

You don’t want them to arrive at the same answer by asking the same questions. But
you can get insight by asking slightly different questions each time. For example, you
tell Amanda that you saw The Dark Knight eight times in theaters, but maybe there
were reasons why (seen with different friends, scheduling, etc.) that view count could
be inflated, so maybe the friends you ask should exclude that example. Maybe you tell
Amanda that you cried during the movie Armageddon, but only once while cutting
an onion, so you should weigh that movie less. Instead of working with the same
dataset, you vary it slightly. You aren’t changing the end results of liking a movie or
not, but you are tinkering with the decisions that led to the result. This is creating a
bootstrapped version of your beginning data.

So, suppose that Robert suggests The Rock because he thinks you like Jerry Bruck‐
heimer movies more than you really do, Max suggests Kagemusha, and Will thinks
you won’t like any of his results and thus recommends nothing. These results are the
aggregated bootstrap forest of movie preferences. Your friends have now become a
random forest.

Random forests aren’t as easily describable in model form as a simple y = mx + b
equation or a simple tree that has a few nodes in it. You can do the usual training and
testing of continuous and discrete data like you have seen with the ctree() method,
but to illustrate the difference, run the following (Figure 2-9):
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library(randomForest)

mtcars.rf <- randomForest(mpg ~ ., data = mtcars, ntree = 1000,
    keep.forest = FALSE, importance = FALSE)

plot(mtcars.rf, log = "y", title = "")

Figure 2-9. Random forest algorithms are much more difficult to show in a visualization;
however, we can easily show how the error in the model evolves over the course of how
many trees we introduce into the model

Figure 2-9 shows the constraining of error in a random forest algorithm with 1,000
trees used. This is as if you had 1,000 friends playing the movie guessing game for
recommendations. You can see that the error goes down with the more trees that you
use, and is minimal at around the n=500 trees area.

Neural Networks
A neural network, as its name implies, takes its computational form from the way
neurons in a biological system work. In essence, for a given list of inputs, a neural
network performs a number of processing steps before returning an output. The
complexity in neural networks comes in how many of the processing steps there are,
and how complex each particular step might be.
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A very simple example of how a neural network can work is through the use of logic
gates. We use logical functions often in programming, but just as a refresher, an AND
function is only true if both inputs are true. If one or both inputs are false, the result
is false:

TRUE & TRUE

## [1] TRUE

TRUE & FALSE

## [1] FALSE

FALSE & FALSE

## [1] FALSE

We can define a simple neural network as one that takes in two inputs, calculates the
AND function, and gives us a result. These can be represented in graphical form
where you have layers and nodes. Layers are vertical sections of the visual, and nodes
are the points of computation within each layer. The mathematics of this requires the
use of a bias variable, which is just a constant we add to the equation for calculation
purposes and is represented as its own node, typically at the top of each layer in the
neural network.

In the case of the AND function, we’ll use numeric values passed into a classification
function to give a value of 1 for TRUE and 0 for FALSE. We can do this using the
sigmoid function:

f x = 1
1 + e−x

So, for negative values of x that are less than –5, the function is basically 0. For posi‐
tive values of x greater than 5, the function is basically 1. If we had a predefined set of
weights for each node in the neural network, we could have a picture that looks like
Figure 2-10.

We start with the inputs X1, X2, and the bias node which is just an additive constant.
We calculate all of these at the empty circle, which signifies a computation node. The
computation that we perform is putting all these things into an activation function,
which is almost always a sigmoid function. The output of the sigmoid function is the
result of the neural network! Cool, huh?
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Figure 2-10. An example neural network represented in a diagram read from left to right

Lets walk through this slowly. To calculate the end result of an AND gate (the f(x) on
the right side of Figure 2-10), we need to take in inputs for x1 and x2. We are defining
TRUE to be 1 and FALSE to be 0. The last input we have is the bias variable, which is
1 in this simple case. When the network is trained, we will find weights that are tied
to each input. We then build an equation using those weights and find out what that
equation’s result is. We then pass that result through a sigmoid function (the empty
circle) and get the answer out the other side.

This might seem a little overwhelming at first, but we can explain it rather simply
mathematically. The weights we have are: –20 + 15 * x1 + 17 * x2. If x1 is TRUE, it’s a 1,
otherwise a 0. We then solve the equation and pass the final value through the sig‐
moid. We repeat this for all combinations of our input variables:

x1 = 1, x2 = 1

h x = f − 20 + 15 + 17
h x = f 12 ≈ 1

x1 = 1, x2 = 0

h x = f − 20 + 15
h x = f − 5 ≈ 0

x1 = 0, x2 = 1

h x = f − 20 + 17
h x = f − 3 ≈ 0

x1 = 0, x2 = 0

h x = f − 20 ≈ 0
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To recap, we started with a single layer of variables that have some predefined weight
tied to them. We passed that into a processing layer, in this case a sigmoid function,
and got a result out. At its very basic level, this is a neural network. However, they can
become much more complicated if there are multiple processing layers or steps, or
more variables to compute. For example, if we wanted to pipe the result of our AND
function into an OR function and then into an XOR function, the neural network
would become quite cumbersome to describe visually.

We have a number of aspects in a neural network to be cognizant of:

The input layer
This is a layer that takes in a number of features, including a bias node, which is
often just an offset parameter.

The hidden layer, or “compute” layer
This is the layer that computes some function of each feature. The number of
nodes in this hidden layer depends on the computation. Sometimes, it might be
as simple as one node in this layer. Other times, the picture might be more com‐
plex with multiple hidden layers.

The output layer
This is a final processing node, which might be a single function.

This code example uses the iris dataset that is also built in with R:

set.seed(123)
library(nnet)
iris.nn <- nnet(Species ~ ., data = iris, size = 2)

## # weights:  19
## initial  value 209.022391
## iter  10 value 96.222855
## iter  20 value 14.106580
## iter  30 value 6.033138
## iter  40 value 5.981137
## iter  50 value 5.978256
## iter  60 value 5.971562
## iter  70 value 5.967520
## iter  80 value 5.965048
## iter  90 value 5.962782
## iter 100 value 5.960028
## final  value 5.960028
## stopped after 100 iterations

This code uses the nnet() function with the familiar operator that we’ve been using
with our previous examples. The size=2 option tells us that we are using two hidden
layers for computation, which must be explicitly specified. The output that we see are
iterations of the network.

After the neural network has finally converged, we can use it for prediction:
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table(iris$Species, predict(iris.nn, iris, type = "class"))

##
##              setosa versicolor virginica
##   setosa         50          0         0
##   versicolor      0         49         1
##   virginica       0          1        49

The result in the confusion matrix are the reference iris species of flowers across the
top and the predicted iris species of flowers going up and down the table. So, we see
the neural network performed perfectly for classifying the data of the setosa species,
but missed one classification for the versicolor and virginica species, respectively. A
perfect machine learning model would have zeroes for all the off-diagonal elements,
but this is pretty good for an illustrative example.

Support Vector Machines
Support vector machines, or SVMs, are another algorithm that you can use for both
regression and classification. Oftentimes, it is introduced as a simpler or faster corol‐
lary to a neural network. SVMs work in a manner that’s similar in many respects to
logistic regression. There are more statistical complexities around SVMs that we
explore in greater detail in Chapter 7, but the idea is that we are taking data and try‐
ing to find a plane or a line that can separate the data into different classes, as demon‐
strated in Figure 2-11.

Figure 2-11. Two classes of data separated by a line (or plane), with some vectors that
describe a margin or buffer zone between the points being separated and the plane sepa‐
rating them
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1 Bengio, Yoshua, and Yann LeCun. Scaling Learning Algorithms Towards Ai. 2007.

Suppose that you have n features in your data and m observations, or rows. If n is
much greater than m (e.g., n = 1,000 , m = 10), you would want to use a logistic
regressor. If you have the opposite (e.g., n = 10, m = 1,000), you might want to use an
SVM instead.

Alternatively, you can use a neural network for either case, but it might be considera‐
bly slower to train than one of these specific algorithms.

You can do SVM classification in a very similar manner to neural network classifica‐
tion, like we saw previously:

library(e1071)
iris.svm <- svm(Species ~ ., data = iris)
table(iris$Species, predict(iris.svm, iris, type = "class"))

##
##              setosa versicolor virginica
##   setosa         50          0         0
##   versicolor      0         48         2
##   virginica       0          2        48

The results here for SVM classification look to be very similar to the nnet() func‐
tion’s results. The only difference here is that the predicted number of versicolor spe‐
cies of flowers differed by one compared to our nnet() classifier.

Previously, we laid out a basic view of a particular type of neural network. Although
the underlying idea behind SVMs and neural networks might be different at the sur‐
face level, these two algorithms compete with each other for dominance relatively fre‐
quently. One criticism of neural networks is that they can be computationally
expensive at scale or slow depending on the complexity of the calculation. SVMs can
be quicker in some cases. On the flip side, deep neural networks can represent more
“intelligent” functions compared to the simplier SVM architecture.1 Neural networks
can handle multiple inputs, wheras SVMs can handle only one at a time.

Unsupervised Learning
So far, with supervised learning algorithms, we’ve taken a set of data, broken it into a
training and a test set, trained the model, and then evaluated its performance with the
test data. Unsupervised learning algorithms take a different approach in that they try
to define the overall structure of the data. In principle, these won’t have a test set
against which to evaluate the model’s performance.
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Generally, most machine learning models you’ll encounter will be supervised learning
approaches. You build a model, train and test the data, and then compare the outputs
to some known parameters. Unsupervised learning doesn’t have any “answer” value
against which we compare to score the model. Model evaluation and scoring is done
in a slightly different manner in this regard. One example of which can be text min‐
ing. An unsupervised learner modeled on text from all of Abraham Lincoln’s writings
might be used to try to build an artificial intelligence (AI) that would write docu‐
ments like he would author, based on word frequency and proximity to other words.
Implicitly, there’s no immediate “right” answer against which you would evaluate
your Abraham Lincoln bot. Instead, you would need to score that case by what kind
of contextual sense the model would generate.

The most common form of unsupervised learning is clustering. We’ve seen clustering
in action already, masked in an example of supervised learning. We were able to run
with that example because we had an answer key to use for comparison. But what if
we didn’t have some data for which we knew the answer?

Unsupervised Clustering Methods
In this unsupervised version of clustering, you are going to take data that has no
explicit categorical label and try to categorize them yourself. If you generate some
random data, you don’t really know how it will cluster up. As Figure 2-12 illustrates,
you can perform the usual kmeans clustering algorithm here to see how the data
should be classified:

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2), matrix(rnorm(100,
    mean = 1, sd = 0.3), ncol = 2))

colnames(x) <- c("x", "y")

plot(x)
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Figure 2-12. A random distribution of data that we want to classify into two distinct
clusters; cases like these are difficult to figure out with the naked eye, but unsupervised
methods like kmeans can help

What we’ve done here is generate a random set of data that is normally distributed
into two groups. In this case, it might be a little tougher to see where the exact group‐
ings are, but luckily, as Figure 2-13 illustrates, the kmeans algorithm can help desig‐
nate which points belong to which group:

cl <- kmeans(x, 2)

plot(x, pch = cl$cluster)
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Figure 2-13. Randomly distributed data points with clustering classification labels
applied

However, because the dataset has no explicit label tagged to it prior to applying the
kmeans classification, the best you can do is to label future data points according to
the clustering centers. You can see those by printing them out from the cl variable:

cl[2]

## $centers
##              x           y
## 1 -0.002450337 0.009187754
## 2  0.975466213 1.014152268

Row 1 denotes the x,y coordinates of the first cluster, and likewise for row 2. Any
point that you add to the dataset that is closer to either of these cluster centers will be
labeled accordingly.

Summary
In this chapter, we explored a series of machine learning algorithms in R that cover
both supervised and unsupervised cases. A machine learning algorithm is supervised
when there is a test set against which you can evaluate the algorithm’s performance.
You do this by taking what data you do have, splitting it into a training set that com‐
prises 80% of the total data, and then save the rest for the test set. You train the
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machine learning algorithm on the training set and then pass the test set through the
trained model. You can then evaluate the model’s performance on the test set with the
known values. That way, when you get new data to evaluate, you can know the limits
of the machine learning model’s accuracy.

We also took some cursory glances at the difference between regression (continuous
data in, continuous data out), and classification (discrete data in, discrete data out).
There are many machine learning algorithms that you can use for both, details of
which we explore at a finer level in each algorithm’s corresponding chapter.

For supervised learning, we covered the most popular algorithms and how to imple‐
ment them at a very basic level:

• Linear regression, lm(), for defining a simple equation by which you can describe
a relationship between an output and a number of features attributed to it

• Logistic regression, LogitBoost(), for determining a way to separate numeric
data into classes

• k-means clustering, kmeans(), for developing clusters and labeling data accord‐
ing to how those clusters evolve

• Conditional inference trees, ctree(), for defining splits in data and performing
regressions or classifications on the split data

• Random forests, randomForest(), for a more in-depth and accurate, yet less
intuitive solution than conditional inference trees

• Support vector machines, svm(), for when you might have fewer features than
observations and aren’t getting good results from logistic regression

In the upcoming chapters, we dive into specific machine learning models in R and
how best to apply them. We cover the most popular algorithms used for each model
and what caveats to be wary of. Although we are thorough with our statistical under‐
pinnings of the algorithms themselves, we touch on those specifics briefly in each
dedicated chapter, leaving the chapter itself mostly for code examples. Statistical deri‐
vations are provided in appropriate appendixes.
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CHAPTER 3

Sampling Statistics and Model Training in R

Sampling and machine learning go hand in hand. In machine learning, we typically
begin with a big dataset that we want to use for predicting something. We usually split
this data into a training set and build a model around that, and then unleash a fully
trained model on some kind of test set to see what the final output is. In some instan‐
ces, it might be very difficult to run a machine learning model on an entire dataset,
whereas we might achieve as good an accuracy by running on a small sample of it and
testing when appropriate. This could be due to the size of the data, for example.

First let’s define some statistical terms. A population is the entire collection (or uni‐
verse) of things under consideration. A sample is a portion of the population that we
select for analysis. So, for example, we could start with a full dataset, break off a
chunk into a sample, and do our training there. Another way to look at it is that some
data that we’re given to start with might itself be only a sample of a much broader
dataset.

Polling data is an example of sampling, and is typically gathered by asking questions
of people for specific demographics. By design, the polling data can be only a subset
of the general population of a country, because it would be quite an achievement to
ask everyone in a country what their favorite color might be. If we have a country
with a population of 100 million and we conduct a poll that has 30 million respond‐
ents, we’ve performed a kind of sampling. To fully understand what everyone in the
country’s favorite color is, we need to do some extrapolation from the sample to the
population to paint the full picture.

In the world of statistical science, we have values associated with the total population
(i.e., the country level) and those associated with smaller samples of that population,
as shown in Figure 3-1.
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Figure 3-1. Mathematical symbols used to define statistical sampling techniques

When we talk about values related to the terms mean, variance, and standard devia‐
tion in relation to the total population, these are called parameters. When we talk
about those same values, but specific to a certain subset of the data, we call them sta‐
tistics. So, we might be looking at a specific subset of a country and look at the mean
statistic in that case, comparing it to the mean parameter of the total population. For
example, the number of people in a country whose favorite color is blue would be the
parameter, and the number of people in a particular city whose favorite color is blue
would be the statistic. These values can be different between the population and the
samples, but they can also vary between samples, as well.

Bias
Sampling bias is what happens when you sample data in such a way that distributions
of data in the samples don’t match up with the distributions of the population from
which you are drawing. Suppose that you poll a country and the northern half ’s
favorite color is yellow and the southern half ’s favorite color is green. If you were to
do a poll that drew only from people in the southern half of the country, you would
have a favorite color distribution that is entirely yellow, and vice versa. Your sample
would be biased heavily one way or the other. Sample variation is the extent to which
a sample statistic (maybe favorite food as opposed to color) differs from the popula‐
tion. Both of these can be controlled by picking the right way of sampling our data.

Bias and variance with sampling can be represented in four ways. Figure 3-2 shows
four bull’s-eye targets, with the center of each one being the population mean. The
blue dots could represent different polls we run (different samples):

Low bias, low variance
The best-case scenario. Samples are pretty well representative of the population.

High bias, low variance
The samples are all pretty consistent, but not really reflective of the population.
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1 Schaeaffer, R., W. Mendenhall, et al. Elementary Survey Sampling, 3rd Ed. Boston: PSW-Kent, 1986.

Low bias, high variance
The samples vary wildly in their consistency, but some might be representative of
the population.

High bias, high variance
The samples are a little more consistent, but not likely to be representative of the
population.

Figure 3-2. When taking samples of data, you need to be wary of four different levels of
bias and variance that you could have

A simple random sample is one way of controlling bias when pulling samples from a
population statement.1 This is when you select values from your data at random such
that every row has an equal chance of being selected, as depicted in Figure 3-3. This is
often the best balance of simplicity and representation of the population overall.
Applying a simple random sample to the same data twice will have the possibility of
selecting the same data, if it’s truly random.
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Figure 3-3. In a simple random sample, you pick data points that you want to use from
the population by selecting them randomly

Another common form of sampling is called stratified random sampling (or oversam‐
pling). This is when you separate the data into mutually exclusive groups, called
strata, and then do a simple random sample on each stratum, as demonstrated in
Figure 3-4. This would be like polling randomly across each country’s state. This has
two advantages over a simple random sample:

• It ensures representation in each strata.
• It can be more accurate than a simple random sample if there is more variation in

one strata than others.

If, for example, the samples were spread out geographically or spatially, you could
perform a cluster sample; for example, when you have data that is stratified by country
or city. This is similar to us performing a stratified random sample, but picking the
entire strata randomly instead of doing a simple random sample within the strata, as
illustrated in Figure 3-5.
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Figure 3-4. A stratified random sample is when you randomly select from various strata
in your data (a strata could be a grouping or cut in the data that separates one part of it
from another—this could be due to classification or factor variables in the data, too)

Figure 3-5. Cluster sampling is when you take all of the data points from a given class or
cut in the data, where the classes or cuts themselves are randomly selected

A systematic sample (Figure 3-6) is when you randomly select from your first n data
points, and then select every nth data point thereafter. This isn’t random, per se
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(other than the initial randomization to find the seed on which to iterate), but it’s easy
to perform on databases.

Figure 3-6. With a systematic sampling procedure, you randomly pick a number, n, and
then pick every nth data point in the dataset

Thus far we’ve covered four different types of sampling: simple random sampling,
stratified random sampling, cluster sampling, and systematic sampling. In almost all
cases, you will use a simple random sample for speed and ease of implementation.
However, certain cases might require you to stratify the data first before sampling. Or,
if the data is arranged in such a way like being distributed over geographical regions,
you might prefer to use a cluster method, instead.

All of this so far talks about implementation but says nothing about how big of a sam‐
ple you should be taking. The answer here, invariably, is “it depends.” As you’ll see in
coming sections, taking 100% of the population as your sample isn’t always the best
approach. However, you do need to strike a balance such that your sample has
enough data points to be statistically significant and well-representative of the popu‐
lation statistics you’re looking at.
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Sampling in R
It’s quite easy to perform all the aforementioned sampling techniques in R. If we start
with some example data—for example, the iris dataset—we can test some of these
sampling techniques using R code:

iris.df <- data.frame(iris)

sample.index <- sample(1:nrow(iris.df), nrow(iris) * 0.75, replace = FALSE)
head(iris[sample.index, ])

##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 117          6.5         3.0          5.5         1.8  virginica
## 119          7.7         2.6          6.9         2.3  virginica
## 35           4.9         3.1          1.5         0.2     setosa
## 81           5.5         2.4          3.8         1.1 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 10           4.9         3.1          1.5         0.1     setosa

This code chunk does a simple random sample of the iris dataset by first generating
the indices by which you need to subset your iris data. In this case, we randomly
selected five rows of data without replacement. Replacement is the option by which, if
enabled, when you randomly draw out a row from your data, you have the chance of
drawing that same row again. By default, this option is turned off in the sample()
function in R, as is the case with most sampling functions you see in the program‐
ming world.

Let’s see how to do stratified sampling in R. In contrast to the simple random sample,
stratified sampling can be performed over differing features in the dataset. Let’s
expand on this by looking at the distributions of data in the iris dataset:

summary(iris)

##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500
##        Species
##  setosa    :50
##  versicolor:50
##  virginica :50
##
##
##

Here, you can see the population of the data. We intend to get a sample that has
roughly the same distribution of values for any of these features. Note that some of
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these columns vary to a higher degree than others. In this case, Petal.Length has the
highest amount of variance, followed by Sepal.Length. Keep this in mind for the
stratified sampling exercise, but for now let’s do a simple random sample on just the
Sepal.Length values:

summary(iris[sample.index, ])

##   Sepal.Length   Sepal.Width     Petal.Length    Petal.Width
##  Min.   :4.40   Min.   :2.000   Min.   :1.200   Min.   :0.100
##  1st Qu.:5.10   1st Qu.:2.800   1st Qu.:1.500   1st Qu.:0.275
##  Median :5.70   Median :3.000   Median :4.250   Median :1.300
##  Mean   :5.82   Mean   :3.067   Mean   :3.694   Mean   :1.164
##  3rd Qu.:6.40   3rd Qu.:3.400   3rd Qu.:5.100   3rd Qu.:1.800
##  Max.   :7.90   Max.   :4.400   Max.   :6.900   Max.   :2.500
##        Species
##  setosa    :40
##  versicolor:35
##  virginica :37
##
##
##

This example takes a 75% sample of the original data, and you can see that the distri‐
butions are all pretty close to what the main population values are. Now let’s try the
stratified sampling. For this, you need the fifer package and the stratified() func‐
tion from it:

library(fifer)

## Loading required package: MASS

summary(stratified(iris, "Sepal.Length", 0.7))

##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width
##  Min.   :4.300   Min.   :2.000   Min.   :1.100   Min.   :0.100
##  1st Qu.:5.100   1st Qu.:2.775   1st Qu.:1.500   1st Qu.:0.300
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300
##  Mean   :5.867   Mean   :3.046   Mean   :3.775   Mean   :1.187
##  3rd Qu.:6.425   3rd Qu.:3.325   3rd Qu.:5.100   3rd Qu.:1.800
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500
##        Species
##  setosa    :35
##  versicolor:39
##  virginica :34
##
##
##

The stratified sample has just about the same values. We performed stratified sam‐
pling on the iris data using the stratified() function, specifically focusing on the
strata of Sepal.Length. The code then asks for a 70% sample.
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With stratified sampling, though, you can specify which particular strata that you
want to sample over. If you are sampling over many strata, you generally want to start
with the features that vary the least and then work your way upward. The features
with the lowest variance in the iris dataset are Sepal.Width and Petal.Width, so
let’s start with those:

summary(stratified(iris, c("Sepal.Width", "Petal.Width"), 0.7))

##   Sepal.Length   Sepal.Width     Petal.Length    Petal.Width
##  Min.   :4.30   Min.   :2.000   Min.   :1.100   Min.   :0.10
##  1st Qu.:5.10   1st Qu.:2.800   1st Qu.:1.575   1st Qu.:0.30
##  Median :5.80   Median :3.000   Median :4.250   Median :1.30
##  Mean   :5.86   Mean   :3.055   Mean   :3.791   Mean   :1.22
##  3rd Qu.:6.40   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.80
##  Max.   :7.90   Max.   :4.400   Max.   :6.900   Max.   :2.50
##        Species
##  setosa    :37
##  versicolor:39
##  virginica :40
##
##
##

You can see from the output that the stratified sampling with multiple groups still has
a good representation of the population data (i.e., the full iris dataset) that you
started with. The means and the variances all look pretty appropriate for a sample.

For systematic sampling, you can write a simple function that selects every nth row
sequentially given some random initialization number:

sys.sample = function(N, n) {
    k = ceiling(N/n)
    r = sample(1:k, 1)
    sys.samp = seq(r, r + k * (n - 1), k)
}

systematic.index <- sys.sample(nrow(iris), nrow(iris) * 0.75)
summary(iris[systematic.index, ])

##   Sepal.Length    Sepal.Width     Petal.Length   Petal.Width
##  Min.   :4.300   Min.   :2.200   Min.   :1.10   Min.   :0.10
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.55   1st Qu.:0.35
##  Median :5.700   Median :3.000   Median :4.20   Median :1.30
##  Mean   :5.847   Mean   :3.051   Mean   :3.74   Mean   :1.18
##  3rd Qu.:6.400   3rd Qu.:3.250   3rd Qu.:5.10   3rd Qu.:1.80
##  Max.   :7.900   Max.   :4.400   Max.   :6.70   Max.   :2.50
##  NA's   :37      NA's   :37      NA's   :37     NA's   :37
##        Species
##  setosa    :25
##  versicolor:25
##  virginica :25
##  NA's      :37
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##
##
##

This code chunk defines the systematic sampling function and then runs that on the
iris data. For this example, we ran it by giving the number of rows so we could get
specified indices against which to subset, but the results look pretty similar to what
you’ve seen thus far.

Training and Testing
When building a predictive model, you need to go through phases of validation to
ensure that you can trust its results. If you build a model, you need a verifiable way of
making sure that you’re getting something that looks like the right answer first before
you go crazy and start putting it into production. You need a way to see what the
errors generated by the model will be so that you can better tune it appropriately, as
well.

For example, if you want to predict the value for some stock price tomorrow for
which it’s impossible to get the data, you could build a model that is trained on data
from a few days ago and test it on data that you have from yesterday. Because you
already have the answers for stock prices from yesterday, seeing what the model out‐
puts and comparing the numbers can provide valuable feedback to see whether the
model is working.

You might have seen machine learning models using a train-and-test methodology.
This is when you take some data, sample a majority of it into a training set, and keep
what’s left over for a test set. We typically do a 70/30 split of the data into the training/
test subsets, but it’s not uncommon to see 80/20 splits, as well. What you accomplish
by doing this is to effectively simulate the model working by first running it on data
that you already have, before throwing completely new data at it. There are two major
assumptions that we work with when doing these training/test splits:

• The data is a fair representation of the actual processes that you want to model
(i.e., the subset accurately reflects the population).

• The processes that you want to model are relatively stable over time and that a
model built with last month’s data should accurately reflect next month’s data.

If your assumptions are correct, a model built on today’s (or yesterday’s) data, should
work on any future data you pass through it. You should be careful about the way you
split your training and test data, though. The first part of this chapter details different
ways for you to sample and subset your starting data in ways that preserve the overall
distributions of the features in the data. We definitely don’t want to subset our
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starting data into a subset that has all of one flower type or all of one city’s responses
to a favorite color poll, for example.

Roles of Training and Test Sets
When you split the data into a training and test set, it’s the training set that that you
use for model training. Almost all unsupervised learning algorithms follow this for‐
mat. The specific coefficients you get as a result of the modeling procedures are
entirely based on the training dataset and don’t depend at all on the test data.

The role of the training set of data is to provide a platform upon which the model of
your choice goes about its mathematical way of determining coefficients or whatever
it might do under the hood. The role of the test set of data is to see how well that
model stacks up against real data.

Why Make a Test Set?
There are two ways to think about the value of making a test set of your data for
modeling purposes. The first is just a solid way of validating that data. If you had a
model that worked really well for all of the data it was trained on, but crashed and
burned when any new data was introduced to it, the model loses all of its predictive
power and isn’t any better than a static report. At worst, it can be very misleading
about how you should think about values in the future! So being able to see that the
model performs poorly ahead of time is valuable in and of itself. That insight can
inform you that you just need to tweak parameter X by a small amount to fit it, for
example.

The other valuable need for a test set is that some machine learning algorithms
actually depend on one to exist in the first place. For example, classification and
regression trees (CARTs) can be so flexible in their modeling capabilities that, if the
tree is large enough, you can often get misleading predictions. You might train a
CART model and see that the output is 100% accurate. In reality, the model will per‐
form poorly on any new data it sees. From a statistical standpoint, any model that
gives you 100.0% accuracy should be cause for concern. You can use the test set to
evaluate the predictive performance of the trees in the data to find the one with the
lowest error. Thus, the test set acts not only as a way to validate the data, but as a way
to select which form of the model you need, depending on the algorithm in play.

Training and Test Sets: Regression Modeling
We can best illustrate the need for train/test splits of your data by working through
some simple regression examples. Let’s begin with some sample data (Figure 3-7):

set.seed(123)

x <- rnorm(100, 2, 1)
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y = exp(x) + rnorm(5, 0, 2)

plot(x, y)

linear <- lm(y ~ x)

abline(a = coef(linear[1], b = coef(linear[2], lty = 2)))

Figure 3-7. Randomized data with a linear fit attached; the linear fit comes close to fit‐
ting some data points, but not all (the further you extend X out, the more likely it is that
your linear fit won’t approximate the data very well)

The following output is the result of the code prior to Figure 3-7:

summary(linear)

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -5.6481 -3.7122 -1.9390  0.9698 29.8283
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13.6323     1.6335  -8.345 4.63e-13 ***
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## x            11.9801     0.7167  16.715  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.51 on 98 degrees of freedom
## Multiple R-squared:  0.7403, Adjusted R-squared:  0.7377
## F-statistic: 279.4 on 1 and 98 DF,  p-value: < 2.2e-16

This code chunk is familiar territory. It takes some simulation data for x and y and
then plots a best-fit linear model on top of it. This example uses 100% of the simula‐
ted data as its training set and looks at the model performance. For this particular
view, a multiple R-squared of 0.74 isn’t great. Let’s try a version that splits the data by
our standard 70/30 random sampling and see how it differs

First, let’s split the data into a train-and-test set using simple random sampling:

data <- data.frame(x, y)

data.samples <- sample(1:nrow(data), nrow(data) * 0.7, replace = FALSE)

training.data <- data[data.samples, ]
test.data <- data[-data.samples, ]

Next, apply the linear model on the training data:

train.linear <- lm(y ~ x, training.data)

Now that you have a trained model, let’s compare the model’s output values to actual
values. You can do this by using the predict() function in R, which takes the
train.linear object and applies it to whatever data you supply it to it. Because your
handy test data is available, you can use that to compare:

train.output <- predict(train.linear, test.data)

You’ve now used your test data, which has the same underlying behavior as the train‐
ing data, to pass through your model and get some results. The test data has a depen‐
dent variable, x, and an independent variable, y. You need to use the dependent
variable specifically for this evaluation because you want to compare what the model
thinks the answer should be, given input x, compared to the actual values in your test
set, given by y.

For regression specifically, you can do this in one of many ways, depending on the
data and what kind of error analysis that you want to do specifically. In this case,
you’ll be using a test metric called the root-mean-square error, or RMSE:

RMSE = 1
nΣ ypredicted − yactual

2
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In plain English, the RMSE says that you take the output values that the model has
provided for the training data input, subtract those by the y values that you have in
the test data, square the values, divide those by the total number of observations n,
sum up all the values, and, finally, take the square root. Here’s what the code looks
like:

RMSE.df = data.frame(predicted = train.output, actual = test.data$y,
    SE = ((train.output - test.data$y)^2/length(train.output)))

head(RMSE.df)

##    predicted    actual         SE
## 2   7.553671  6.383579 0.04563716
## 4  11.183322  7.233768 0.51996594
## 6  31.035159 39.640442 2.46836334
## 8  -4.938659  1.591971 1.42163749
## 9   2.041033  3.022771 0.03212698
## 11 25.108383 23.709676 0.06521277

sqrt(sum(RMSE.df$SE))

## [1] 5.90611

Consider the resultant RMSE value of 5.9 as this model’s error score. To see just how
good this number is, you must compare it to another RMSE value. You can run this
same logic on a function fit of one higher degree and see what kind of RMSE you get
out as the end result:

train.quadratic <- lm(y ~ x^2 + x, training.data)

quadratic.output <- predict(train.quadratic, test.data)

RMSE.quad.df = data.frame(predicted = quadratic.output, actual = test.data$y,
    SE = ((quadratic.output - test.data$y)^2/length(train.output)))

head(RMSE.quad.df)

##    predicted    actual         SE
## 2   7.553671  6.383579 0.04563716
## 4  11.183322  7.233768 0.51996594
## 6  31.035159 39.640442 2.46836334
## 8  -4.938659  1.591971 1.42163749
## 9   2.041033  3.022771 0.03212698
## 11 25.108383 23.709676 0.06521277

sqrt(sum(RMSE.quad.df$SE))

## [1] 5.90611
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This output demonstrates that bumping up the polynomial degree fit by one to a
quadratic helps to decrease the error in what the model is predicting (from the quad
ratic.output variable) compared to what the actual values are. This follows intui‐
tively from the fact that the actual data you’re plotting appears to be fit well by a
quadratic anyway.

The natural next step is to increase the polynomial degree even further and see how
that affects the RMSE value:

train.polyn <- lm(y ~ poly(x, 4), training.data)

polyn.output <- predict(train.polyn, test.data)

RMSE.polyn.df = data.frame(predicted = polyn.output, actual = test.data$y,
    SE = ((polyn.output - test.data$y)^2/length(train.output)))

head(RMSE.polyn.df)

##     predicted    actual          SE
## 2   5.0313235  6.383579 0.060953156
## 4   7.0568495  7.233768 0.001043337
## 6  40.6367241 39.640442 0.033085916
## 8   0.7841328  1.591971 0.021753393
## 9   2.7506929  3.022771 0.002467546
## 11 24.2647775 23.709676 0.010271274

sqrt(sum(RMSE.polyn.df$SE))

## [1] 0.9357653

You can see that the RMSE has gone up compared to the quadratic fit case. This fol‐
lows the same pattern of a higher-degree polynomial overfitting the data.

When we first learn about fitting a line to a series of data points in our early educa‐
tion, we don’t tend to learn the intricacies of sampling techniques, nor splitting our
data into training and test sets. When we first start out with regression fitting, we
start with a straight line fit, as depicted in Figure 3-8.
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Figure 3-8. A simple linear fit to data will mostly be underfit; this is when the fitted line
as given by the coefficients output from the model don’t quite line up with the data you
have

Figure 3-8 has some data, as denoted by the X marks, and the model fit, denoted by
the line overlaid on top. There is also the equation that describes this model of y = θ0
+ θ1x, sometimes written as y = b + mx. There are two values that are given by the
model fitting process, θ0 and θ1.

For this simple picture, we have a model that is pretty underfit to the data. Meaning:
that the line on the chart that represents the machine learning model (simple linear
regression) doesn’t explain most of the data; it’s too simple a model. Linear models
can only ever underfit or well represent the data that you are plotting. If, for example,
your cartoon model matched a series of data points that were a straight line, it would
be an accurate representation. In a best-case scenario, linear regression can fit exactly
to the data, but it is difficult for a simple procedure like this to overfit the data.
Because linear models are difficult to overfit to the data, we rarely see the use of train‐
ing and test sets to evaluate them. Sticking with the cartoon picture, if you were to
add another data point that follows in roughly the same shape as what you see, the
linear model will continue to diverge from it and not really produce an accurate pic‐
ture in the long run.

Let’s contrast the linear fit with a cartoon of a quadratic fit in Figure 3-9. The fit in
this case is better than the linear case. The model fit tends to conform to the shape of
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most of the data points, and the model has become a little more complex. We have an
equation that describes the model, and now you have more model-derived outputs to
worry about. If you were to add another couple of data points to the picture in
roughly the same shape, the quadratic looks like it will fit generally pretty well for the
foreseeable future.

Figure 3-9. A quadratic fit has a slightly more complex model given by the coefficients
that are output from the model; by training a machine learning model with a specific
training sample and then looking at the difference between that and the saved test data,
you can evaluate how well the model fit the data

Lastly, with some kind of complex model fit like the one seen in Figure 3-10, just
about every data point is fit by the model exactly with no wiggle room. The downside
of this is future explanatory power. If we follow the same logic as before and add a
few more data points to the picture, the model shown won’t fit them well at all and
will have an increased error.
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Figure 3-10. In a complex model fit scenario, where the model is too specific to the train‐
ing data, new test data that’s applied to it will likely have high errors when we evaluate
the model output versus our test data

When you do a train/test validation on continuous data as in the regression example
here, you can choose from a host of statistical measures like the RMSE. Generally
speaking, though, you want to compare the output values that the model gives you,
based on a subset of data that you used to train the model, to that of the data you held
out for testing purposes. You should have a list of numbers for the model estimates
and a list of numbers that are the actual values. These will invariably have some kind
of difference to them, which you can then bubble up to some aggregate number and
compare against other methods.

For continuous data such as the type we’ve been testing with thus far, there are a few
different statistical tests with which you can compare the error outputs of your
results:

RMSE

RMSE = 1
nΣ ypredicted − yactual

2
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Mean Absolute Error (MAE)

MAE = 1
nΣ ypredicted − yactual

Root Relative Squared Error (RRSE)

RRSE =
Σ ypredicted − yactual

2

Σ ypredicted − yactual
2

Relative Absolute Error (RAE)

RAE =
Σ ypredicted − yactual

Σ ypredicted − yactual

For RMSE and MAE, we look at the “average difference” between the model output,
ypredicted and the values we have in our test set, yactual. These are compared at the same
scale of our feature. You can think of it like 1 point of error is a difference of 1
between ypredicted and yactual.

In RRSE and RAE, we have a new variable of ypredicted, which is the average value of
our model output and is just a scalar number. These statistics divide the values of our
predicted and actual data by the variation in our feature so that the end result is on a
scale from 0 to 1. We tend to multiply this number by 100, so we get something in the
0 to 100 range and convert it into a percentage as a result. The denominators of the
two equations tell us how much the feature deviates from its average value, which is
why we call them “relative” errors.

Training and Test Sets: Classification Modeling
You evaluate a classification model’s performance by starting with a “confusion
matrix.” In a simple form, it can take representation as a 2 × 2 matrix, in which the
model output predicted classes are compared to the actual classes and the count of
the model output in the cells of the matrix. This informs you as to how many true
positives, true negatives, false positives, and false negatives there are as a result. As
with regression statistics, classification statistics have many tools with which you can
evaluate the final performance of the model. Let’s take a look at some of them:

iris.df <- iris

iris.df$Species <- as.character(iris.df$Species)
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iris.df$Species[iris.df$Species != "setosa"] <- "other"

iris.df$Species <- as.factor(iris.df$Species)

iris.samples <- sample(1:nrow(iris.df), nrow(iris.df) * 0.7,
    replace = FALSE)

training.iris <- iris.df[iris.samples, ]

test.iris <- iris.df[-iris.samples, ]

library(randomForest)

iris.rf <- randomForest(Species ~ ., data = training.iris)

iris.predictions <- predict(iris.rf, test.iris)

table(iris.predictions, test.iris$Species)

##
## iris.predictions other setosa
##           other     31      0
##           setosa     0     14

In a binary class truth table, there are two outcomes: either the predicted value is
some class, or it isn’t. In this case, you’re focusing on whether the model predicted a
setosa class or something else. There are four values for the confusion table:

True positives
The model predicted setosa classes and got them right.

True negatives
The model predicted other classes and got them right.

False positives
The model predicted setosa classes, but the correct answer was other.

False negatives
The model predicted other classes, but the correct answer was setosa.

The output from this truth table isn’t super interesting, because it was so accurate.
There were no incorrectly predicted classes. For the sake of illustration, though, let’s
assume that we had a confusion matrix output that was slightly inaccurate:

##
##          other setosa
##   other     28      3
##   setosa     2     12

This example forces two false positives and two false negatives. So now we have 15
true positives (TP), 26 true negatives (TN), 2 false positives (FP) and 3 false negatives
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(FN). With classification models like these, we have a number of statistics from which
we can choose to test our accuracy:

Sensitivity (equivalent to hit rate, or recall)

Sensitivity = TP
TP + FN = 0 . 83

Specificity

Specificity = TN
TN + FP = 0 . 92

Precision (or positive predictive value)

Precision = TP
TP + FP = 0 . 88

Accuracy

Accuracy = TP + TN
TP + TN + FP + FN = 0 . 89

F1 score

F1 = 2TP
2TP + FP + FN = 0 . 86

Many of these values are used as benchmarks for classification models. With regres‐
sion models you had your handy RMSE value that you could compare against other
models, so what would the corresponding go-to benchmark for accuracy be in this
case? Let’s walk through the available options:

Sensitivity
Often called recall, this is if you have a lower threshold set for your classification
model. You would set a lower bar if you didn’t want to miss out on any plants that
could possibly be of a setosa type.

Specificity
Logically the same thing as precision, but for the opposite case when you’re pre‐
dicting whether a plant isn’t a setosa variant.
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Precision
The number of positive cases you’ve predicted divided by the total predicted pos‐
itive. If you had a model that had a very high sensitivity, that would be akin to
setting a threshold in your model to say, “Only classify a plant as setosa if we are
absolutely sure about it.”

Accuracy
Number of true cases divided by the total true and false cases.

F1 score
Weighted average of precision and recall scores.

You might be tempted to point out that your accuracy benchmark should just be the
accuracy statistical measure outlined earlier. For the case in which you have an almost
identical number of false positives and false negatives, this would be a perfectly fine
measure to use. However, if the false positives or false negatives are skewed in favor of
one or the other, you need a more robust statistical test to account for such behavior.

Although the F1 score might be less intuitive than accuracy at face value, it is gener‐
ally more useful because F1 and accuracy are about the same number when the false
positive and false negative rates are low. You can see the usefulness of the F1 score if
you look at a few different mock models that have various precision and recall values.
You might be tempted to just take the average of the precision and recall to get a per‐
formance metric, which you can see in Table 3-1.

Table 3-1. Tabular results of model outputs and related statistical measures of performance

Sensitivity (precision) Recall Average F1 score
0.50 0.40 0.45 0.44

0.70 0.10 0.40 0.18

0.02 1.00 0.51 0.04

0.00 0.01 0.51 0.02

1.00 1.00 1.00 1.00

This example data demonstrates a few different models showing classification specif‐
icity and recall. If you wanted to evaluate the model’s performance based on the aver‐
age of these two numbers, that approach breaks down when you have either a high
precision and low recall or opposite picture. However, the F1 score balances out those
quirks and provides a more reliable metric with which to assess your classification
model’s performance.
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Cross-Validation
So far, we’ve talked about how just running a model on 100% of your data could yield
a result that doesn’t generalize well to new incoming data. This was our motivation
for splitting the data we start with into a training set, which usually takes about 70%
of the data and a test set that comprises the rest. You unleash the model on the train‐
ing data and then use the test set to check what the model’s output is compared to the
answers you have on hand.

This process of training and testing data is still somewhat limited, however. In one
capacity, when you’re testing the model output against the reserved data, you are see‐
ing only what the error is for that exact grouping of the test data. In theory, the test
data should be representative of the entire dataset as a whole, but in practice there are
cases in which that might not be true. You should want to train the model in such a
way that you can be sure the error is representative of the entire dataset, not just the
specific slice you get from the randomly selected bits you put in the test set.

Cross-validation is a statistical technique by which you take your entire dataset, split
it into a number of small train/test chunks, evaluate the error for each chunk, and
then average those final errors. This approach winds up being a more accurate way of
assessing whether your modeling approach has any issues that could be hidden in
various combinations of the training and test parts of the dataset.

In fact we’ve already done one form of cross-validation! The simple 70/30 train/test
split you did earlier in this chapter is called a simple “holdout” cross-validation tech‐
nique. There are many other statistical cross-validation techniques, however, and
with R having its basis in statistical design, you can model many different types of
cross-validation.

k-Fold Cross-Validation
In contrast to holdout cross-validation, a much more commonly used technique is
called k-fold cross-validation (see Figure 3-11). This involves taking your dataset and
splitting it into k chunks. For each of these chunks, you then split the data into a
smaller train/test set and then evaluate that individual chunk’s error. After you have
all the errors for all the chunks, you simply take the average. The advantage to this
method is that you can then see the error in all aspects of your data instead of just
testing on one specific subset of it.
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Figure 3-11. Cross-validation is the statistical practice of performing many training and
test procedures on our data; this example shows a 10-fold cross-validation

In R, you can use the cut function to evenly split up a given dataset’s indices for sub‐
setting. You then simply loop over the applied folds of your data, doing the train/test
split for each fold:

set.seed(123)

x <- rnorm(100, 2, 1)
y = exp(x) + rnorm(5, 0, 2)
data <- data.frame(x, y)

data.shuffled <- data[sample(nrow(data)), ]
folds <- cut(seq(1, nrow(data)), breaks = 10, labels = FALSE)

errors <- c(0)

for (i in 1:10) {
    fold.indexes <- which(folds == i, arr.ind = TRUE)

    test.data <- data[fold.indexes, ]
    training.data <- data[-fold.indexes, ]

    train.linear <- lm(y ~ x, training.data)
    train.output <- predict(train.linear, test.data)
    errors <- c(errors, sqrt(sum(((train.output - test.data$y)^2/
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length(train.output)))))
}

errors[2:11]

##  [1]  4.696183  6.392002  4.769101  4.259850  9.634505  5.073442  7.547830
##  [8]  7.366703  3.974609 10.539853

mean(errors[2:11])

## [1] 6.425408

Earlier in this chapter we looked at how a linear regression fit on example data gave
us an error estimate around five or so. The preceding example shows that the error
estimate can vary to a wide degree just within your own data depending on how you
split the training and test sets! In this example, you can see the outputs for the RMSE
values for 10 different cuts of the data. Some errors go as low as 3.9, others as high as
10.5. So by using cross-validation, not only can you see there is a high degree of varia‐
bility in the RMSE of this data, but you can mitigate that by taking the average of
those values to get a final number that’s more representative of the error across the
data as a whole.

Summary
In this chapter, we reviewed many statistical concepts that form the foundation for
how we design our data to use in machine learning models. We first discussed various
sampling techniques by which we take the dataset we start with and pick out values
from it. You can do this randomly (which is the most common way) through the use
of simple random sampling. There are other sampling techniques like stratified or
cluster sampling that can arise but do so much more infrequently.

When you evaluate a machine learning model’s performance, you need some baseline
values to compare against what the model provides as its prediction. You do this by
taking the starting data and splitting it into a training set and a test set. The training
set is usually 70% of the total and the test set is the remaining 30%. You always want
the training set to be much larger than the test set so that the model has enough data
points to use for calculation purposes.

Evaluation of machine learning models comes in two forms: those for regression-
based predictions, and those for classification-based predictions. For regression out‐
puts, you typically get vectors of numbers against which you compare your test data.
You can do this by using many statistical tests, one common form being the RMSE.
With RMSE, you take the model output values, subtract the test values, square the
differences, take the mean, and then calculate the square root of the final result. This
tends to give us a flexible but accurate picture of the model output.
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Finally, we discussed techniques related to cross-validation. This is a statistical techni‐
que wherein you effectively split the data into many small training and test sets, eval‐
uate them independently, and then aggregate their errors. This allows you to be more
confident in the model’s error outputs in that you know it has been applied to the
entire dataset instead of a small view of it. This practice is a good way to ensure statis‐
tical validity of your machine learning model.
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CHAPTER 4

Regression in a Nutshell

In Chapter 1, in which we briefly explored the realms of machine learning, we began
with linear regression because it is probably something that you have come across at
some point in your mathematical training. The process is fairly intuitive and easier to
explain as a first concept than some other machine learning models. Additionally,
many realms of data analysis rely on regression modeling ranging from a business
trying to forecast its profits, to the frontiers of science trying to figure out new dis‐
coveries governing the laws of the universe. We can find regression in any scenario in
which a prediction against time is needed. In this chapter, we examine how to use
regression modeling in R to a deep extent, but we also explore some caveats and pit‐
falls to be aware of in the process.

The main motivation behind regression is to build an equation by which we can learn
more about our data. There is no hard-and-fast rule about which type of regression
model to fit to your data, however. Choosing between a logistic regression, linear
regression, or multivariate regression model depends on the problem and the data
that you have. You could fit a straight line to a given series of data points, but is that
always the best case? Ideally, we are after a balance of simplicity and explanatory
power. A straight line fit to a complex series of data might be simple, but might not
describe the whole picture. On the other hand, having a very simple set of data that is
basically a straight line and fitting a model with all sorts of wacky curves to it might
give you a very high degree of accuracy, but leave very little room for new data points
to be fit to it.

You might recall in your high school mathematics education about having a couple
points of data and fitting a line through it. This fit to data is the easiest form of
machine learning and is used often without realizing it is a type of machine learning.
Although fitting a line to two data points is relatively easy to learn, fitting a line with
three or more data points becomes a task better suited for computers to handle from
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a computation perspective. Simply adding one more data point (or, as we’ll see, sev‐
eral dozen more) makes the problem much more difficult to solve. But through
mathematical techniques that power mainstream machine learning models, we can
compute those kinds of problems very easily. R makes a lot of these steps quite simple
to compute, and this chapter provides a foundation for assessing questions about
where we draw the line between model complexity and accuracy.

Linear Regression
In Chapter 1, we briefly encountered linear regression with an example of the mtcars
dataset. In that example, we determined a linear relationship of fuel efficiency as a
function of vehicle weight and saw the trend go downward. We extracted coefficients
for a linear mathematical equation and dusted our hands. Yet, there is a lot more
beyond simply slapping an equation onto a bunch of data and calling it a day. Let’s
revisit our mtcars example (Figure 4-1):

model <- lm(mtcars$mpg ~ mtcars$disp)

plot(y = mtcars$mpg, x = mtcars$disp, xlab = "Engine Size (cubic inches)",
    ylab = "Fuel Efficiency (Miles per Gallon)", main = "Fuel Efficiency From 
the `mtcars` Dataset")

abline(a = coef(model[1]), b = coef(model)[2], lty = 2)

Figure 4-1. A simple linear regression fit to data
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Let’s revisit our mtcars example (Figure 4-1), where we model the fuel efficiency
(mpg) as a function of engine size (disp) and then look at the outputs of the model
with the summary function:

summary(model)

##
## Call:
## lm(formula = mtcars$mpg ~ mtcars$disp)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -4.8922 -2.2022 -0.9631  1.6272  7.2305
##
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.599855   1.229720  24.070  < 2e-16 ***
## mtcars$disp -0.041215   0.004712  -8.747 9.38e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.251 on 30 degrees of freedom
## Multiple R-squared:  0.7183, Adjusted R-squared:  0.709
## F-statistic: 76.51 on 1 and 30 DF,  p-value: 9.38e-10

There is a wealth of information dumped out from the summary() function call on
this linear model object. Generally, the one number people will typically look at to get
a baseline accuracy assessment is the multiple R-squared value. The closer that value
is to 1, the more accurate the linear regression model is. There are a lot of other terms
in this output, though, so let’s walk through each element to gain a solid understand‐
ing:

Call
This displays the formulaic function call we used. In this case, we used one
response variable, mpg, as a function of one dependent variable, disp, both of
which were being called from the mtcars data frame.

Residuals
Residuals are a measure of vertical distance from each data point to the fitted line
in our model. In this case, we have summary statistics for all of the vertical dis‐
tances for all of our points relative to the fitted line. The smaller this value is, the
better the fit is.

Coefficients
These are the estimates for the coefficients of our linear equation. Our equation
in this case would be y = 0.04x + 29.59.
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• Std. Error: With those coefficients come error estimates as given by the Std.
Error part of the coefficients table. In reality, our equation would be some‐
thing like y = − 0 . 04 ± 0 . 005 x + 29 . 59 ± 1 . 23 .

• t-value: This is the measurement of the difference relative to the variation in
our data. This value is linked with p-values, but p-values are used far more
frequently.

• p-value: p-values are statistical assessments of significance. The workings of
p-values are more complicated than that, but for our purposes a p-value
being of value less than 0.05 means that we can take the number as being
statistically significant. If the number in question has a p-value greater than
0.05, we should err on the side of it not being statistically significant. The star
ratings next to them are explained by the significance codes that follow.

Residual standard error
This error estimate pertains to the standard deviation of our data.

Multiple R-squared
This is the R-squared value for when we have multiple predictors. This isn’t
totally relevant for our linear example, but when we add more predictors to the
model, invariably our multiple R-squared will go up. This is because some feature
we add to the model will explain some part of the variance, whether its true or
not.

Adjusted R-squared
To counteract the biases introduced from having a constantly increasing R-
squared value with more predictors, the adjusted R-squared tends to be a better
representation of a model’s accuracy when there’s multiple features.

F-statistic
Finally, the F-statistic is the ratio of the variance explained by parameters in the
model and the unexplained variance.

This simple linear example has some decent explanatory power. We have determined
a relationship between fuel efficiency and engine size. Oftentimes, this is where sim‐
ple linear regression examples exhaust their usefulness. The things we are most after
in this specific case are the slope and intercept. If this example were applied to sales
over time, for example, our output from this modeling exercise would be a starting
value for the intercept, and a growth rate for the coefficient.

Multivariate Regression
Suppose that you want to build a more robust model of fuel efficiency with more
variables built into it. Fuel efficiency of a vehicle can be a complex phenomenon with
many contributing factors other than engine size, so finding all of the features that are
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responsible for driving the behavior of the model in the most accurate fashion is
where you want to utilize regression as you have been, but in a multivariate context.

Recall that our simple linear regression example was based around:

y = b + m1x1

where the coefficients are the intercept, b, and the slope, m, tied to the one variable
we had in the model. If you want to bring in more factors that contribute to the
model, change the mathematical form to:

y = b + m1x1 + m2x2 + m3x3 + (...)

where x1, x2, x3, and so forth, are different features in the model, such as a vehicle’s
weight, engine size, number of cylinders, and so on. Because the new objective is to
find coefficients for a model of the form y = f(x1, x2, x3, (…)), you need to revisit the
call to the lm() function in R:

lm.wt <- lm(mpg ~ disp + wt, data = mtcars)
summary(lm.wt)

##
## Call:
## lm(formula = mpg ~ disp + wt, data = mtcars)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -3.4087 -2.3243 -0.7683  1.7721  6.3484
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.96055    2.16454  16.151 4.91e-16 ***
## disp        -0.01773    0.00919  -1.929  0.06362 .
## wt          -3.35082    1.16413  -2.878  0.00743 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.917 on 29 degrees of freedom
## Multiple R-squared:  0.7809, Adjusted R-squared:  0.7658
## F-statistic: 51.69 on 2 and 29 DF,  p-value: 2.744e-10

This code extends the linear modeling from earlier to include the vehicle’s weight in
the model fitting procedure. In this case, what you see is that the adjusted R-squared
has gone up slightly from 0.709 when you fit a model of just the engine size, to 0.7658
after including the engine weight in the fit. However, notice that the statistical rele‐
vance of the previous feature has gone down considerably. Before, the p-value of the
wt feature was far below the 0.05 threshold for a p-value to be significant; now it’s
0.06. This might be due to the vehicle fuel efficiency being more sensitive to changes
in vehicle weight than engine size.
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If you want to extend this analysis further, you can bring in another feature from the
dataset and see how the R-squared of the model and p-values of the coefficients
change accordingly:

lm.cyl <- lm(mpg ~ disp + wt + cyl, data = mtcars)
summary(lm.cyl)

##
## Call:
## lm(formula = mpg ~ disp + wt + cyl, data = mtcars)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -4.4035 -1.4028 -0.4955  1.3387  6.0722
##
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.107678   2.842426  14.462 1.62e-14 ***
## disp         0.007473   0.011845   0.631  0.53322
## wt          -3.635677   1.040138  -3.495  0.00160 **
## cyl         -1.784944   0.607110  -2.940  0.00651 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.595 on 28 degrees of freedom
## Multiple R-squared:  0.8326, Adjusted R-squared:  0.8147
## F-statistic: 46.42 on 3 and 28 DF,  p-value: 5.399e-11

This code takes the same approach as before, but adds the engine’s cylinder count to
the model. Notice that the R-squared value has increased yet again from 0.709 to
0.8147. However, the statistical relevancy of the displacement in the data is basically
defunct, with a p-value 10 times the threshold at 0.53322 instead of closer to 0.05.
This tells us that the fuel efficiency is tied more to the combined feature set of vehicle
weight and number of cylinders than it is to the engine size. You can rerun this analy‐
sis with just the statistically relevant features:

lm.cyl.wt <- lm(mpg ~ wt + cyl, data = mtcars)
summary(lm.cyl.wt)

##
## Call:
## lm(formula = mpg ~ wt + cyl, data = mtcars)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -4.2893 -1.5512 -0.4684  1.5743  6.1004
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  39.6863     1.7150  23.141  < 2e-16 ***
## wt           -3.1910     0.7569  -4.216 0.000222 ***
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## cyl          -1.5078     0.4147  -3.636 0.001064 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.568 on 29 degrees of freedom
## Multiple R-squared:  0.8302, Adjusted R-squared:  0.8185
## F-statistic: 70.91 on 2 and 29 DF,  p-value: 6.809e-12

By removing the statistically irrelevant feature from the model, you have more or less
preserved the R-squared accuracy at 0.8185 versus 0.8147, while maintaining only rel‐
evant features to the data.

You should take care when adding features to the data, however. In R, you can easily
model a response to all the features in the data by calling the lm() function with the
following form:

lm.all <- lm(mpg ~ ., data = mtcars)
summary(lm.all)

##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -3.4506 -1.6044 -0.1196  1.2193  4.6271
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.30337   18.71788   0.657   0.5181
## cyl         -0.11144    1.04502  -0.107   0.9161
## disp         0.01334    0.01786   0.747   0.4635
## hp          -0.02148    0.02177  -0.987   0.3350
## drat         0.78711    1.63537   0.481   0.6353
## wt          -3.71530    1.89441  -1.961   0.0633 .
## qsec         0.82104    0.73084   1.123   0.2739
## vs           0.31776    2.10451   0.151   0.8814
## am           2.52023    2.05665   1.225   0.2340
## gear         0.65541    1.49326   0.439   0.6652
## carb        -0.19942    0.82875  -0.241   0.8122
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared:  0.869,  Adjusted R-squared:  0.8066
## F-statistic: 13.93 on 10 and 21 DF,  p-value: 3.793e-07

This syntax creates a linear model with the dependent variable mpg being modeled
against everything in the dataset, as denoted by the . mark in the function call. The
problem with this approach, however, is that you see very little statistical value in the
coefficients of the model. Likewise, the standard error for each of the coefficients is
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very high, and thus pinning down an exact value for the coefficients is very difficult.
Instead of this top-down approach to seeing which features are the most important in
the dataset, it is better to approach it from the bottom up as we have done thus far.
Although the theme of feature selection itself is a very broad topic—one which we
explore in depth with other machine learning algorithms—we can mitigate some of
these problems in a couple of ways:

Careful selection of features
Pick features to add to the model one at a time and cut the ones that are statisti‐
cally insignificant. We’ve accomplished this in the preceding code chunks by
adding one parameter at a time and checking to see whether the p-value of the
model output for that parameter is statistically significant.

Regularization
Keep all of the features but mathematically reduce the coefficients of the less
important ones to minimize their impact on the model.

Regularization
Regularization can be a tough concept mathematically, but in principle it’s fairly
straightforward. The idea is that you want to include as many of the features in your
data as you can squeeze into the final model. The more features, the better you can
explain all the intricacies of the dataset. The catch here is that the degree to which
each feature explains part of the model, after regularization is applied, can be quite
different.

Through the use of regularization, you can make your model more succinct and
reduce the noise in the dataset that might be coming from features that have little
impact on what you are trying to model against.

Let’s see what the linear model for the mtcars dataset would look like if we included
all the features. We would have an equation like this:

mpg = 12.3 − 0.11cyl + 0.01disp − 0.02hp + 0.79drat − 3.72wt + 0.82qsec + 0.31vs
+ 2.42am + 0.66gear − 0.20carb

According to this linear equation, fuel efficiency is most sensitive to the weight of the
vehicle (-3.72wt), given that this one has the largest coefficient. However, most of
these are all within an order of magnitude or so to one another. Regularization would
keep all of the features, but the less important ones would have their coefficients
scaled down much further.

To utilize this regularization technique, you call a particular type of regression model‐
ing, known as a lasso regression, as shown here:
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library(lasso2)
lm.lasso <- l1ce(mpg ~ ., data = mtcars)
summary(lm.lasso)$coefficients

##                   Value  Std. Error     Z score   Pr(>|Z|)
## (Intercept) 36.01809203 18.92587647  1.90311355 0.05702573
## cyl         -0.86225790  1.12177221 -0.76865686 0.44209704
## disp         0.00000000  0.01912781  0.00000000 1.00000000
## hp          -0.01399880  0.02384398 -0.58709992 0.55713660
## drat         0.05501092  1.78394922  0.03083659 0.97539986
## wt          -2.68868427  2.05683876 -1.30719254 0.19114733
## qsec         0.00000000  0.75361628  0.00000000 1.00000000
## vs           0.00000000  2.31605743  0.00000000 1.00000000
## am           0.44530641  2.14959278  0.20715850 0.83588608
## gear         0.00000000  1.62955841  0.00000000 1.00000000
## carb        -0.09506985  0.91237207 -0.10420075 0.91701004

This code calls the l1ce() function from the lasso2 package on the mtcars dataset.
This uses the same function call that we want the fuel efficiency variable mpg modeled
as a function of all the other variables in the dataset. Built in to lasso regression is the
regularization technique, which is only applied during the heavy mathematical lifting
part of the algorithm. The regularization part of the regression scales the coefficients
according to how much actual impact they have on the model in a more statistical
fashion. In some cases, this can result in some features being scaled down to such a
low value that they are approximated as zero. As a result of this regression modeling,
you now have a different equation:

mpg = 36.02 − 0.86cyl + 0disp − 0.014hp + 0.06drat − 2.69wt + 0qsec + 0vs +
0.45am + 0gear − 0.095carb

Or, more simply:

mpg = 36.02 − 0.86cyl − 0.014hp + 0.06drat − 2.69wt + 0.45am + − 0.095carb

The most important feature before the change to a lasso regression was the vehicle’s
weight, wt, which has remained unchanged as far as its relative importance. Even
though the coefficient has changed somewhat, the fact that it is the highest magnitude
coefficient remains the same. What you see in terms of less useful features being
scaled down—in this case to zero—are features that you would probably think have
little impact on fuel efficiency to begin with. Quarter-mile drag race time (qsec),
engine configuration in terms of a V-shape or a straight-line shape (vs), and number
of forward gears (gear) have all been rescaled down to zero.

However, the variable of displacement showed a clear relationship to fuel efficiency
that we saw earlier. It being scaled down to zero does not mean there is no relation‐
ship whatsoever between just that one variable and our response, but when taken
together with all the other variables in the dataset, its importance is negligible.
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Remember, in this case we are interested in a model of all features, not necessarily the
importance of just one feature.

Notice from the new lasso regression model that some of the coefficients have been
more or less mathematically eliminated from the model. To further refine the model
and reduce the number of features in it, you can rerun the regression without those
features and see what changes:

lm.lasso2 <- l1ce(mpg ~ cyl + hp + wt + am + carb, data = mtcars)
summary(lm.lasso2)$coefficients

##                     Value Std. Error     Z score     Pr(>|Z|)
## (Intercept) 31.2819166926 4.51160542  6.93365527 4.100942e-12
## cyl         -0.7864202230 0.86107128 -0.91330444 3.610824e-01
## hp          -0.0009037003 0.02343634 -0.03855979 9.692414e-01
## wt          -1.9248597501 1.38749433 -1.38729198 1.653527e-01
## am           0.0000000000 2.22143917  0.00000000 1.000000e+00
## carb         0.0000000000 0.67947216  0.00000000 1.000000e+00

With the reduced dataset being then passed into another lasso regression, you can see
that the transmission type of the car, am, and the number of carburetors, carb, have
both dropped to zero. By removing these features and rerunning, you can see if any
more drop out:

lm.lasso3 <- l1ce(mpg ~ cyl + hp + wt, data = mtcars)
summary(lm.lasso3)$coefficients

##                  Value Std. Error    Z score  Pr(>|Z|)
## (Intercept) 30.2106931 1.97117597 15.3262284 0.0000000
## cyl         -0.7220771 0.82941877 -0.8705821 0.3839824
## hp           0.0000000 0.01748364  0.0000000 1.0000000
## wt          -1.7568469 1.07478525 -1.6346028 0.1021324

In this case, the horsepower of the car, hp, has now dropped out. You can continue to
run as long as you have multiple features to test against:

lm.lasso4 <- l1ce(mpg ~ cyl + wt, data = mtcars)
summary(lm.lasso4)$coefficients

##                  Value Std. Error   Z score  Pr(>|Z|)
## (Intercept) 29.8694933  1.4029760 21.290096 0.0000000
## cyl         -0.6937847  0.5873288 -1.181254 0.2375017
## wt          -1.7052064  1.0720172 -1.590652 0.1116879

The final result is a model that has only two features instead of the 11 you started
with:

mpg = 29.87    0.69cyl   1.70wt
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Polynomial Regression
Polynomial regression is simply fitting a higher degree function to the data. Previously,
we’ve seen fits to our data along the following form:

y = b + m1x1 + m2x2 + m3x3(...)

Polynomial regression differs from the simple linear cases by having multiple degrees
for each feature in the dataset. The form of which could be represented as follows:

y = b + mx2

The following example will help with our reasoning (Figure 4-2):

pop <- data.frame(uspop)
pop$uspop <- as.numeric(pop$uspop)
pop$year <- seq(from = 1790, to = 1970, by = 10)

plot(y = pop$uspop, x = pop$year, main = "United States Population From 1790 to 
1970",
    xlab = "Year", ylab = "Population")

Figure 4-2. The plotted population of the United States in decades from 1790 to 1970
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Here, we have a built-in dataset in R that we’ve tweaked slightly for demonstration
purposes. Normally the uspop is a time–series object that has its own plotting criteria,
but here we’ve tuned it to plot just the data points. This data is the population of the
United States in 10-year periods from 1790 to 1970. Let’s begin by fitting a linear
model to the data:

lm1 <- lm(pop$uspop ~ pop$year)
summary(lm1)

##
## Call:
## lm(formula = pop$uspop ~ pop$year)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -19.569 -14.776  -2.933   9.501  36.345
##
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.958e+03  1.428e+02  -13.71 1.27e-10 ***
## pop$year     1.079e+00  7.592e-02   14.21 7.29e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.12 on 17 degrees of freedom
## Multiple R-squared:  0.9223, Adjusted R-squared:  0.9178
## F-statistic: 201.9 on 1 and 17 DF,  p-value: 7.286e-11

This simple linear fit of the data seems to work pretty well. The p-values of the esti‐
mates are very low, indicating a good statistical significance. Likewise, the R-squared
values are both very good. However, the residuals show a pretty wide degree of varia‐
bility, ranging as much as a difference of 36, as demonstrated in Figure 4-3:

plot(y = pop$uspop, x = pop$year, main = "United States Population From 1790 to 
1970",
    xlab = "Year", ylab = "Population")

abline(a = coef(lm1[1]), b = coef(lm1)[2], lty = 2, col = "red")
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Figure 4-3. Population data with a linear model fit

The dotted line fit from the linear model seems to do OK. It fits some of the data bet‐
ter than others, but it’s pretty clear from the data that it’s not exactly a linear relation‐
ship. Moreover, we know from intuition that population over time tends to be more
of an exponential shape than one that’s a straight line. What you want to do next is to
see how a model of a higher degree stacks up against the linear case, which is the
lowest-order degree polynomial that you can fit:

lm2 <- lm(pop$uspop ~ poly(pop$year, 2))
summary(lm2)

##
## Call:
## lm(formula = pop$uspop ~ poly(pop$year, 2))
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -6.5997 -0.7105  0.2669  1.4065  3.9879
##
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)         69.7695     0.6377  109.40  < 2e-16 ***
## poly(pop$year, 2)1 257.5420     2.7798   92.65  < 2e-16 ***
## poly(pop$year, 2)2  73.8974     2.7798   26.58 1.14e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Residual standard error: 2.78 on 16 degrees of freedom
## Multiple R-squared:  0.9983, Adjusted R-squared:  0.9981
## F-statistic:  4645 on 2 and 16 DF,  p-value: < 2.2e-16

This code calls the lm() function again, but this time with an extra parameter around
the dependent variable, the poly() function. This function takes the date data and
computes an orthogonal vector, which is then scaled appropriately. By default, the
poly() function doesn’t change the values of the date data, but you can use it to see if
it yields any better results than the lower-order fit that you did previously. Recall that
the linear fit is technically a polynomial, but of degree 1. In an equation, here’s the
resultant model fit:

y = b + m1x1
2 + m2x1

Let’s slowly walk through the summary() output first. Looking at the residual output
gives us a bit of relief: no residuals in the range of 30! Smaller residuals are always
better in terms of model fit. The coefficients table now has three entries: one for the
intercept, one of the first-degree term, and now one for the second-degree term.
When you called poly(pop$year, 2), you instructed R that you want a polynomial
of the date data with the highest degree being 2. Going back to the coefficients table,
you can see that all of the p-values are statistically significant, which is also a good
indication that this is a solid model fit to your data (see Figure 4-4):

plot(y = pop$uspop, x = pop$year, main = "United States Population From 1790 to 
1970",
    xlab = "Year", ylab = "Population")

pop$lm2.predict = predict(lm2, newdata = pop)

lines(sort(pop$year), fitted(lm2)[order(pop$year)], col = "blue",
    lty = 2)

From Figure 4-4, it looks pretty obvious that the higher degree polynomial (in this
case a quadratic equation) fits the data better. Clearly using higher degree polyno‐
mials works better than lower degree ones, right? What happens if you fit a third-
degree polynomial? Or something higher still? I’ll bet that if you use a sixth-degree
polynomial you would have a very accurate model indeed! What immediately leaps
out is that the simple linear fit that you had earlier fit the data as best it could, but the
higher second-degree polynomial (i.e., a simple quadratic) fit better. A better way to
distinguish the difference between higher-order polynomial fits is by looking at plots
of each model’s residuals, which you can see in Figure 4-5.
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Figure 4-4. Population over time modeled with a quadratic fit seems to fit the data much
better than a linear one; if you want the most accurate model possible, however, you
might want to increase the polynomial degree to which you fit the data

Figure 4-5. Population over time with multiple models fit

Figure 4-5 shows the linear fit compared to increasing degree polynomials. The poly‐
nomials are difficult to separate in terms of how well they fit, but all seem to fit better
than the linear case. To compare models that are close approximations visually at this
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level, you would need to dive into looking at plots of their residuals instead, as
demonstrated in Figure 4-6:

par(mfrow = c(2, 3))
plot(resid(lm1), main = "Degree 1", xlab = "Sequential Year",
    ylab = "Fit Residual")
plot(resid(lm2), main = "Degree 2", xlab = "Sequential Year",
    ylab = "Fit Residual")
plot(resid(lm3), main = "Degree 3", xlab = "Sequential Year",
    ylab = "Fit Residual")
plot(resid(lm4), main = "Degree 4", xlab = "Sequential Year",
    ylab = "Fit Residual")
plot(resid(lm5), main = "Degree 5", xlab = "Sequential Year",
    ylab = "Fit Residual")
plot(resid(lm6), main = "Degree 6", xlab = "Sequential Year",
    ylab = "Fit Residual")

Figure 4-6. A residuals plot of each of the models

Recall that a residual is the vertical distance between a data point and the fitted model
line. A model that fits the data points exactly should have a residuals plot as close to a
flat line as possible. In the case of your linear fit, the scale of the residuals plot is
much larger than the rest, and you can see that the linear fit has some pretty bad
residual distance at its start, halfway point, and end. This is not an ideal model. On
the other hand, the higher-degree polynomials seem to do pretty well. The scale of
their residual plots are much nicer, but the one that really stands out is the sixth-
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degree polynomial fit at the end. The residuals plot is pretty much zero to start, and
then it becomes a little more error-prone.

This is all well and good, but it might be easier to rank the model fit by looking at
their residuals numerically:

c(sum(abs(resid(lm1))), sum(abs(resid(lm2))), sum(abs(resid(lm3))),
    sum(abs(resid(lm4))), sum(abs(resid(lm5))), sum(abs(resid(lm6))))

## [1] 272.51432  33.77224  34.54039  36.95125  25.45242  19.59938

This code sums the residual plots by absolute value of the residual. If you just take the
raw sum of the residuals, you get an inaccurate picture because some residuals might
be negative. So the total residual for the linear fit is quantitatively bad compared to
the rest of the models, with the sixth-degree polynomial being the clear winner in
terms of the best fit to the data points.

But is the best fit to the data points actually the best model? We must take into
account the ideas of overfitting and underfitting the data. The linear model fit to the
data in the previous case would be a good example of an underfit scenario. Clearly
there’s some structure in the data that isn’t being explained by a simple linear fit. On
the other hand, a model can be overfit if it is too specific to the data presented and
offers little explanatory power for any new data that might come into the system. This
is the risk you run by increasing the degree of polynomial models.

Goodness of Fit with Data—The Perils of Overfitting
We have just run an example of trying to get a model that has the best fit to our data.
This is a good goal to have, but you need to be careful not to go too far in fitting per‐
fectly to the data. We have seen so far that the linear fit to a population curve proba‐
bly isn’t the best model for the job. A quadratic or a cubic polynomial fit seems to do
much better by comparison. Yet, is it worth it to keep increasing the degree of the
model fit? Is the minimization of the residual the only goal in terms of selecting the
best model for the job?

Root-Mean-Square Error
In statistics, the root-mean-square error (RMSE) is a quantifiable way to see how our
model’s predicted values stack up against actual values. Mathematically, the RMSE is
given as follows:

RMSE = predicted value − actual value 2

To assess polynomial fits, you can perform an RMSE analysis on each one. You can
then compare the resultant errors and select the one that has the lowest result. To do
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so, you need new data that isn’t in your model. For that, let’s use the US population
census data from 1980 to 2010:

uspop.2020 <- data.frame(year = c(1980, 1990, 2000, 2010), uspop = c(226.5,
    249.6, 282.2, 309.3))
uspop.2020.predict <- uspop.2020

pop2 <- data.frame(uspop)
pop2$uspop <- as.numeric(pop$uspop)
pop2$year <- seq(from = 1790, to = 1970, by = 10)

This code also reinitializes the old population data for prediction purposes as a gen‐
eral cleanup measure. From there, you can do your usual prediction routine, and
then calculate the RMSE for each polynomial:

uspop.2020.predict$lm1 <- predict(lm(uspop ~ poly(year, 1), data = pop2),
    uspop.2020)

uspop.2020.predict$lm2 <- predict(lm(uspop ~ poly(year, 2), data = pop2),
    uspop.2020)

uspop.2020.predict$lm3 <- predict(lm(uspop ~ poly(year, 3), data = pop2),
    uspop.2020)

uspop.2020.predict$lm4 <- predict(lm(uspop ~ poly(year, 4), data = pop2),
    uspop.2020)

uspop.2020.predict$lm5 <- predict(lm(uspop ~ poly(year, 5), data = pop2),
    uspop.2020)

uspop.2020.predict$lm6 <- predict(lm(uspop ~ poly(year, 6), data = pop2),
    uspop.2020)

And, finally, calculate the RMSE:

c(sqrt(mean((uspop.2020.predict$uspop - uspop.2020.predict$lm1)^2)),
    sqrt(mean((uspop.2020.predict$uspop - uspop.2020.predict$lm2)^2)),
    sqrt(mean((uspop.2020.predict$uspop - uspop.2020.predict$lm3)^2)),
    sqrt(mean((uspop.2020.predict$uspop - uspop.2020.predict$lm4)^2)),
    sqrt(mean((uspop.2020.predict$uspop - uspop.2020.predict$lm5)^2)),
    sqrt(mean((uspop.2020.predict$uspop - uspop.2020.predict$lm6)^2)))

## [1]  75.622445   8.192311   5.070814   9.153189  73.632318 124.429798

From these results, you can see that the simple linear fit had an RMSE of 75, the
second-degree polynomial had 8, and the third-degree polynomial had 5. The errors
blow up after the third-degree polynomial, which is another indication that the mod‐
els were too overfit to the data. In this case, you would select the model that has the
lowest RMSE to the new predicted data by picking the polynomial of degree three.
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Model Simplicity and Goodness of Fit
If you recall the model coefficients, each one has an attached p-value of statistical sig‐
nificance tied to it from the lm() model fitting procedure. If a coefficient’s p-value is
less than 0.05, it’s safe to assume that it is statistically important for your model.

To help you to decide which model to use, identify where the trade-off is between
model accuracy and model complexity. The more complex your model is—that is, the
degree of polynomial used—the tighter it’s going to fit to your data, but you run the
risk of some of the coefficients being less statistically valid as the model becomes
more complex. To avoid this, first look at both the R-squared and the number of stat‐
istically valid coefficients for each of your models:

table((summary(lm1)$coefficients[, 4]) < 0.05)

##
## TRUE
##    2

summary(lm1)$r.squared

## [1] 0.9223434

This example takes the coefficients from the simple linear fit, lm1, and then extracts
the p-values tied to the coefficients. It then tabularizes how many of those are statisti‐
cally valid (if they are above 0.05). The result from the simple linear case is that there
are two coefficients: the slope and the intercept, and that they are both statistically
valid. The R-squared value also confirms that the fit is pretty good, but let’s use that as
a baseline for the sake of comparison.

Instead of computing this for each model and looking back and forth at the results,
you can dump all this information into a handy data frame for easier readability. Let’s
define a model.order as the highest degree of the polynomial fit (this is simply the
number you pass into the poly() function during the linear model lm() function
call). You then define coef.true as the number of coefficients that are statistically
valid in the model. In this case, you are looking only at the coefficients related to the
dependent variables and not the model’s intercept, which is statistically valid in all
cases, hence why you subtract the coef.true value by 1. Next, you define a
coef.false term as the opposite case: how many of the model’s coefficients on the
dependent variables are not statistically meaningful. Finally, you define a model.rsq
value, which is the extracted R-squared model accuracy. You then put it all together in
a data frame and define a final metric: goodness. This measure compares the ratio of
statistically meaningful coefficients to the model’s order:
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model.order <- c(1,2,3,4,5,6)

coef.true <- c(
  table((summary(lm1)$coefficients[,4])<0.05) - 1
  ,table((summary(lm2)$coefficients[,4])<0.05) - 1
  ,table((summary(lm3)$coefficients[,4])<0.05)[2] - 1
  ,table((summary(lm4)$coefficients[,4])<0.05)[2] - 1
  ,table((summary(lm5)$coefficients[,4])<0.05)[2] - 1
  ,table((summary(lm6)$coefficients[,4])<0.05)[2] - 1

)

coef.false <- c(
  0
  ,0
  ,table((summary(lm3)$coefficients[,4])<0.05)[1]
  ,table((summary(lm4)$coefficients[,4])<0.05)[1]
  ,table((summary(lm5)$coefficients[,4])<0.05)[1]
  ,table((summary(lm6)$coefficients[,4])<0.05)[1]

)

model.rsq <- c(
  summary(lm1)$r.squared
  ,summary(lm2)$r.squared
  ,summary(lm3)$r.squared
  ,summary(lm4)$r.squared
  ,summary(lm5)$r.squared
  ,summary(lm6)$r.squared

)

model.comparison <- data.frame(model.order, model.rsq, coef.true, coef.false)
model.comparison$goodness <- (model.comparison$coef.true / model.comparison
$model.order)

model.comparison

##   model.order model.rsq coef.true coef.false  goodness
## 1           1 0.9223434         1          0 1.0000000
## 2           2 0.9982808         2          0 1.0000000
## 3           3 0.9983235         2          1 0.6666667
## 4           4 0.9984910         2          2 0.5000000
## 5           5 0.9992208         3          2 0.6000000
## 6           6 0.9993027         3          3 0.5000000

The result demonstrates that, although the model’s R-squared accuracy might be
increasing as the fit becomes more complex, the goodness of that fit goes down over
time because the number of statistically meaningful coefficients compared to the total
number of coefficients tends to go down. One way that you can statistically quantify
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this is to rank the associated elements you’re interested in optimizing with the
following:

model.comparison$rank <- sqrt(model.comparison$goodness^2 +
    model.comparison$model.rsq^2)
model.comparison

##   model.order model.rsq coef.true coef.false  goodness     rank
## 1           1 0.9223434         1          0 1.0000000 1.360411
## 2           2 0.9982808         2          0 1.0000000 1.412998
## 3           3 0.9983235         2          1 0.6666667 1.200456
## 4           4 0.9984910         2          2 0.5000000 1.116685
## 5           5 0.9992208         3          2 0.6000000 1.165522
## 6           6 0.9993027         3          3 0.5000000 1.117410

Now, you can see where the trade-off is best between model accuracy and goodness of
fit. The model order with the highest rank in this case is a quadratic fit that has all of
its coefficients that are statistically valid. Although the model fit for a third-degree
polynomial is marginally better (almost unmeasurably so), the goodness of fit isn’t
great because we have a coefficient that is not statistically meaningful.

What we can say about this procedure is that we have an optimal model to choose
that has the highest rank value. A model that has a lower R-squared and lower rank is
underfit to the data. A model that has a higher R-squared and a lower rank is an over‐
fit model to our data.

Logistic Regression
Thus far we’ve considered regression models in terms of taking some kind of numeric
data to which we want to fit some kind of curve so that we can use it for predictive
purposes. Linear regression takes some sort of numeric data and renders an equation
like y = mx + b out. Linear regression can also have multiple inputs and we could
have an equation like y = b + m1x1 + m2x2 + (…). Further, these types of numerical
regression models can be turned into nonlinear cases such as y = b + m1x1 + m2x1

2 +
m3x1

3 + (…). All of these have their own use cases and are totally dependent on the
data we’re working with and how we strategize about the kind of accuracy for which
we want to optimize.

All of these so far have ingested some numeric input and given us a numeric output.
What if, instead, we wanted a “yes” or “no” outcome from our data? What if we were
trying to do something like determine whether our input data was of a positive or
negative result? In this case, we would be taking in continuous numeric data and get‐
ting some kind of discrete output. This is the basis for the classification end of our
regression modeling. Logistic regression is a particular type of classification and rela‐
tively simple enough to be used as an introductory example. Logistic regression, in
contrast to linear regression, finds the point at which the data goes from one kind of
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classification to another instead of trying to fit all the individual data points
themselves.

The Motivation for Classification
Suppose that you are trying to diagnose patients to determine whether they have a
malignant tumor. Let’s look at the code and the resulting plot in Figure 4-7:

data <- data.frame(tumor.size <- c(1, 2, 3, 4, 5, 6, 7, 8, 9,
    20), malignant <- c(0, 0, 0, 0, 1, 1, 1, 1, 1, 1))

tumor.lm <- lm(malignant ~ tumor.size, data = data)

plot(y = data$malignant, x = data$tumor.size, main = "Tumor Malignancy by Size",
    ylab = "Type (0 = benign, 1 = cancerous)", xlab = "Tumor Size")

abline(a = coef(tumor.lm[1]), b = coef(tumor.lm[2]))

coef(tumor.lm)

## (Intercept)  tumor.size
##  0.20380952  0.06095238

summary(tumor.lm)$r.squared

## [1] 0.4063492

Figure 4-7. Fitting a linear regression line to binary data does not provide an accurate
model
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This code creates a dataset of tumor sizes from 1 to 20 and classifies whether they are
malignant, with a benign or noncancerous tumor being classified as 0, and a malig‐
nant or cancerous tumor being labeled as 1. A naive instinct might be to slap a regres‐
sion model on this data and see what the equation output is. With this approach, you
would have an equation such as the following:

tumor malignancy = 0.061 × tumor size + 0.204

The poor fit of the R-squared at 0.406 suggests that we could obtain a more accurate
model. Additionally, you should question the logical assessment of what it means to
have a tumor that is 0.2 malignant when they are logged in the data as being either
malignant or not with no room in between. This would also not make much sense
with the mtcars dataset if we had something modeled against transmission type.
What would a 0.2 transmission be if 0 was manual and 1 was an automatic?

We need to rethink this approach. Instead of fitting a normal mathematical function,
we need to fit something called a decision boundary to the data.

The Decision Boundary
The decision boundary is simply a line in the sand of our data that says “anything on
this side is classified as X and anything on the other side is classified as Y.” Figure 4-8
revisits the plot of tumor sizes and whether they’re malignant. You can clearly see that
any tumor that’s greater in size than 5 always seems to be malignant:

plot(y = data$malignant, x = data$tumor.size, main = "Tumor Malignancy by Size",
    ylab = "Type (0 = benign, 1 = cancerous)", xlab = "Tumor Size")
abline(v = 4.5)

Logistic Regression | 93



Figure 4-8. Plotting a decision boundary instead of a regression line classifies data less
than about 4.5 as 0; data above that threshold is classified as 1

Logistic regression establishes the boundary against which you can classify data. The
boundary in Figure 4-8 shows that any tumor size greater than 4.5 is malignant,
whereas anything less than that is benign.

The Sigmoid Function
The way logistic regression (as well as many other types of classification algorithms)
work is based on the mathematical underpinnings of the sigmoid function. The sig‐
moid function takes the following mathematical form:

h x = 1
1 + e−x

Figure 4-9 shows what the plot looks like:

e <- exp(1)
curve(1/(1 + e^-x), -10, 10, main = "The Sigmoid Function", xlab = "Input",
    ylab = "Probability")
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Figure 4-9. The sigmoid function is the basis for logistic regression

This function is used in logistic regression to classify data. On its own, the function
takes in some numeric value that we are interested in and maps it to a probability
between 0 and 1. We might be tempted to just plug in some of the values from our
earlier example into the sigmoid function and see what the output is. If we did, like
setting x = 1, for example, we would get h(1) = 0.73, or about a 73% chance a tumor is
malignant if our input is 1. Yet our classification system is 0 for benign and 1 for
malignant. The length = 1 input yields a result of 0.73, which is incorrect.

Instead, we need to pass a set of weighted parameters to the logistic regressor.
Because we have only one dependent variable at the moment (keeping in mind that
the y-axis for our classification output is not an input variable), we should expect to
pass a function to our logistic regressor that has the form similar to the following:

g length = θ0 + θ1length

A priori, we don’t know what the weights are just yet. What we do want is for them to
be chosen such that our g(x) function, when passed to our sigmoid function, will give
us a classification that looks reasonable to what we see in our data:
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lengths <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
t1 = -4.5
t2 = 1
g = t1 + t2 * lengths
s = 1/(1 + e^-g)
data.frame(lengths, g, s)

##    lengths    g          s
## 1        1 -3.5 0.02931223
## 2        2 -2.5 0.07585818
## 3        3 -1.5 0.18242552
## 4        4 -0.5 0.37754067
## 5        5  0.5 0.62245933
## 6        6  1.5 0.81757448
## 7        7  2.5 0.92414182
## 8        8  3.5 0.97068777
## 9        9  4.5 0.98901306
## 10      10  5.5 0.99592986

This code chunk takes the input tumor lengths, which range from 1 to 10, and picks
two weights of θ0 = 4.5 and θ0 = 1. In practice, you would either need to experiment
with picking values for the weights and seeing how the outputs react, or crunch them
through an algorithm that gives you the answer. The preceding code provides the
answer as an end result. They are then used as the weights for the function g(x) that is
then passed to the sigmoid. The table in the code presents the resultant classification
of the data as s. A tumor of length 1, when passed through the input function g(x),
gives a result of –3.5. This value, when passed to the sigmoid function, yields a result
that’s pretty close to zero. This means that a tumor of length 1 has a very low proba‐
bility of being malignant, as demonstrated in Figure 4-10:

plot(y = s, x = lengths, pch = 1, main = "Sigmoid Function Inputs and Rounding 
Estimates",
    xlab = "Tumor Lengths", ylab = "Probability of Class 1 Typification")

points(y = round(s), x = lengths, pch = 3)
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Figure 4-10. For a given input length, you can see the estimate from the sigmoid function
in circles, and its rounded value in crosses

Figure 4-10 presents probabilities for tumor lengths being classified as malignant if
the probability is 1.0 and benign if the probability is 0.0. The result is pretty close, but
there’s some error with it. You would get a much better picture if you simply round
the values to the nearest whole number. The final result is a classification that looks
exactly like the starting data.

We originally started with the input data being tumor length. The output of tumor
type between benign, y = 0, and malignant, y = 1, was already given to us. The objec‐
tive was to design a model that calculates the probability that a tumor is benign or
malignant based on its length. We did this by starting with the equation
g x = θ0 + θ1x and then finding the weights θ0 and θ1, which helped to get values out
that, when passed through a sigmoid function, provided values that look about right
for what we needed. What we get at the end of the day is a decision boundary at
length = 4.5; any values above that are classified as 1, and any values below it are clas‐
sified as 0.

The mechanisms by which classification algorithms like logistic regression work to
determine those modeling weights are somewhat similar in scope to how simple lin‐
ear regression weights are calculated. However, given that the goal of this text is to be
introductory in nature, I’ll refer you to the statistical appendix for linear regression.
Logistic regression and many other machine learning algorithms work in a similar
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fashion, but diving too deep into the realm of algorithm optimization can get overly
mathy and we would lose focus on the understanding and application of the machine
learning ecosystem as a whole.

Binary Classification
Everything we’ve done so far in terms of classification has been on binary data: the
tumor is either malignant or benign. Figure 4-11 looks at another example in which
we determine the classes based on the data’s distribution:

plot(iris$Sepal.Length ~ iris$Sepal.Width, main = "Iris Flower Sepal Length vs 
Sepal Width",
    xlab = "Sepal Width", ylab = "Sepal Length")

Figure 4-11. You can use logistic regression for data that is more spread out instead of
being discrete in output

In Figure 4-11, there are a bunch of data points and what appears to be two different
classes of plants. There looks to be a grouping of data points at the bottom of the plot
that seem to be more separated than the others. You can fit a logistic regression
model to this data and find the equation for the line that makes your decision bound‐
ary. Any points below that threshold will be classified as one type, and all the points
above the line will be classified as another type.
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This exercise uses a generalized linear model, given by the function glm(). Its usage is
more flexible than that of the standard linear model function lm() in that you can use
it for classification purposes:

iris.binary <- iris
iris.binary$binary <- as.numeric(iris[, 5] == "setosa")

iris.logistic <- glm(binary ~ Sepal.Width + Sepal.Length, data = iris.binary,
    family = "binomial")
iris.logistic

##
## Call:  glm(formula = binary ~ Sepal.Width + Sepal.Length,
##     family = "binomial", data = iris.binary)
##
## Coefficients:
##  (Intercept)   Sepal.Width  Sepal.Length
##        437.2         137.9        -163.4
##
## Degrees of Freedom: 149 Total (i.e. Null);  147 Residual
## Null Deviance:       191
## Residual Deviance: 2.706e-08     AIC: 6

The output from this method provides some coefficients and intercepts that don’t
look totally right. You need one extra step to calculate the slope and intercepts of the
decision boundary this way. Recall for a moment how you used the sigmoid function
g(z) = 1/(1 + e z).

z is a function with the following form:

z = θ0 + θ1x1 + θ2x2

Because you want a value between 0 and 1 for binary classification, the classification
is 1 when you have your sigmoid function g(z) ≥ 0.5. That’s only true when the func‐
tion z that you pass it is itself greater than 0:

0 ≤ θ0 + θ1x1 + θ2x2

You can rewrite this equation and solve for our x2 value accordingly:

x2 ≥
−θ0
θ2

+
−θ1
θ2

x1
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This equation is the same form as a y = b + mx line, where we can solve computation‐
ally for the slope and intercept to build out the function that determines the decision
boundary:

slope = − x1/x2 = − 137 . 9/163 . 4

intercept = − b/x2 = − 437 . 2/163 . 4

You can calculate this directly from the logistic model object:

slope.iris <- coef(iris.logistic)[2]/(-coef(iris.logistic)[3])
int.iris <- coef(iris.logistic)[1]/(-coef(iris.logistic)[3])

slope.iris

## Sepal.Width
##   0.8440957

int.iris

## (Intercept)
##    2.675511

You then can plot this over your data and see how the classes shake out, as illustrated
in Figure 4-12:

iris.binary$binary[iris.binary$binary == 0] <- 2

plot(Sepal.Length ~ Sepal.Width, data = iris.binary, pch = (binary),
    main = "Iris Flower Sepal Length vs Sepal Width", xlab = "Sepal Width",
    ylab = "Sepal Length")

abline(a = int.iris, b = slope.iris)
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Figure 4-12. Splitting a distribution of data into two classes

You now have an equation that helps determine how to separate the species of iris
flowers we have. Any flowers in the dataset that have a value below the line of y = 2.68
+ 0.844 × (Sepal.Width) will be classified accordingly.

Multiclass Classification
If you want to find the splits in your data that define multiple classes and not just a
binary classification, you need to use multiclass classification. This approach is slightly
different in that you are basically applying the same binary classification scheme that
you have been doing thus far, but you are comparing the class you’re interested in
versus everything else.

Figure 4-13 illustrates what a multiclass classification exercise might look like:

multi <- data.frame(x1 = c(0.03, 0.24, 0.21, 0, 0, 0.23, 0.6,
    0.64, 0.86, 0.77), x2 = c(0.07, 0.06, 0.19, 1.15, 0.95, 1,
    0.81, 0.64, 0.44, 0.74), lab = c(1, 1, 1, 2, 2, 2, 3, 3,
    3, 3))

plot(x2 ~ x1, pch = lab, cex = 2, data = multi,
    main = "Multi-Class Classification",
    xlab = "x", ylab = "y")
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Figure 4-13. Multiclass data can be separated only by using a one-versus-many
approach

There are three distinct classes of data, and you want to find some kind of lines that
split them into their own categories, much like you did for the binary case. What this
essentially boils down to is our simple binary test, but you change which group you’re
comparing against. This is called a “one-versus-all” or “one-versus-many” test, in
which you test three cases—triangles-versus-rest, circles-versus-rest, and crosses-
versus-rest, as depicted in Figure 4-14:

par(mfrow = c(1, 3))
multi$lab2 <- c(1, 1, 1, 4, 4, 4, 4, 4, 4, 4)
plot(x2 ~ x1, pch = lab2, cex = 2, data = multi,
    main = "Multi-Class Classification",
    xlab = "x", ylab = "y")

multi$lab3 <- c(4, 4, 4, 2, 2, 2, 4, 4, 4, 4)
plot(x2 ~ x1, pch = lab3, cex = 2, data = multi,
    main = "Multi-Class Classification",
    xlab = "x", ylab = "y")

multi$lab4 <- c(4, 4, 4, 4, 4, 4, 3, 3, 3, 3)
plot(x2 ~ x1, pch = lab4, cex = 2, data = multi,
    main = "Multi-Class Classification",
    xlab = "x", ylab = "y")

102 | Chapter 4: Regression in a Nutshell



Figure 4-14. One-versus-many classification utilizes the same approach as standard
classification but reclassifies other groups into one single group for comparison

In a one-versus-many classification approach, you use one decision boundary to clas‐
sify data for one type or class versus all the other types or classes. You then do the
same for the rest of the types or classes in the data until you have a number of deci‐
sion boundaries that you can use to typify your data accordingly. So, for the example
in Figure 4-14, you’re computing (on the left plot) the circles versus the rest of the
data, and then you compute the triangles versus the rest of the data (middle plot),
and, finally, the crosses versus the rest of the data (right plot). By splitting a three-
class problem into three, two-class problems, you can more easily find a single deci‐
sion boundary for each plot and then combine those decision boundaries for a final
model.

Here, you call upon the nnet library’s function multinom(). You use this to pass a
multinomial case that’s basically the same as you’ve done for the simple binary case,
but with three values instead of two. This methodology can be applied for more than
three categories:

library(nnet)
multi.model <- multinom(lab ~ x2 + x1, data = multi, trace = F)

Notice that you have two lines to separate the three categories:
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multi.model

## Call:
## multinom(formula = lab ~ x2 + x1, data = multi, trace = F)
##
## Coefficients:
##   (Intercept)       x2        x1
## 2   -12.47452 28.50805 -17.97523
## 3   -19.82927 12.95949  33.39610
##
## Residual Deviance: 0.0004050319
## AIC: 12.00041

Again, however, you need to do the special calculation for the slopes and intercepts of
the decision boundaries based on the output of this model. You can apply the same
math as earlier, but you need to apply it to each of the equations from the model.
Then, you can plot the decision boundary lines, as illustrated in Figure 4-15:

multi.int.1 <- -coef(multi.model)[1]/coef(multi.model)[3]
multi.slope.1 <- -coef(multi.model)[5]/coef(multi.model)[3]

multi.int.2 <- -coef(multi.model)[2]/coef(multi.model)[4]
multi.slope.2 <- -coef(multi.model)[6]/coef(multi.model)[4]

plot(x2 ~ x1, pch = lab, cex = 2, data = multi,
    main = "Multi-Class Classification",
    xlab = "x", ylab = "y")
abline(multi.int.1, multi.slope.1)
abline(multi.int.2, multi.slope.2)
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Figure 4-15. Two lines separating three classes of data

Logistic Regression with Caret
The caret package makes doing logistic regression problems very easy for more
complex examples than what we have been doing thus far. Using caret is fairly
straightforward, though for some particular machine learning methods, some opti‐
mizations and tunings might be warranted to achieve the best results possible. Fol‐
lowing is an example of how you can perform an operation with caret:

library(caret)

data("GermanCredit")

Train <- createDataPartition(GermanCredit$Class, p = 0.6, list = FALSE)
training <- GermanCredit[Train, ]
testing <- GermanCredit[-Train, ]

mod_fit <- train(Class ~ Age + ForeignWorker + Property.RealEstate +
    Housing.Own + CreditHistory.Critical, data = training, method = "glm",
    family = "binomial")

predictions <- predict(mod_fit, testing[, -10])
table(predictions, testing[, 10])
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##
## predictions Bad Good
##        Bad    9    8
##        Good 111  272

This simple example uses data from the GermanCredit dataset and shows how you
can build a confusion matrix from a caret training object. In this case, the fit doesn’t
seem super great, because about 50% of the data seems to be classified incorrectly.
Although caret offers some great ways to tune whatever particular machine learning
method you are interested in, it’s also quite flexible at changing machine learning
methods. By simply editing the method option, you can specify one of the other 12
logistic regression algorithms to pass to the model, as shown here:

mod_fit <- train(Class ~ Age + ForeignWorker + Property.RealEstate +
    Housing.Own + CreditHistory.Critical, data = training,
    method = "LogitBoost",
    family = "binomial")

predictions <- predict(mod_fit, testing[, -10])
table(predictions, testing[, 10])

##
## predictions Bad Good
##        Bad    7   15
##        Good 113  265

Summary
In this chapter, we looked at a couple different ways to build basic models between
simple linear regression and logistic regression.

Linear Regression
Regression comes in two forms: standard linear regression, which you might have
encountered early on in your mathematics classes, and logistic regression, which is
very different. R can create a linear model with ease by using the lm() function. In
tandem with R’s formula operator, ~, you can build a simple y = mx + b regression
equation by doing something like lm(y~x). From this linear model object, you can
extract a wealth of information regarding coefficients, statistical validity, and accu‐
racy. You can do this by using the summary() function, which can tell you how statis‐
tically valid each coefficient in your model is. For those that aren’t statistically useful,
you can safely remove them from your model.

Regression models can be more advanced by having more features. You can model
behavior like fuel efficiency as a function of a vehicle’s weight, but you can also incor‐
porate more things into your model, such as a vehicle’s transmission type, how many
cylinders its engine might have, and so forth. Multivariate regression modeling in R
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follows the same practice as single-feature regression. The only difference is that
there are more features listed in the summary() view of your model.

However, simply adding more features to a model doesn’t make it more accurate by
default. You might need to employ techniques like regularization, which takes a data‐
set that has lots of features and reduces the impact of those that aren’t statistically as
important as others. This can help you to simplify your model drastically and boost
accuracy assessments, as well.

Sometimes, there might be nonlinear relationships in the data that require polyno‐
mial fits. A regular linear model is of the form y = b + m1x1 + m2x2 + (…), whereas a
polynomial model might have the form y = m1x1

2 + m2x1 + m3x2
2 + m4x2 + (…). You

can fit polynomial behavior to your models by passing a poly() function to the lm()
function; for example, lm(y~poly(x,2)). This creates a quadratic relationship in the
data. It’s important to not go too crazy with polynomial degrees, however, because
you run the risk of fitting your data so tightly that any new data that comes in might
have high error estimates that aren’t true to form.

Logistic Regression
In machine learning, there are standard regression techniques that estimate continu‐
ous values like numbers, and classification techniques that estimate discrete values
like data types. In a lot of cases, the data can have discrete values like a flower’s spe‐
cies. If you try the standard linear regression techniques on these datasets, you’ll end
up with very disingenuous relationships in your data that are better suited for classifi‐
cation schemes.

Logistic regression is a classification method that finds a boundary that separates data
into discrete classes. It does this by passing the data through a sigmoid function that
maps the actual value of the data to a binary 1 or 0 case. That result is then passed
through another equation that yields weights to assign probabilities to the data. You
can use this to determine how likely a given data point is of a certain class.

You can also use logistic regression to draw decision boundaries in your data. A deci‐
sion boundary is a line that doesn’t necessarily fit the data in a standard (x, y) plot,
but fits gaps in the data to separate them into specific classes. In the case of data for
which you have two classes, you would have one line that splits your data into class 1
and class 2.

In the case of multiple classes, you treat each class as a one-versus-many approach. If
you have three classes, you focus on one and group the other two together and find
the decision boundary that separates them, and then move on to the next class. At the
end, you should have series of decision boundaries that separate the data into zones.
Any data in a particular zone is classified the same as the data points in that zone.
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CHAPTER 5

Neural Networks in a Nutshell

In Chapter 2, we briefly touched on the topic of neural networks in our exploration of
the machine learning landscape. A neural network is a set of equations that we use to
calculate an outcome. They aren’t so scary if we think of them as a brain made out of
computer code. In some cases, this is closer to reality than we should expect from
such a cartoony example. Depending on the number of features we have in our data,
the neural network almost becomes a “black box.” In principle, we can display the
equations that make up a neural network, but at a certain level, the amount of infor‐
mation becomes too cumbersome to intuit easily.

Neural networks are used far and wide in industry largely due to their accuracy.
Sometimes, there are trade-offs between having a highly accurate model, but slow
computation speeds, however. Therefore, it’s best to try multiple models and use neu‐
ral networks only if they work for your particular dataset.

Single-Layer Neural Networks
In Chapter 2, we looked at the development of an AND gate. An AND gate follows
logic like this:

x1 <- c(0, 0, 1, 1)
x2 <- c(0, 1, 0, 1)
logic <- data.frame(x1, x2)
logic$AND <- as.numeric(x1 & x2)
logic

##   x1 x2 AND
## 1  0  0   0
## 2  0  1   0
## 3  1  0   0
## 4  1  1   1
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If you have two 1 inputs (both TRUE), your output is 1 (TRUE). However, if either of
them, or both, are 0 (FALSE), your output is also 0 (FALSE). This computation is
somewhat similar to our analysis of logistic regression. In Chapter 4, we covered how
the sigmoid function works. Recall that the sigmoid function is given by g(z) = f/(1 +
e z), and that z is a function of the form z = θ0 + θ1x1 + θ2x2.

For the logic gate, all you need to do is pick and choose weights θ0, θ1, θ2 so that when
x1 = 1 and x2 = 1, the result of z when you pass it through the sigmoid function g(z) is
also 1. Previously, you picked weights of θ0 = 20, θ1 = 15, and θ2 = 17 to satisfy the
equation. The way the neural network goes about computing those weights is an even
more mathy process, but it follows the same sort of logic for what we used in logistic
regression.

Neural networks come in many different flavors, but the most popular ones stem
from single or multilayered neural networks. So far, you’ve seen an example of a
single-layer network, for which we take some input (1,0), process it through a sig‐
moid function, and get some output (0). You can, in fact, chain together these com‐
putational steps to form more interconnected and complicated models by taking the
output and passing it into futher computational layers.

Figure 5-1 presents an example of the AND gate with R code this time:

library(neuralnet)

set.seed(123)
AND <- c(rep(0, 3), 1)
binary.data <- data.frame(expand.grid(c(0, 1), c(0, 1)), AND)
net <- neuralnet(AND ~ Var1 + Var2, binary.data, hidden = 0,
    err.fct = "ce", linear.output = FALSE)
plot(net, rep = "best")
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Figure 5-1. A simple neural network

Building a Simple Neural Network by Using R
Before we jump into the math, let’s first break down the visualization presented in
Figure 5-1, a diagram of a neural network that’s about as simple as it can get. There is
one input layer (the empty circles on the left) and one output layer (the empty circle
on the right). Often, there is another vertical layer of circles that indicates a compute
layer. In this case, the output layer is the compute layer. The numbers on the lines
indicate the computationally crunched best weights to use for the model. The number
attached to the “1” in the circle at the top is the weight from the bias node. The bias
node is just the additive constant for the now-familiar sigmoid function you used in
the logistic regression examples. So, in a sense, this is just a different way to represent
a logistic regression analysis at a neural network’s simplest form. The end result of
which is a classification scheme for the data that has labels 1 or 0.

In R, there’s really only one neural network library that has built-in functionality for
plotting neural networks. In practice, most of the time plotting neural networks is
more complicated than it’s worth, as we will demonstrate later. In complex modeling
scenarios, neural network diagrams and mathematics become so cumbersome that
the model itself more or less becomes a trained black box. If your manager were to
ask you to explain the math behind a complex neural network model, you might need
to block out an entire afternoon and find the largest whiteboard in the building.
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The neuralnet library has built-in plotting functionality, however, and in the previ‐
ous case, you are plotting the neural network that has been determined to have the
lowest error in this case. The number of steps are the number of iterations that have
gone on in the background to tune the particular output for its lowest error.

The code shown in Figure 5-1 passes a similar table of data from binary.data into
the neuralnet() function from the package of the same name. The result you get out
would be an equation that has weights θ0 = 11.86048, θ1 = 7.75382, and θ2 = 7.75519.

So, if your boss is truly eager to see what the status of your neural network modeling
procedure is, you would be delighted and can say that you’ve finished and have the
model ready to go. If your boss asks for details on how exactly the thing works, you
can say that it takes in two inputs Var1 and Var2, and inputs them into the equation:

z = -11.96048 + 7.75382Var1 + 7.75382Var2

you then pass that equation through a sigmoid function g z = 1/ 1 + e−z  and get an
output. So the entire process would look like this:

AND = 1
1 + e− − 11 . 96048 + 7 . 75382 * Var1 + 7 . 75382 * Var2

You can check the neuralnet() function’s output by using the prediction() func‐
tion:

prediction(net)

## Data Error:  0;

## $rep1
##   Var1 Var2               AND
## 1    0    0 0.000007064115737
## 2    1    0 0.016196147483124
## 3    0    1 0.016217878405446
## 4    1    1 0.974631032550725
##
## $data
##   Var1 Var2 AND
## 1    0    0   0
## 2    1    0   0
## 3    0    1   0
## 4    1    1   1

In the first table are the input variables and what the neural network thinks the
answer is. As you can see, the answers are pretty close to what they should be, as
given by the table below it. So far, you have successfully performed a neural network
model with a single layer. That is, all of the inputs went into a single processing point
as shown in Figure 5-1. These processing points are almost always sigmoid functions,
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but in some rare instances, they can be passed through a hyperbolic tan function,
tanh(x), to achieve a similar result.

Multiple Compute Outputs
As alluded to earlier, neural networks can take multiple inputs and provide multiple
outputs. If, for example, you have two functions that you want to model via neural
networks, you can use R’s formula operator ~ and the + operator to simply add
another response to the lefthand side of the equation during modeling, as shown in
Figure 5-2:

set.seed(123)
AND <- c(rep(0, 7), 1)
OR <- c(0, rep(1, 7))
binary.data <- data.frame(expand.grid(c(0, 1), c(0, 1), c(0,
    1)), AND, OR)
net <- neuralnet(AND + OR ~ Var1 + Var2 + Var3, binary.data,
    hidden = 0, err.fct = "ce", linear.output = FALSE)
plot(net, rep = "best")

Figure 5-2. Neural networks can be more complex than logistic regression in terms of
multiple compute outputs

We can model our AND and OR functions with two equations given by the outputs
in Figure 5-2:
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AND = 19.4 + 7.5 × Var1 + 7.6 × Var2 + 7.6 × Var3
OR = 10.3 + 22.3 × Var1 + 21.8 × Var2 + 21.9 × Var3

We can see our output in the same way as before with just one function:

prediction(net)

## Data Error:  0;

## $rep1
##   Var1 Var2 Var3                 AND               OR
## 1    0    0    0 0.00000001045614851 0.00007220621224
## 2    1    0    0 0.00001426236484049 0.99999769205959
## 3    0    1    0 0.00001409371095155 0.99999191105328
## 4    1    1    0 0.01886199255844006 1.00000000000000
## 5    0    0    1 0.00001228339436300 0.99995455791699
## 6    1    0    1 0.01647909336278272 0.99999999999999
## 7    0    1    1 0.01628739761101993 0.99999999999997
## 8    1    1    1 0.95759917455105847 1.00000000000000
##
## $data
##   Var1 Var2 Var3 AND OR
## 1    0    0    0   0  0
## 2    1    0    0   0  1
## 3    0    1    0   0  1
## 4    1    1    0   0  1
## 5    0    0    1   0  1
## 6    1    0    1   0  1
## 7    0    1    1   0  1
## 8    1    1    1   1  1

The neural networks seem to be performing quite nicely!

Hidden Compute Nodes
So far, you have been building neural networks that have no hidden layers. That is to
say, the compute layer is the same as the output layer. The neural network we compu‐
ted in Figure 5-3 comprised zero layers and one output layer. Here, we show you how
adding one hidden layer of computation can help increase the model’s accuracy.

Neural networks use a shorthand notation for defining their architecture, in which
we note the number of input nodes, followed by a colon, the number of compute
nodes in the hidden layer, another colon, and then the number of output nodes. The
architecture of the neural network we built in Figure 5-3 was 3:0:1.

An easier way to illustrate this is by diagramming a neural network (see Figure 5-3)
that has three inputs, one hidden layer, and one output layer for a 3:1:1 neural net‐
work architecture:
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set.seed(123)
AND <- c(rep(0, 7), 1)
binary.data <- data.frame(expand.grid(c(0, 1), c(0, 1), c(0,
    1)), AND, OR)
net <- neuralnet(AND ~ Var1 + Var2 + Var3, binary.data, hidden = 1,
    err.fct = "ce", linear.output = FALSE)
plot(net, rep = "best")

Figure 5-3. A neural network with three inputs, one hidden layer, and one output layer
(3:1:1)

In this case, we have inserted a computation step before the output. Walking through
the diagram from left to right, there are three inputs for a logic gate. These are
crunched into a logistic regression function in the middle, hidden layer. The resultant
equation is then pumped out to the compute layer for us to use for our AND func‐
tion. The math would look something like this:

H1 = 8.57 + 3.6 × Var1 – 3.5 × Var2 – 3.6 × Var3

Which we would then pass through a logistic regression function:

g H_1 = 1
1 + e− 8 . 57 + 3 . 6Var1 − 3 . 5Var2 − 3 . 6Var3
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Next, we take that output and put it through another logistic regression node using
the weights calculated on the output node:

AND = 5.72 - 13.79 × g(H1)

One major advantage of using a hidden layer with some hidden compute nodes is
that it makes the neural network more accurate. However, the more complex you
make a neural network model, the slower it will be and the more difficult it will be to
simply explain it with easy-to-intuit equations. More hidden compute layers also
means that you run the risk of overfitting your model, such as you’ve seen already
with traditional regression modeling systems.

Although the numbers tied to the weights of each compute node shown in Figure 5-4
are now becoming pretty illegible, the main takeaway here is the error and number of
computation steps. In this case, the error has gone down a little bit from 0.033 to
0.027 from the last model, but you’ve also reduced the number of computational steps
to get that accuracy from 143 to 61. So, not only have you increased the accuracy, but
you’ve made the model computation quicker at the same time. Figure 5-4 also shows
another hidden computation node added to the single hidden layer, just before the
output layer:

set.seed(123)

net2 <- neuralnet(AND ~ Var1 + Var2 + Var3, binary.data, hidden = 2,
    err.fct = "ce", linear.output = FALSE)

plot(net2, rep = "best")

Mathematically, this can be represented as two logistic regression equations being fed
into a final logistic regression equation for our resultant output:

f 1 = 13 . 64 + 13 . 97 * Var1 + 14 . 9 * Var2 + 14 . 27 * Var3

f 2 = − 7 . 95 + 3 . 24 * Var1 + 3 . 15 * Var2 + 3 . 29 * Var3

f 3 = − 5 . 83 − 1 . 94 * f 1 + 14 . 09 * f 2

AND = g f 3 = 1

1 + e
− − 5 . 83 − 1 . 94 * f 1 + 14 . 09 * f 2
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Figure 5-4. Visualized here is a 3:4:1 neural network architecture

The equations are becoming more and more complicated with each increase in the
number of hidden compute nodes. The error with two nodes went up slightly from
0.29 to 0.33, but the number of iteration steps the model took to minimize that error
was a little bit better in that it went down from 156 to 143. What happens if you turn
the number of compute nodes even higher? Figures 5-5 and 5-6 illustrate this.

set.seed(123)

net4 <- neuralnet(AND ~ Var1 + Var2 + Var3, binary.data, hidden = 4,
    err.fct = "ce", linear.output = FALSE)
net8 <- neuralnet(AND ~ Var1 + Var2 + Var3, binary.data, hidden = 8,
    err.fct = "ce", linear.output = FALSE)

plot(net4, rep = "best")

plot(net8, rep = "best")
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Figure 5-5. A neural network with four compute nodes in a single hidden layer

Figure 5-6. An overfitting 3:8:1 neural network model
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The code in Figures 5-5 and 5-6 uses the same neural network modeling scenario, but
the number of hidden computation nodes are increased first to four, and then to
eight. The neural network with four hidden computation nodes had a better level of
error (just slightly) than the network with only a single hidden node. The error in
that case went down from 0.29 to 0.28, but the number of steps went down dramati‐
cally from 156 to 58. Quite an improvement! However, a neural network with eight
hidden computation layers might have crossed into overfitting territory. In that net‐
work, error went from 0.29 to 0.34, even though the number of steps went from 156
to 51.

You can apply the same methodology with multiple outputs, as well, although the plot
itself begins to become an unreadable mess at some point, as Figure 5-7 demon‐
strates:

set.seed(123)
net <- neuralnet(AND + OR ~ Var1 + Var2 + Var3, binary.data,
    hidden = 6, err.fct = "ce", linear.output = FALSE)
plot(net, rep = "best")

Figure 5-7. We can also design neural networks to have multiple compute outputs, while
still having multiple compute nodes in the hidden layer
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Multilayer Neural Networks
All the neural networks thus far that we’ve played around with have had an architec‐
ture that has one input layer, one or zero hidden layers (or compute layers), and one
output layer.

We’ve used 1:1:1 or 1:0:1 neural networks for some classification schemes already. In
those examples, we were trying to model classifications based on the AND and OR
logic gate functions:

x1 <- c(0, 0, 1, 1)
x2 <- c(0, 1, 0, 1)
logic <- data.frame(x1, x2)
logic$AND <- as.numeric(x1 & x2)
logic$OR <- as.numeric(x1 | x2)
logic

##   x1 x2 AND OR
## 1  0  0   0  0
## 2  0  1   0  1
## 3  1  0   0  1
## 4  1  1   1  1

As Figure 5-8 demonstrates, we can represent this table as two plots, one of which
shows the input values and colors those according to the type of logic gate output we
use:

logic$AND <- as.numeric(x1 & x2) + 1
logic$OR <- as.numeric(x1 | x2) + 1

par(mfrow = c(2, 1))

plot(x = logic$x1, y = logic$x2, pch = logic$AND, cex = 2,
    main = "Simple Classification of Two Types",
    xlab = "x", ylab = "y", xlim = c(-0.5, 1.5), ylim = c(-0.5,
        1.5))

plot(x = logic$x1, y = logic$x2, pch = logic$OR, cex = 2,
    main = "Simple Classification of Two Types",
    xlab = "x", ylab = "y", xlim = c(-0.5, 1.5), ylim = c(-0.5,
        1.5))
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Figure 5-8. In these two cases of classification, we can separate the two classes by draw‐
ing a straight line decision boundary

These plots use triangles to signify when outputs are 1 (or TRUE), and circles for
which the outputs are 0 (or FALSE). In our discussion on logistic regression, we were
basically solving for some kind of line that would separate this data into red dots on
one side and black dots on the other. Recall that this separating line is called a deci‐
sion boundary and had always been a straight line. However, we can’t use a straight
line to try to classify more complicated logic gates like an XOR or XNOR.

In tabular form, as we’ve seen with the AND and OR functions, the XOR and XNOR
functions take inputs of x1, x2, and give us a numeric output in much the same way,
as demonstrated in Figure 5-9:

x1 <- c(0, 0, 1, 1)
x2 <- c(0, 1, 0, 1)
logic <- data.frame(x1, x2)
logic$AND <- as.numeric(x1 & x2)
logic$OR <- as.numeric(x1 | x2)
logic$XOR <- as.numeric(xor(x1, x2))
logic$XNOR <- as.numeric(x1 == x2)
logic

##   x1 x2 AND OR XOR XNOR
## 1  0  0   0  0   0    1
## 2  0  1   0  1   1    0
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## 3  1  0   0  1   1    0
## 4  1  1   1  1   0    1

logic$XOR <- as.numeric(xor(x1, x2)) + 1
logic$XNOR <- as.numeric(x1 == x2) + 1

par(mfrow = c(2, 1))

plot(x = logic$x1, y = logic$x2, pch = logic$XOR, cex = 2, main = "Non-Linear 
Classification of Two Types",
    xlab = "x", ylab = "y", xlim = c(-0.5, 1.5), ylim = c(-0.5,
        1.5))

plot(x = logic$x1, y = logic$x2, pch = logic$XNOR, cex = 2, main = "Non-Linear 
Classification of Two Types",
    xlab = "x", ylab = "y", xlim = c(-0.5, 1.5), ylim = c(-0.5,
        1.5))

Figure 5-9. In these two cases, no one straight line can separate the two classes; however,
multiple straight lines combined together can form a curve that you can use as a nonlin‐
ear decision boundary to separate the classes of data

There’s no single straight line that can separate red and black dots on the plots in
Figure 5-9. If you try to plot a very simple neural network with no hidden layers for
an XOR classification, the results aren’t especially gratifying, as illustrated in
Figure 5-10:
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logic$XOR <- as.numeric(xor(x1, x2))

set.seed(123)
net.xor <- neuralnet(XOR ~ x1 + x2, logic, hidden = 0, err.fct = "ce",
    linear.output = FALSE)
prediction(net.xor)

## Data Error:  0;

## $rep1
##   x1 x2          XOR
## 1  0  0 0.4870312778
## 2  1  0 0.4970850626
## 3  0  1 0.4980804563
## 4  1  1 0.5081363898
##
## $data
##   x1 x2 XOR
## 1  0  0   0
## 2  1  0   1
## 3  0  1   1
## 4  1  1   0

plot(net.xor, rep = "best")

Figure 5-10. Computing a nonlinear output with a single hidden layer (in this case, the
hidden layer is the computation layer) produces huge errors
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Trying to use a neural network with no hidden layers will result in a huge error.
Looking at the output from the prediction() function, you can see that the neural
network thinks that for a given scenario, such as xor(0,0), the answer is 0.5 ± 2.77.
Having an error that is much higher than the level of granularity that you’re trying to
find the answer for indicates that this isn’t the best method for you to use.

Instead of the traditional approach of using one or zero hidden layers, which provide
a straight line decision boundary that is being used, you must rely on nonlinear deci‐
sion boundaries, or curves, to separate classes of data. By adding more hidden layers
to your neural networks, you add more logistic regression decision boundaries as
straight lines. From these added lines, you can draw a convex decision boundary that
enables nonlinearity. For this, you must rely on a class of neural networks called mul‐
tilayer perceptrons, or MLPs.

One quick-and-dirty way of using an MLP in this case would be to use the inputs x1
and x2 to get the outputs of the AND and OR functions. You then can feed those out‐
puts as individual inputs into a single-layer neural network, as illustrated in
Figure 5-11:

set.seed(123)
and.net <- neuralnet(AND ~ x1 + x2, logic, hidden = 2, err.fct = "ce",
    linear.output = FALSE)
and.result <- data.frame(prediction(and.net)$rep1)

## Data Error:  0;

or.net <- neuralnet(OR ~ x1 + x2, logic, hidden = 2, err.fct = "ce",
    linear.output = FALSE)
or.result <- data.frame(prediction(or.net)$rep1)

## Data Error:  0;

as.numeric(xor(round(and.result$AND), round(or.result$OR)))

## [1] 0 1 1 0

xor.data <- data.frame(and.result$AND, or.result$OR, 
as.numeric(xor(round(and.result$AND),
    round(or.result$OR))))
names(xor.data) <- c("AND", "OR", "XOR")

xor.net <- neuralnet(XOR ~ AND + OR, data = xor.data, hidden = 0,
    err.fct = "ce", linear.output = FALSE)

prediction(xor.net)

## Data Error:  0;

## $rep1
##              AND            OR            XOR
## 1 0.000175498243 0.01115157179 0.013427052868
## 2 0.002185508146 0.99537740097 0.993710672686
## 3 0.008091828479 0.99566427543 0.993306664121
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## 4 0.985343384090 0.99806091842 0.003024047907
##
## $data
##              AND            OR XOR
## 1 0.000175498243 0.01115157179   0
## 2 0.002185508146 0.99537740097   1
## 3 0.008091828479 0.99566427543   1
## 4 0.985343384090 0.99806091842   0

plot(xor.net, rep = "best")

Figure 5-11. You can get around the limitations of the algorithm by first computing the
single layer and then passing the results into another single layer of computation to emu‐
late a multilayer neural network

An MLP is exactly what its name implies. A perceptron is a particular type of neural
network that involves a specific way of how it calculates the weights and errors,
known as a feed-forward neural network. By taking that principle and adding multiple
hidden layers, we make it compatible with nonlinear data like the kind we are dealing
with in an XOR gate.

Neural Networks for Regression
We’ve looked at some exhaustive examples that demonstrate how you can use neural
networks to build systems like AND and OR gates, the outputs of which you can then
combine to form stuff like XOR gates. Neural networks are decent at modeling simple
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functions but when you chain them together, you sometimes need to rely on more
complex phenomena like MLPs.

You can use neural networks for standard machine learning problems like regression
and classification, too. To gently walk through using neural networks for regression,
let’s look at Figure 5-12, which depicts a simple example with a familiar linear regres‐
sion case so we have a good baseline of understanding. For this example, let’s use the
BostonHousing dataset from the mlbench library:

library(mlbench)
data(BostonHousing)

lm.fit <- lm(medv ~ ., data = BostonHousing)

lm.predict <- predict(lm.fit)

plot(BostonHousing$medv, lm.predict, main = "Linear regression predictions vs 
actual",
    xlab = "Actual", ylab = "Prediction")

Figure 5-12. One way to measure a model’s performance is to compare the outputs from
its predictions to what they actually are

This creates a linear model of medv, the median value of owner-occupied homes in
thousands of dollars. Next, the predict() function iterates over all the entries in the
dataset using the model you created, and stores the predictions. The predictions are
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then plotted versus the actual values. In an ideal case of a perfect model, the resultant
plot would be a perfectly linear relationship of y = x.

So how does neural network regression compare? Figure 5-13 shows how:

library(nnet)

nnet.fit1 <- nnet(medv ~ ., data = BostonHousing, size = 2)

## # weights:  31
## initial  value 283985.903126
## final  value 277329.140000
## converged

nnet.predict1 <- predict(nnet.fit1)

plot(BostonHousing$medv, nnet.predict1, main = "Neural network predictions vs 
actual",
    xlab = "Actual", ylab = "Prediction")

Figure 5-13. Something to watch out for when changing models is the need to normalize
data first

According to our fit of a neural network with two hidden nodes in one hidden com‐
putation layer, the output is actually rather terrible. This should warrant some deeper
investigation. Let’s take a look at the response:
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summary(BostonHousing$medv)

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
##  5.00000 17.02500 21.20000 22.53281 25.00000 50.00000

The range for the response is from 5 to 50. Neural networks aren’t very good at using
numbers that vary so greatly, so you need to employ a technique known as feature
scaling. Feature scaling is the practice of normalizing your data to values between 0
and 1 so that you can feed it into certain machine learning models for more accurate
outcomes. In this case, you want to divide your response by 50 so as to normalize the
data:

summary(BostonHousing$medv/50)

##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max.
## 0.1000000 0.3405000 0.4240000 0.4506561 0.5000000 1.0000000

Now, you have a response that has a minimum of 0.1 and a maximum of 1.
Figure 5-14 shows how this affects the neural network modeling:

nnet.fit2 <- nnet(medv/50 ~ ., data = BostonHousing, size = 2,
    maxit = 1000, trace = FALSE)

nnet.predict2 <- predict(nnet.fit2) * 50

plot(BostonHousing$medv, nnet.predict2, main = "Neural network predictions vs
    actual with normalized response inputs",
    xlab = "Actual", ylab = "Prediction")

Figure 5-14. A neural network model output with properly normalized inputs
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This plot looks a bit better than what you had before, but it’s even better to quantify
the difference between the two modeling scenarios. You can do this by looking at the
mean squared errors:

mean((lm.predict - BostonHousing$medv)^2)

## [1] 21.89483118

mean((nnet.predict2 - BostonHousing$medv)^2)

## [1] 16.12870045

The total error for the linear model is just about 22, whereas the total error for the
regression example done with a neural network has improved to about 16.

Alternatively, you can use the powerful R tool caret to better tune your model. By
invoking caret, you can pass in some tuning parameters and sampling techniques to
get a better estimate of error and more accurate results, as shown here:

library(caret)

mygrid <- expand.grid(.decay = c(0.5, 0.1), .size = c(4, 5, 6))
nnetfit <- train(medv/50 ~ ., data = BostonHousing, method = "nnet",
    maxit = 1000, tuneGrid = mygrid, trace = F)
print(nnetfit)

## Neural Network
##
## 506 samples
##  13 predictor
##
## No preprocessing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 506, 506, 506, 506, 506, 506, ...
## Resampling results across tuning parameters:
##
##   decay  size  RMSE           Rsquared      MAE
##   0.1    4     0.08129182420  0.8053225697  0.05665268091
##   0.1    5     0.08118237926  0.8066818139  0.05718789316
##   0.1    6     0.07994531428  0.8111942947  0.05635562702
##   0.5    4     0.08929967985  0.7751011554  0.06278120999
##   0.5    5     0.08787920992  0.7803463408  0.06158346796
##   0.5    6     0.08686936074  0.7847302615  0.06107504984
##
## RMSE was used to select the optimal model using  the smallest value.
## The final values used for the model were size = 6 and decay = 0.1.

The best error estimate from this case has size 6, which means six nodes in the one
hidden layer of the network, and a parameter decay of 0.1 The root-mean-square
error (RMSE) is the same error that you have seen previously, but having the square-
root taken of it. So, to compare with results seen previously, the best error here is as
follows:
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0.08168503^2

## [1] 0.006672444126

A remarkable improvement over a root-mean-square error of 16 we saw earlier.

Neural Networks for Classification
In a sense, we’ve already demonstrated the use of neural networks for classification
via the AND and OR gates that we built at the beginning of the chapter. These func‐
tions take some kind of binary input and give us a binary result through logistic
regression activation functions at each neural network computational node. You can
think of that as single-class classification. Most of the time, we’re more interested in
multiclass classification.

In this case, you need to split your data into training and test sets, which is straight‐
forward enough. Training the neural network on the training data also makes sense
from our past experiences with the train/test approach to machine learning. The dif‐
ference here is that when you call the predict() function, you do so with the
type=class option. This helps when dealing with class data instead of numeric data
that you would use with regression:

iris.df <- iris
smp_size <- floor(0.75 * nrow(iris.df))

set.seed(123)
train_ind <- sample(seq_len(nrow(iris.df)), size = smp_size)

train <- iris.df[train_ind, ]
test <- iris.df[-train_ind, ]

iris.nnet <- nnet(Species ~ ., data = train, size = 4, decay = 0.0001,
    maxit = 500, trace = FALSE)
predictions <- predict(iris.nnet, test[, 1:4], type = "class")
table(predictions, test$Species)

##
## predictions  setosa versicolor virginica
##   setosa         11          0         0
##   versicolor      0         13         0
##   virginica       0          0        14

You can see that the confusion matrix provides a pretty good result for classification
using neural networks. Think back to Chapter 2 and the example that uses kmeans for
multiclass clustering; we have no cases here that are mislabeled compared to the two
mislabeled cases that we saw previously.
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Neural Networks with caret
The machine learning package for R, caret, offers a very flexible grouping of tools to
use for these machine learning procedures. In the case of neural networks, there are
more than 15 to choose from, each with its own advantages and disadvantages. By
sticking with our nnet example for the moment, we can run a model in caret by
invoking the train() function and passing the method='nnet' option to it. We can
then go about our normal prediction steps. The power of caret comes from the ease
with which we can select a different method with which to compare results.

Regression
In the case of regression, the output that you are looking for is going to be numeric.
So to compare results across models, you should be looking for an RMSE and then
see which one has the lowest, which indicates that this model is the most accurate.
For this example, let’s use the Prestige dataset from the car package. This dataset
contains a number of features related to occupations and perceived occupational
prestige with some features like education, income, and what percentage of incum‐
bents in that profession are women. For this regression example, you’ll try to predict
income as a function of prestige and education:

library(car)
library(caret)
trainIndex <- createDataPartition(Prestige$income, p = 0.7, list = F)
prestige.train <- Prestige[trainIndex, ]
prestige.test <- Prestige[-trainIndex, ]

my.grid <- expand.grid(.decay = c(0.5, 0.1), .size = c(5, 6,
    7))
prestige.fit <- train(income ~ prestige + education, data = prestige.train,
    method = "nnet", maxit = 1000, tuneGrid = my.grid, trace = F,
    linout = 1)

prestige.predict <- predict(prestige.fit, newdata = prestige.test)

summary(prestige.test$income)

##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max.
##   918.000  4230.000  6080.500  7265.214  8088.250 25879.000

sqrt(mean((prestige.predict - prestige.test$income)^2))

## [1] 4118.32384

According to the output, the income range in the dataset goes from 611 Canadian
dollars up to 17,500. The error being 4,625 Canadian dollars is high, but you can test
against other types of neural networks to see how the nnet method compares:
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prestige.fit <- train(income ~ prestige + education, data = prestige.train,
    method = "neuralnet")

prestige.predict <- predict(prestige.fit, newdata = prestige.test)

sqrt(mean((prestige.predict - prestige.test$income)^2))

The output from this method is 3,814.09. That’s an improvement over the nnet
method, but the speed at which this calculation runs is much slower. This is where
you need to rely on tuning your training objects to extract the optimal performance
out of each different method that you choose.

Classification
Classification with caret works in a similar manner depending on the method you
are using. You can use most caret methods for classification or regression, but some
are specific to one versus another. The only method that is explicitly classification
only for caret is multinom, whereas the methods neuralnet, brnn, qrnn, and mlpSGD
are explicitly regression only. You can use the rest for either classification or
regression:

iris.caret <- train(Species ~ ., data = train, method = "nnet",
    trace = FALSE)
predictions <- predict(iris.caret, test[, 1:4])
table(predictions, test$Species)

##
## predictions  setosa versicolor virginica
##   setosa         11          0         0
##   versicolor      0         13         0
##   virginica       0          0        14

The end result here is the same as earlier in terms of model accuracy, but the flexibil‐
ity of caret allows you again to test against other methods pretty easily:

iris.caret.m <- train(Species ~ ., data = train, method = "multinom",
    trace = FALSE)
predictions.m <- predict(iris.caret.m, test[, 1:4])
table(predictions.m, test$Species)

##
## predictions.m setosa versicolor virginica
##    setosa         11          0         0
##    versicolor      0         13         0
##    virginica       0          0        14

Good to know that other methods are also quite accurate!
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Summary
Neural networks can seem very complicated at first glance. Often they are thought of
as a black box; data goes in, and insight comes out. In reality, neural networks are
pretty easy to understand in their simplest form, but difficult to explain when they
become more complex. At their core, neural networks take some input values, crunch
them through an activation function, and return an output. The activation function,
more often than not, is usually just a sigmoid function, so you can think of neural
networks as just more complicated logistic regression models. In fact, their computa‐
tion with simple neural network architecture is almost identical.

Neural networks become more complex when you begin changing their architecture.
A neural network’s architecture is made up of an input layer, a number of hidden lay‐
ers, and an output layer. The input layer is simply the values for what features you are
passing in to our model. The hidden layers are those that handle the computation and
processing. The output layers are the ones from which you get your results. In simple
cases, neural networks can have the hidden computation layers be the same as the
output layer, as in the case with modeling logic gate functions like AND and OR. An
example neural architecture for a neural network with three inputs, one hidden layer,
and one activation node could be 3:1:1, for example. Increasing the number of com‐
pute nodes to something like 3:8:1 tends to overfit the data.

Multilayered neural networks (i.e., a 3:2:2:1 neural network) can also model nonlin‐
ear behavior. Logistic regression is good at finding decision boundaries that are
straight lines to separate data into several classes or types, but it fails for nonlinear
behavior. By introducing multiple decision boundaries into a system via hidden lay‐
ers, you can create a curve that then can separate data, which is something that a
straight line cannot do.

You can use neural networks both for regression modeling and classification. How‐
ever, with regression modeling, it pays to be cautious and practice data normalization.
In many cases, neural networks prefer data to be in a 1 or 0 format, and trying to
model data that has higher values can be problematic. For classification purposes,
when you use the predict() function, you also need to pass the type='class'
option in order to have the modeling behavior work appropriately.

There are a slew of neural network methods that you can use with the caret function
in R, as well. While some of these are limited to only regression or classification, a
good majority of them are flexible enough to be used with either. It pays to be cau‐
tious in method selection not just for selecting the one that can do the job you’re
interested in, but because there can be tuning or optimization parameters that might
need to be passed into the model to speed it up or make it more accurate.
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CHAPTER 6

Tree-Based Methods

In the world of machine learning, tree-based methods are very useful. They are rela‐
tively simple to explain and easy to visualize. In some cases with machine learning
models (notably complex neural networks), the trained model can effectively be a
black box whose inner workings are too complex for us to explain simply. Tree-based
models, on the other hand, can be a lot more intuitive for the average user.

In this chapter, we look at how tree-based models work at a high level by focusing
first on decision trees. We then dive into the basic mechanics of how they work and
some positive and negative attributes associated with them. We also touch on differ‐
ent types of tree-based models like conditional inference trees and random forests. To
give you a preview, decision trees are as simple as “if-then” statements related to data.
Conditional inference trees work in a similar manner but with slightly different stat‐
istical underpinnings. Random forests can be complicated mathematically, but gener‐
ally boil down to a collection of different tree models being asked to vote on a result.
All of these types can be used for regression modeling (regression trees) or classifica‐
tion modeling (classification trees). Many can be used for both purposes and are
called classification and regression trees (CART) models.

A Simple Tree Model
Let’s begin by looking at an example of a set of data that describes my bike races this
year. We could have a variety of parameters just related to the weather. If I had a
robust enough sample of data and I had a bike race coming up where I knew the fore‐
cast to a reasonable degree, should I expect a good or bad result to my bike race?
Table 6-1 lists a few different weather factors and what my corresponding race result
was.
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Table 6-1. Example weather conditions and good race results

Week Sky condition Wind speed Humidity Good result
1 cloudy low high yes

2 rainy low normal yes

3 sunny high normal yes

4 cloudy high high yes

5 cloudy low normal yes

6 rainy high high no

7 rainy high normal no

8 cloudy high normal yes

9 sunny low high no

10 sunny low normal yes

11 rainy low normal yes

12 sunny low high no

13 sunny high high no

Suppose that the race for week 14 is going to have the following weather:

• Sky Condition: rainy
• Wind speed: low
• Humidity: high

What we might do, if this data were in a spreadsheet, would be to filter our data on
those exact conditions and see what the results look like. A tree-based model does
basically the same thing. It subsets the data by certain criteria and then builds a tree
so that when we have new data, it follows the branches of the tree to a result.
Figure 6-1 takes the data from Table 6-1 and represents it as a tree, with the first split
being on the Sky Condition variable.

Figure 6-1 shows three leaves in the tree: Sky Condition = rainy, Sky Condition =
cloudy, and Sky Condition = sunny. For each of these subsets, you can see how the
data looks. The response you want to model is whether I’m going to have a good
result in my race. A decision tree looks at these subsets and examines whether the
Result variable contains all of one particular class. For cloudy races, I have a good
result being yes for each one. This indicates that the subset is pure and that you don’t
need to split it any further. However, the sunny and rainy subsets have a mix of yes
and no results. You’ll want to split these further to get a subset with higher purity.

Purity is defined as how many positive or negative examples you have that you’re try‐
ing to model for (in this case, Result) out of the total values in the table. You want to
continue to split the tree until you have as many pure leaves as possible.
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Figure 6-1. An example of how a decision tree subsets data

As Figure 6-2 demonstrates, by splitting up the rainy and sunny subsets further (in
this case by wind and humidity, respectively), there are now five terminal points to
the tree. You can read this tree like an “if-then” statement, starting at the top. First,
let’s revisit what you want to predict. You want to know if I’m going to have a good
race result if it’s rainy, with low wind speed, and high humidity. Begin at the top of the
tree and move along the path of Sky Condition = rain, and then split on the wind
speed being low. That brings you into a bucket that has all of its data having a good
result status of yes. So, based on the conditions that you wanted to predict initially,
through the use of a decision tree, you can predict that I’ll have a good race result!

Figure 6-2. This decision tree splits further based on wind speed or humidity to create
more resultant tables (or leaves) at the ends of the tree that have a higher purity than
before
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Deciding How to Split Trees
In the previous example, you started with a dataset that you wanted to model. There
were many features and a response against which you wanted to model (result as a
function of sky condition, wind speed, and humidity). You began by looking at how a
decision tree works by splitting on the variable Sky Condition, but why did we
choose that one? Why not choose a different variable to split on instead? A decision
tree wants to maximize the “purity” of its splits. Let’s take a look at Figure 6-3, which
revisits the first cut of the tree from earlier.

Figure 6-3. When splitting decision trees, you want as pure of leaf nodes as possible (in
this case, Cloudy is the most pure leaf, followed by Sunny, then Rainy; we need to split
our tree further on the impure leaf nodes to get a better tree model)

In Figure 6-3, the cloudy leaf starts out as 100%. That means 100% of the data in that
cut is all yes data and requires no further subsetting to get to a pure set. The sunny
and rainy leaves do require splitting, however. Let’s contrast with starting out with a
tree based on the Wind Speed variable, as shown in Figure 6-4.

Figure 6-4. Splitting the data based on Wind Speed does not yield results with a high
purity factor

In Figure 6-4, none of the initial leaves are totally pure. One leaf is 75% pure, and
another is 50%. These both require additional splits of the data. You want to achieve
as much purity as you can, and having a tree with one leaf that’s 100% pure at the
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outset points to that variable as the place to start versus the others. Virtually all deci‐
sion tree algorithms will have this functionality built in, so you don’t really ever need
to worry about determining an initial split of the data, but it’s good practice to know
how the underlying mechanics of the tree algorithms work.

Tree Entropy and Information Gain
A more mathematical way to represent the purity of each subset in the tree is to
measure its entropy. This is a way to measure how likely you are to get a positive ele‐
ment if you randomly select from a particular subset. The equation for entropy is as
follows:

H S = − p+log2p+ − p−log2p−

In plain English, this equation states that the entropy for a given set of data is a func‐
tion of how many positive cases p+ we have in total, times the logarithm (note the
base two) of the same value, and then subtracting the number of negative cases in the
same way. Recall that positive in this case would be a “yes” result, and negative would
be a “no” result in the original example data in Table 6-1. A good way to see this in
action is to consider how you can apply it to the tree that you split on Sky Condition:

H rainy = − 2
4 log2

2
4 − 2

4 log2
2
4 = 1

H cloudy = − 4
4 log2

4
4 − 0

4 log2
0
4 = 0

H sunny = − 2
5 log2

2
5 − 3

5 log2
3
5 = 0 . 97

The values you get for rainy and sunny are both 1. This means that the sample is
about as impure as you could get and that it would require further splitting, whereas
the sample you have for cloudy is totally pure, and the entropy for that is 0. We are
getting away with a mathematical trick for this case, because technically speaking the
logarithm of zero should be negative infinity, but we are “canceling” that out by mul‐
tiplying by zero anyway.

Although the entropy of the individual leaves is nice, the algorithm determines the
most useful features to split on first by finding the features with the highest gain. Gain
is a measurement of how relevant the feature is on a scale from 0 (least useful) to 1
(most useful) and is defined by
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Gain = H S − Σ
SV
S H SV

where V is the possible values of the feature, S is the number of total points in the leaf,
and SV is the subset for which we have our possible values of the feature. Let’s run
this specifically on the tree that’s split by the Wind Speed feature:

H wind = − 9
14 log2

9
14 − 5

14 log2
5

14 = 0 . 94

H low = − 6
8 log2

6
8 − 2

8 log2
2
8 = 0 . 81

H high = − 3
6 log2

3
6 − 3

6 log2
3
6 = 1

Gain(Wind) = 0 . 94 − 8
14 * 0 . 81 − 6

14 * 1 = 0 . 049

An easy way to do this in R is to use the varImpPlot() function from the caret pack‐
age. Although this specific function uses a slightly different mathematical computa‐
tion than Gain specifically, the result is the same. With this plot, you can see that Sky
Condition is the most important factor, followed by Humidity and then Wind Speed.
If you had a dataset with many more variables and wanted to see which ones a partic‐
ular tree algorithm thought were the most important, you could use the VarImp
Plot() function to get a quick glance to see how to split the tree from the top down:

library(caret)
library(randomForest)

cycling <- read.table("cycling.txt", sep = "\t", header = T)

fit <- randomForest(factor(Result) ~ ., data = cycling[2:5])

varImpPlot(fit)

Pros and Cons of Decision Trees
So far we’ve seen one good attribute of decision trees: they are easy to explain. By
starting with some sample data, we were able to represent it in a tree-like fashion and
then simply walk through the various splits in the data to come to a conclusion.
When you train a tree-based model, the underlying mechanics will use the same
functionality, so it’s very easy to explain how the model itself works.
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We’ve also seen that trees can handle irrelevant data automatically (i.e., when the gain
metric is zero). This eliminates the need to be careful in determining which features
you want to model against because the tree will almost always select the best
attributes for you. Feature selection is a large part of most modeling procedures, and
having tree-based models do it for you is a big headache saver.

Another advantage of trees is that they are pretty fast at computation after they’ve
been tuned. In fact, after the tree has been well tuned, the resultant model tends to be
quite succinct. This aids not only in explanation, but keeping the model itself rela‐
tively simple. It’s easy to tell when a tree is overfit when it looks like it’s becoming too
specific or if there are lots and lots of small branches in the model. Finally, tree-based
models can also handle missing or outlier data, again saving you the headache of hav‐
ing to do tedious quarantine procedures that might be more common with other
models.

Tree Overfitting
The downsides to trees are that they can be very sensitive to initial conditions or var‐
iations in the data. Because we are splitting on attributes and likely value ranges in
our data, if we alter values slightly, we could be eliminating entire branches of our
model. Another issue with trees is that they follow axis-aligned splits of the data. If we
had a tree for some example data, where the output was as follows, we would have a
corresponding plot of the data that looks like that shown in Figure 6-5:

• If X is less than 2.5, the result is 25.
• If X is greater than 2.5, and Y is less than 15, the result is 9.
• If X is greater than 2.5, and Y is greater than 15, the result is 3.14.

You can see immediately that trees split the data into boxes, given how they’re
designed in relation to features. This works better for some versions of data than oth‐
ers. Data that is easily split into boxes relative to the axes that you are splitting by will
work better, like in the case of the iris dataset illustrated in Figure 6-6.
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Figure 6-5. Decision trees work in a different fashion than other machine learning
algorithms

Figure 6-6. Decision trees can classify some data very easily, as seen in the iris dataset
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However, data can come in many shapes and sizes. Also from the iris dataset is a
view of the data that can’t be separated by just two or three boxes. Unlike other algo‐
rithms that might define a line where all data on one side is class A and all data on the
other side is class B, tree-based algorithms must draw boxes to split up data. To
approximate a line, or a curve, you need a lot of boxes. What this means for your tree
is that you are adding more and more branches and increasing the complexity of it, as
depicted in Figure 6-7.

Figure 6-7. Using the same iris dataset, but plotting different data, you come across a
situation in which one or two boxes might not fit the data so well

Using many more boxes to split up the data into two halves can likely overfit the data
you’re trying to use for a regression or classification model, as shown in Figure 6-8.
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Figure 6-8. Classifying data with a tree-like approach can be susceptible to overfitting, as
seen with many small boxes in this plot

As we’ve seen so far, you build tree-based models by starting with a high gain
attribute and then splitting on the next highest gain attributes. In the cycling races
example at the beginning of the chapter, there are sufficient examples to build a tree
that yielded us pure samples for every leaf at the end of the tree-growing exercise. If
you had a dataset that required you to add more and more splits to the tree, the
model would become much too specific to the data with which you are training it.

If you take some sample data, split it into a train and test set, and then grow the tree
on the training model, you need to find a cut-off point to stop growing the tree.
Otherwise, if it grows too much, it won’t perform well against test data because the
training tree has become too specific to the training data and isn’t able to be general‐
ized well, as illustrated in Figure 6-9.
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Figure 6-9. Tree-based methods perform well on training data but yield diminishing
returns on test data

Pruning Trees
To keep a tree-based model from overfitting, you need to prune the least important
leaves of the tree. You can do this through the use of the rpart package. First let’s
grow a tree by using the rpart() function. This is a function that recursively parti‐
tions the data to form a tree-based model. First, let’s take a quick look at the data
you’ll be modeling, which is automobile data from the 1990 edition of Consumer
Reports:

library(rpart)

head(cu.summary)

##                 Price Country Reliability Mileage  Type
## Acura Integra 4 11950   Japan Much better      NA Small
## Dodge Colt 4     6851   Japan        <NA>      NA Small
## Dodge Omni 4     6995     USA  Much worse      NA Small
## Eagle Summit 4   8895     USA      better      33 Small
## Ford Escort   4  7402     USA       worse      33 Small
## Ford Festiva 4   6319   Korea      better      37 Small

For each vehicle in the dataset, there are features related to them that a consumer
might be interested in when making an informed purchase. Features include Price,
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which is the cost of the car in US dollars; Country of origin; Reliability scaling
from “much worse” to “average” to “much better”; Mileage in units of gallons of fuel
consumed per mile; and what Type the car is (compact, large, medium, small, sporty,
van).

Let’s grow a tree based on this data using the rpart() function (Figure 6-10):

fit <- rpart(
  Mileage~Price + Country + Reliability + Type,
   method="anova", #method="class" for classificaiton tree
  data=cu.summary
  )

plot(fit, uniform=TRUE, margin=0.1)
text(fit, use.n=TRUE, all=TRUE, cex=.8)

Figure 6-10. A simple decision tree plotted using the rpart() function from the rpart
library; here, we start with feature Price and split accordingly

Specific to the rpart() function, the method= option allows you to switch between
using a regression tree and a classification tree. In this case, you’re modeling a vehi‐
cle’s fuel efficiency, as given by the Mileage variable, which is a numeric value, so you
want a regression model as a result. You can see the result of this in Figure 6-10.
Reading from top to bottom, you first split on Price being greater than or equal to
$9,446. Then, you split on Type. Next, for the leftmost branch, split on Type again,
and for the rightmost branch at the bottom, split on Price again. rpart indicates
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what percentage of each branch is split and how many data points are in each split, as
well.

Figure 6-11 presents this tree’s error rate as a function of how many splits it has:

rsq.rpart(fit)[1]

##
## Regression tree:
## rpart(formula = Mileage ~ Price + Country + Reliability + Type,
##     data = cu.summary, method = "anova")
##
## Variables actually used in tree construction:
## [1] Price Type
##
## Root node error: 1354.6/60 = 22.576
##
## n=60 (57 observations deleted due to missingness)
##
##         CP nsplit rel error  xerror     xstd
## 1 0.622885      0   1.00000 1.02714 0.177370
## 2 0.132061      1   0.37711 0.52743 0.100904
## 3 0.025441      2   0.24505 0.39710 0.081674
## 4 0.011604      3   0.21961 0.37697 0.081364
## 5 0.010000      4   0.20801 0.39218 0.079890

Figure 6-11. Error plots versus the size of the decision tree in terms of number of splits
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Using the rsq.rpart() function gives us two plots. Figure 6-12 shows the accuracy of
the tree-based model compared with the number of splits in the tree. Figure 6-12
shows us the relative error also as a function of the number of splits in the tree. It
seems pretty clear from these two plots that the tree is pretty well tuned at splits 2 and
3, and that adding another split to get a total of 4 doesn’t seem to add much value to
the model.

Figure 6-12. The relative error from cross-validation as a function of the number of splits

To clean up the model and ensure that it isn’t being overfit, prune the less useful
leaves of the tree. A more precise way of knowing which parts to prune is to look at a
tree’s complexity parameter, often referred to as the “CP,” which you can see in
Figure 6-13:

plotcp(fit)
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Figure 6-13. You can add a dotted-line threshold that signifies the best cp value to choose
—in this case, 0.058 and a tree size of 3

The complexity parameter is the amount by which splitting that tree node will
improve the relative error. In Figure 6-13, splitting it once improved the error by
0.29, and then less so for each additional split. The dotted line on the plot is gener‐
ated by error estimations within the model and signals that you want a tree that has a
number of splits below that line, but maybe not too far beyond it to avoid overfitting.
The y-axis is the relative error for a given node, as well. You can see from the plot that
the relative error is minimized at a tree size of 4 (upper x-axis) and the complexity
parameter is below the dotted line threshold. Note that the tree size is the number of
splits in the data, not the number of terminal leaves. The general rule to follow is to
select the first complexity parameter that is beneath the dotted line. In this case,
though, you can see that there are minor gains in error evaluation to be had at the
next step in the tree size at 4, or complexity parameter equal to 0.017.

You can extract these values programmatically from the model’s cptable, as follows:

fit$cptable

##           CP nsplit rel error    xerror       xstd
## 1 0.62288527      0 1.0000000 1.0271438 0.17736964
## 2 0.13206061      1 0.3771147 0.5274319 0.10090361
## 3 0.02544094      2 0.2450541 0.3970990 0.08167442
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## 4 0.01160389      3 0.2196132 0.3769729 0.08136370
## 5 0.01000000      4 0.2080093 0.3921772 0.07988950

You can see that the error is minimized at tree size of 4. Thus, let’s use the xerror
value at 4 in the prune() function (Figure 6-14) to cut off any splits beyond that level
of complexity:

fit.pruned <- prune(fit, cp = fit$cptable[which.min(fit$cptable[,
    "xerror"]), "CP"])

par(mfrow = c(1, 2))

plot(fit, uniform = TRUE, margin = 0.1, main = "Original Tree")
text(fit, use.n = TRUE, all = TRUE, cex = 0.8)

plot(fit.pruned, uniform = TRUE, margin = 0.1, main = "Pruned Tree")
text(fit.pruned, use.n = TRUE, all = TRUE, cex = 0.8)

Figure 6-14. A pruned tree; compared to Figure 6-10, we have lopped off one branch
entirely and saved some error involved with the model as a result

This example takes the complexity parameter, cp, and passes it to the prune() func‐
tion to effectively eliminate any splits that don’t make the model reduce its error.
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Decision Trees for Regression
We’ve covered a lot of ground in this section with respect to decision trees and how to
tune them for best performance. If you want to do a simple regression model using
rpart() functionality with decision trees, you first need to grow the tree and then
prune it, as demonstrated here:

cu.summary.complete <- cu.summary[complete.cases(cu.summary),]
data.samples <- sample(1:nrow(cu.summary.complete), nrow(cu.summary.complete) * 
0.7, replace = FALSE)
training.data <- cu.summary.complete[data.samples, ]
test.data <- cu.summary.complete[-data.samples, ]

fit <- rpart(
  Mileage~Price + Country + Reliability + Type,
   method="anova", #method="class" for classification tree
  data=training.data
  )

fit.pruned<- prune(fit, cp=fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"])

prediction <- predict(fit.pruned, test.data)

output <- data.frame(test.data$Mileage, prediction)

RMSE = sqrt(sum((output$test.data.Mileage - output$prediction)^2) /
       nrow(output))
RMSE

## [1] 2.318792

Decision Trees for Classification
Repeating the exercise with rpart() for classification is trivial. All you need to do is
switch the method option from anova to class, as well as switch the response that
you’re modeling to an actual class variable:

cu.summary.complete <- cu.summary[complete.cases(cu.summary),
    ]
data.samples <- sample(1:nrow(cu.summary.complete), nrow(cu.summary.complete) *
    0.7, replace = FALSE)
training.data <- cu.summary.complete[data.samples, ]
test.data <- cu.summary.complete[-data.samples, ]

fit <- rpart(Type ~ Price + Country + Reliability + Mileage,
    method = "class", data = training.data)

fit.pruned <- prune(fit, cp = fit$cptable[which.min(fit$cptable[,
    "xerror"]), "CP"])

prediction <- predict(fit.pruned, test.data, type = "class")
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table(prediction, test.data$Type)

##
## prediction Compact Large Medium Small Sporty Van
##    Compact       2     0      1     1      2   0
##    Large         0     0      0     0      0   0
##    Medium        1     1      2     0      1   0
##    Small         0     0      0     4      0   0
##    Sporty        0     0      0     0      0   0
##    Van           0     0      0     0      0   0

Conditional Inference Trees
A slightly different type of decision tree is a conditional inference tree. Previously, we
saw how to grow and prune a decision tree as built from the rpart() function in R.
That function builds a tree by selecting features with high values related to informa‐
tion gain. In many cases, we need to prune those types of trees to keep them from
being overfit and having a bit too much error per tree split.

In contrast, a conditional inference tree follows very similar logic, but the way we
split the tree is slightly different. A conditional inference tree will lean more heavily
on robust statistical tests for a given feature to determine its statistical significance.

We can see this illustrated by plotting a conditional inference tree from a model fit
using the ctree() function from the happily named party package, as depicted in
Figure 6-15:

library(party)

fit2 <- ctree(Mileage ~ Price + Country + Reliability + Type,
    data = na.omit(cu.summary))

plot(fit2)
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Figure 6-15. A decision tree plotted using the ctree() function from the party library

Like many R packages, some are better for plotting than others. Although there are
options to make trees made from rpart() plots prettier, ctree() makes better look‐
ing visuals out of the box. In Figure 6-15, you can see a tree comprising two features,
Price and Type, that are being split. The splitting criteria can be found on the
branches like always, but there’s a new parameter: the p-value. These are the values
inside the bubbles that show the feature on which we’re splitting. A p-value is a tool
for measuring how statistically significant something is. The rule that statisticians fol‐
low is that a p-value below 0.05 is considered statistically significant. No pruning for
this particular type of tree is necessary, because that is built in to the statistical proce‐
dures that select the features to split on in the first place, saving you a step of calcula‐
tion down the line.

Likewise, if you want to plot the tree for a classification scheme, instead, all you
would need to do is provide a factor variable response and repeat the same plotting
procedure, as demonstrated in Figure 6-16:

fit3 <- ctree(Type ~ Price + Country + Reliability + Mileage,
    data = na.omit(cu.summary))

plot(fit3)
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Figure 6-16. A classification model from the ctree() function plotted can sometimes have
outputs that are difficult to view when there are many classes involved

If you have many factor variables, plotting the tree can be a little cumbersome
because the plot by default includes values that are zero for a given split of the data.

Conditional Inference Tree Regression
Running a regression model using conditional inference trees will look familiar.
Given that almost all machine learning models in R follow the same basic pattern of
“function(response ~ features),” it should come as no surprise that performing regres‐
sion using ctree will follow the same formula:

set.seed(123)

cu.summary.complete <- cu.summary[complete.cases(cu.summary),
    ]
data.samples <- sample(1:nrow(cu.summary.complete), nrow(cu.summary.complete) *
    0.7, replace = FALSE)
training.data <- cu.summary.complete[data.samples, ]
test.data <- cu.summary.complete[-data.samples, ]

fit.ctree <- ctree(Mileage ~ Price + Country + Reliability +
    Type, data = training.data)

prediction.ctree <- predict(fit.ctree, test.data)
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output <- data.frame(test.data$Mileage, prediction.ctree)

RMSE = sqrt(sum((output$test.data.Mileage - output$Mileage)^2)/nrow(output))
RMSE

## [1] 3.37476

Conditional Inference Tree Classification
Performing a classification model in R is just as easy. Because you’ve already done the
process with a regression example, all you need to do for a classification example is
change the response you’re using from a numeric to a categorical one:

set.seed(456)

data.samples <- sample(1:nrow(cu.summary), nrow(cu.summary) *
    0.7, replace = FALSE)
training.data <- cu.summary[data.samples, ]
test.data <- cu.summary[-data.samples, ]

fit.ctree <- ctree(Type ~ Price + Country + Reliability + Mileage,
    data = training.data)

prediction.ctree <- predict(fit.ctree, test.data)

table(test.data$Type, prediction.ctree)

##          prediction.ctree
##           Compact Large Medium Small Sporty Van
##   Compact       2     0      5     1      0   0
##   Large         1     0      1     0      0   1
##   Medium        2     0      5     0      0   0
##   Small         2     0      0     4      0   0
##   Sporty        7     0      0     2      0   1
##   Van           1     0      0     0      0   1

Random Forests
The tree-based methods we’ve dealt with so far have all been a single tree. That is, the
“if-then” logic of starting with a feature, splitting based on value ranges in that fea‐
ture, and then moving down the tree to a final result is how a single decision tree
works. One of the most cutting-edge forms of machine learning is a random forest.
Instead of growing one single tree, we’re going to grow N different trees. We get dif‐
ferent trees by randomizing our inputs to the algorithm that builds the trees for us.

Each tree will have some kind of output based on the feature splits in the data, like
we’ve seen for tree-based models thus far. The difference is that we take the results
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from each tree and tally which output has the most votes. The output with the most
votes becomes the output for the forest.

In an example of classification, we might have a group of trees that look like that
shown in Figure 6-17.

Figure 6-17. An example of how a random forest model works

We have three trees, each with a class A or B output. Notice that the trees have differ‐
ent features on which they might be splitting, as well. Because you are building the
trees from random subsets of your starting data, various subsets might have different
splitting parameters than other subsets.

The next step would be to pass some kind of input into the forest of three trees. Sup‐
pose that after you pass the input into each tree, you get a prediction like this:

• Tree 1: A
• Tree 2: B
• Tree 3: A

You then take a majority vote of the classes that are output from the trees to get the
final answer from the random forest. In this case, the answer for the forest would be
class A.

Random Forest Regression
Regression with random forests in R is as easy as replacing what feature you’re mod‐
eling on as the response. All you need to do in this case to change from a conditional
inference tree to a random forest is change the function call that you’re using on the
training data, as demonstrated here:

library(randomForest)
set.seed(123)

cu.summary.complete <- cu.summary[complete.cases(cu.summary),
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    ]
data.samples <- sample(1:nrow(cu.summary.complete), nrow(cu.summary.complete) *
    0.7, replace = FALSE)
training.data <- cu.summary.complete[data.samples, ]
test.data <- cu.summary.complete[-data.samples, ]

fit.rf <- randomForest(Mileage ~ Price + Country + Reliability +
    Type, data = training.data)

prediction.rf <- predict(fit.rf, test.data)

output <- data.frame(test.data$Mileage, prediction.rf)

RMSE = sqrt(sum((output$test.data.Mileage - output$prediction.rf)^2)/
       nrow(output))
RMSE

## [1] 3.260948

Random Forest Classification
Likewise, setting up code in R for classification with random forests is as easy as
before, but you just set the function specifically to randomForest():

set.seed(456)

cu.summary.complete <- cu.summary[complete.cases(cu.summary),
    ]
data.samples <- sample(1:nrow(cu.summary.complete), nrow(cu.summary.complete) *
    0.7, replace = FALSE)
training.data <- cu.summary.complete[data.samples, ]
test.data <- cu.summary.complete[-data.samples, ]

fit.rf <- randomForest(Type ~ Price + Country + Reliability +
    Mileage, data = training.data)

prediction.rf <- predict(fit.rf, test.data)

table(test.data$Type, prediction.rf)

##          prediction.rf
##           Compact Large Medium Small Sporty Van
##   Compact       3     0      1     0      0   0
##   Large         0     0      1     0      0   0
##   Medium        0     0      1     0      0   0
##   Small         0     0      0     4      0   0
##   Sporty        1     0      0     0      2   0
##   Van           0     0      0     0      1   1
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Summary
In this chapter, we discussed machine learning models in R related to tree-based
methods. A tree can be as simple as a pictographic representation of “if-then” state‐
ments but modeled in a top-down fashion where you move along branches of the tree
depending on the outcome of those statements.

Tree-based models in general are useful because of their ability to handle missing data
and outliers, and they’re reasonably compact. Their primary strength lies in simplic‐
ity, though. It’s a lot easier to draw a decision tree on a whiteboard than it would be
for many other machine learning algorithms.

Decision tree algorithms work by ranking the features in a dataset by a specific
parameter, sometimes by information gain, other times by statistical measurements
like p-values. You start a tree with the most important variable, then split it based on
conditions, and repeat as necessary. In some cases you might need to prune your trees
to keep them from having too many branches and becoming overfit to the data with
which you are training them.

Finally, we touched on random forest machine learning. A random forest is a collec‐
tion of different decision trees generated from random starting data, which is taken as
random subsets from your training set. These trees will then each take input data and
give a guess as to what they think the answer is. When all the trees in the forest have
an answer, a final answer is determined by majority vote.
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CHAPTER 7

Other Advanced Methods

In this chapter, we show off a miscellany of machine learning models available in R.
Even though the main algorithms that we’ve covered thus far really make up the
majority of models, I wanted to include this chapter to provide a comprehensive view
of the machine learning ecosystem in R.

We cover classification again, but through the lens of Bayesian statistics. This is a
popular field of statistics and helps to transition to some other algorithms that
depend on similar logic. We also cover principal component analysis, support vector
machines, and k-nearest neighbor algorithms.

Naive Bayes Classification
One way to do classification with probabilities is through the use of Bayesian statis‐
tics. Although this field can have a rather steep learning curve, essentially we are try‐
ing to answer the question, “Based on the features we have, what is the probability
that the outcome is class X?” A naive Bayes classifier answers this question with a
rather bold assumption: all of the predictors we have are independent of one another.
The advantage to doing this is that we drastically reduce the complexity of the calcu‐
lations we’re doing.

Bayesian Statistics in a Nutshell
Bayesian statistics relies a lot on multiplication of probabilities. Let’s do a quick pri‐
mer on this so you’re up to speed. Suppose that I ride my bike in 100 races and I win
54 of them (if only!). The probability of me winning a race, therefore, is just the num‐
ber of times I’ve won divided by the total number of occurrences:

P win = 54/100 = 54 %

159



Now let’s talk about independent and dependent probabilities. Suppose that I want to
learn the probability of me winning a bike race and the probability of a wind storm
occurring on Mars. These two things are completely independent of each other, given
that there being a wind storm on Mars could not possibly affect the result of my bike
race, and vice versa. Let’s assume that the probability of a wind storm on Mars is 20%.
To calculate the probability of both of these independent things happening, we just
multiply them:

P(win and Mars) = P(win) × P(Mars) = 54% × 20% = 10.8%

However, if two events are dependent, we need to use a slightly different approach.
Consider a deck of cards. The probability of me picking any queen is 4/52. The prob‐
ability of me picking any ace after picking out a queen, however, is dependent,
because we just removed a card from the deck; thus, probability would now be 4/51.
The probability would be defined like this:

P(Queen and Ace) = P(Queen) × P(Ace | Queen) = (4/52) × (4/51) = 0.6%

We can rewrite our probability like this:

P A and B = P A * P B | A

and rearrange to give it another form:

P A and B = P A * P B | A

P A and B
P A = P B | A

P B * P A | B
P A = P B | A

In plain English, this is what these steps say:

1. Start with the probability of A and B, which is the probability of A multiplied by
the probability of B, given A.

2. Divide the probability of A and B by just the probability of A.
3. Replace the probability of A and B on the left side with the starting definition.

What we have as a result is the naive Bayes formula. This tells us the conditional
probabilities of an event given prior information or evidence about the features that
we’re looking at. The “naive” part comes from the bold assertion that the features we
are interested in are independent.
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Application of Naive Bayes
Let’s apply this mathematical formulation in R. The library e1071 has a useful func‐
tion, naiveBayes(), for building models of this type. By using the aforementioned
Bayes rule, you can calculate conditional probabilities of a categorical class. In this
case, let’s use data related to breast cancer studies done by the University of Wiscon‐
sin Hospitals and Clinics. There are nine features in this dataset, with one column
being an ID value that is of no interest, and one other column being the Class desig‐
nation for the type of cell, where 2 represents a benign cell and 4 represents a malig‐
nant cell. The rest of the features pertain to the cell being studied, with features like
“Uniformity of Cell Size” and “Single Epithelial Cell Size.” Here’s the code:

# https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-
wisconsin/

library(e1071)

breast_cancer <- data.frame(read.table("breast_cancer.txt", header = T,
    sep = "\t"))

names(breast_cancer) <- c("SampleCodeNumber", "ClumpThickness",
    "UniformityofCellSize", "UniformityofCellShape", "MarginalAdhesion",
    "SingleEpithelialCellSize", "BareNuclei", "BlandChromatin",
    "NormalNucleoli", "Mitoses", "Class")

breast_cancer <- data.frame(sapply(breast_cancer, as.factor))

breast_cancer_features <- breast_cancer[, 2:11]

nb.model <- naiveBayes(Class ~ ., data = breast_cancer_features)

print(nb.model)
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What you see as an output from the model are a couple of different properties. First,
there are the “a-priori probabilities,” which inform you about the class distribution
for the dependent variable that you’re modeling.

The second property is the “conditional probabilities.” This is a list of tables, one for
each predictor variable. Note in the image that I’ve truncated the output so that it
doesn’t totally dominate the page with output from all the different features. However,
for each of the features, there are condition probabilities for the factors of the
response. So, for example, the ClumpThickness feature has 10 different categorical
variables in it. For each one of those categories, there are the conditional probabilities
of cell class. Recall that class 2 means the cell is benign, whereas class 4 indicates that
it’s malignant. This tabular output lets you see in fine granular detail the naive Bayes
probabilities for each of the features.

The next logical step is to utilize this algorithm for predictive purposes. You can do
this by following the same tried-and-true method of splitting the data into training
and test sets, modeling on the training set, and then outputting a confusion matrix of
the predictor variable:

breast_cancer_complete <-
    breast_cancer_features[complete.cases(breast_cancer_features),
    ]
breast_cancer_complete$Class <- as.factor(breast_cancer_complete$Class)
data.samples <- sample(1:nrow(breast_cancer_complete),
    nrow(breast_cancer_complete) *
    0.7, replace = FALSE)

training.data <- breast_cancer_complete[data.samples, ]
test.data <- breast_cancer_complete[-data.samples, ]

nb.model <- naiveBayes(Class ~ ., data = training.data)

prediction.nb <- predict(nb.model, test.data)

table(test.data$Class, prediction.nb)

##    prediction.nb
##       2   4
##   2 129   4
##   4   0  72

Here, we see that the naive Bayes model seems to work pretty well, giving us a fairly
accurately predicted output.
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Principal Component Analysis
Principal component analysis (PCA) is a kind of machine learning that we use as a
data preprocessing step to help with a few different approaches. In many cases of data
analysis, we might have features that are highly correlated with one another. If we
were to blast that data with a machine learning model without any kind of feature
selection beforehand, we might get some extra error in our modeling procedure
because some of our features could be highly correlated.

For example, if you want to model sales of a product as a function of econometrics of
various countries, you might have some data that could have features like Country,
Year, Population, Percent of Broadband Users, Percent of Urban Population,
GDP, GDP Per capita, Poverty Index, Life Expectancy, and so forth. In theory,
some of these values are very dependent on one another, like GDP and Population. In
some cases, they might be linearly correlated. The function of PCA in this case would
be to reduce that correlation between GDP and Population to just one feature, which
would be the functional relation between the two.

If you had some kind of example dataset with 30 or 40 features, but most of them
were highly correlated with one another, you could run a PCA algorithm on it and
reduce the data to just two features. This would reduce the computational complexity
of the dataset considerably.

Using PCA, you could reduce your data from something that looks like this

head(mtcars)

##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

to a more compact form, like this:

##                          x1       x2
## Mazda RX4         1.5560338 2.391719
## Mazda RX4 Wag     1.1481763 2.754611
## Datsun 710        0.2824424 2.622031
## Hornet 4 Drive    3.7019535 2.806743
## Hornet Sportabout 3.2649748 2.483172
## Valiant           4.1630202 2.048424

PCA’s usefulness for dimensionality reduction of data can be helpful for visualizing
complex data patterns. Human brains are very adept at visualization and we can read
a two-dimensional chart very well. Three-dimensional visualizations can be easily
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discerned by the brain in real life but are a bit trickier to see on a computer screen,
which itself is a two-dimensional plane. PCA can help us take complex data and visu‐
alize it in a more compact space for easier analysis. Figure 7-1 shows an example of
data that could use a PCA pass:

pairs(mtcars[, 1:7], lower.panel = NULL)

Figure 7-1. A selection of variables from the mtcars dataset; you can use PCA to find
correlations in the data and reduce the complexity of the dataset for future processing

In the mtcars dataset, there is a good number of features, some of which look like
they might be correlated with one another. A good general practice before applying
PCA is to take a glance at your data and see whether there are indeed any values that
look like they might be correlated.

At first glance of the data, it looks like there are some well-correlated values, with
many of them corresponding to the vehicle’s weight variable, wt. Let’s walk through
how you can reduce some of these variables’ dependencies and generate a more sim‐
plified picture of the data.
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In R, there are two functions that are pretty similar in terms of syntax that can do
PCA out of the box: princomp and prcomp. One of your first objectives is to visualize
how much of the variance a certain number of principal components can explain in
your data. The princomp function has some simple built-in functionality that lends
itself better for plotting, so let’s use princomp for the moment:

pca <- princomp(mtcars, scores = TRUE, cor = TRUE)

You can use the argument score to store some data used for scoring each component,
which we’ll come to in a second. The cor argument aligns with using a correlation
matrix for calculations instead of a covariance matrix. The differences are subtle and
kind of dependent on the data or the type of calculation that you want to do, but we’ll
be getting too deep into the statistical weeds going down that road, so just use the
correlation matrix for now.

Let’s take a look at the output from the pca object:

summary(pca)

## Importance of components:
##                           Comp.1    Comp.2     Comp.3     Comp.4
## Standard deviation     2.5706809 1.6280258 0.79195787 0.51922773
## Proportion of Variance 0.6007637 0.2409516 0.05701793 0.02450886
## Cumulative Proportion  0.6007637 0.8417153 0.89873322 0.92324208
##                            Comp.5     Comp.6     Comp.7     Comp.8
## Standard deviation     0.47270615 0.45999578 0.36777981 0.35057301
## Proportion of Variance 0.02031374 0.01923601 0.01229654 0.01117286
## Cumulative Proportion  0.94355581 0.96279183 0.97508837 0.98626123
##                             Comp.9     Comp.10     Comp.11
## Standard deviation     0.277572792 0.228112781 0.148473587
## Proportion of Variance 0.007004241 0.004730495 0.002004037
## Cumulative Proportion  0.993265468 0.997995963 1.000000000

This table shows how important each of these mysterious principal components are
to the overall dataset. The row that you’re most interested in is the Proportion of
Variance, which tells you how much of the data is explained by that principal com‐
ponent. The components are always sorted by how important they are, so the most
important components will always be the first few. In the preceding output, you can
see that component 1 explains 60% of the data, with component 2 coming in at 24%,
and then a steep drop-off for the rest. If you want to represent this data graphically,
follow the example shown in Figure 7-2:

plot(pca)
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Figure 7-2. The variances of our various components; this is a more visual way to see
how much our main components explain the data

This plot of component importance indicates that the main first component explains
a large chunk of the data. Combined with component 2, this explains upward of 84%
of the dataset with just two features instead of the 11 that we started with.

But these principal components sound kind of mysterious. What does component 1
mean to us as humans or decision makers? In PCA, you can look at the loadings to
see how much of each variable is contained in each component that you’re looking at:

pca$loadings[, 1:5]

##          Comp.1      Comp.2      Comp.3       Comp.4      Comp.5
## mpg   0.3625305 -0.01612440 -0.22574419 -0.022540255 -0.10284468
## cyl  -0.3739160 -0.04374371 -0.17531118 -0.002591838 -0.05848381
## disp -0.3681852  0.04932413 -0.06148414  0.256607885 -0.39399530
## hp   -0.3300569 -0.24878402  0.14001476 -0.067676157 -0.54004744
## drat  0.2941514 -0.27469408  0.16118879  0.854828743 -0.07732727
## wt   -0.3461033  0.14303825  0.34181851  0.245899314  0.07502912
## qsec  0.2004563  0.46337482  0.40316904  0.068076532  0.16466591
## vs    0.3065113  0.23164699  0.42881517 -0.214848616 -0.59953955
## am    0.2349429 -0.42941765 -0.20576657 -0.030462908 -0.08978128
## gear  0.2069162 -0.46234863  0.28977993 -0.264690521 -0.04832960
## carb -0.2140177 -0.41357106  0.52854459 -0.126789179  0.36131875
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These values are the correlations between the principal component and the features
with which you started. This example shows just the first five principal components
to save space, as components 6 through 9 are not really that useful anyway.

The closer the correlation number is to 1 or –1 for each combination of component
and feature, the more that feature is important to that component. Let’s look at com‐
ponent 1. This one has a balance of all the starting features, with mpg being the domi‐
nant positive value, and cyl being the dominant negative value. Component 2 is
mostly dominated by the variables qsec, gear, and am, in that order. Likewise for the
rest of the components.

So, if you had to ascribe some sort of relation between the components and the fea‐
tures, you would say that:

• Component 1 is correlated to mpg and cyl
• Component 2 is correlated to qsec, gear, and am

If you wanted to see this kind of information in a more graphical sense, you can plot
the scores of the principal components, as shown in Figure 7-3:

scores.df <- data.frame(pca$scores)
scores.df$car <- row.names(scores.df)

plot(x = scores.df$Comp.1, y = scores.df$Comp.2, xlab = "Comp1 (mpg,cyl)",
    ylab = "Comp2 (qsec, gear, am)")

text(scores.df$Comp.1, scores.df$Comp.2, labels = scores.df$car,
    cex = 0.7, pos = 3)
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Figure 7-3. A plot of the data as a function of the two principal components; cars on this
plot that are grouped together are very similar to one another based on the components
used to describe them

What we’ve done as this last stage is to show that a lot of the data can be compressed
into two principal components: one having to do mostly with the mpg and cyl vari‐
ables, and the other being a combination of qsec, gear, and am variables. In
Figure 7-3, you can see that some cars fall into certain ends of the spectrum versus
others and might be very well related to one another based on many factors that are
compressed into just one or two variables.

Notice that the values of the axes here are also somewhat different than the starting
variable values. This is because some PCA algorithms have built-in feature scaling
techniques that make sure all of the variables are within the same range of one
another for comparison’s sake; otherwise, if you had one variable (like the vehicle’s
weight) that could be hundreds or thousands of times bigger than another variable
(like number of cylinders), the analysis could be very misleading. With the princomp
function, this feature scaling is built in, but other PCA algorithms in R might require
you to explicitly enable scaling.
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Linear Discriminant Analysis
PCA seeks to find a series of vectors that describe variance in the data. For example,
you might have some data described by two features, X and Y, that you can plot. You
can find a couple vectors that explain how much the data varies in one direction ver‐
sus an orthogonal direction to the first vector, as depicted in Figure 7-4.

Figure 7-4. Principal components describe the variance in the data; here, there are two
component vectors, with the principal component being the one describing the longer of
the two axes in the data

More complex datasets might have more features and more vectors, but the idea is
the same. In contrast, a different way to do feature analysis would be with linear dis‐
criminant analysis (LDA). In this case, you might have some data that is a function of
X and Y, again, but this time, as Figure 7-5 shows, you want to classify them into dif‐
ferent groups based on how their data are distributed.
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Figure 7-5. LDA describes how best to separate data based on classes; here, there is a set
of data that’s effectively split by the distributions along the X-axis and Y-axis, respec‐
tively

In Figure 7-5, there is some data that’s plotted, but separated into two classes. The +
data has a distribution across the X-axis, as does the other data. The data on the Y-
axis, though, is not distinguished by different classes in this case.

Let’s see how these two models compare against each other for classification purposes
by running them against the familiar iris dataset. Begin by using PCA on the iris
data and then look at the total variance attributed to each of the components, starting
with using the prcomp function:

iris.pca <- prcomp(iris[, -5], center = T, scale. = T)
iris.pca$sdev^2/sum(iris.pca$sdev^2)

## [1] 0.729624454 0.228507618 0.036689219 0.005178709

Here, PCA informs you that you have basically two major components. Component 1
describes the variance of 72% of the data, and component 2 describes 23% of the var‐
iance in the data. These two vectors combined describe a good 96% of the data; you
can ignore the other components for the time being (to keep the visualizations a bit
simpler).

Before jumping headlong into LDA, we first need to establish what the prior distribu‐
tion of data is. We briefly touched on this subject while discussing Bayesian statistics.
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For a quick refresh, the prior distribution is the distribution of the data that you’re
modeling, essentially. In some cases, you don’t know for sure what the distribution
might be, but you do in this case. Because you are running a classification model on
the iris data, the only class type of data that you have is related to the Species vari‐
able. You can see what the prior distribution would be in this case by looking at that
specific variable:

table(iris$Species)

##
##     setosa versicolor  virginica
##         50         50         50

Here, there are three classes, all equally distributed. The prior distribution in this case
would be (1/3) for each class. You need to specify this as a vector when training the
LDA model. After you do that, you can look at how the LDA corollary to principal
components compare by doing basically the same mathematical approach:

library(MASS)

iris.lda <- lda(Species ~ ., data = iris, prior = c(1/3, 1/3,
    1/3))
iris.lda$svd^2/sum(iris.lda$svd^2)

## [1] 0.991212605 0.008787395

The output here shows that there are two singular values, the first one describing a
whopping 99% of the variance in the data and the other one a lowly 0.8%. If you want
to see how the two linear discriminants are related to each of the features in the data
in a similar fashion to how you did it with PCA, you can simply call the scalings:

iris.lda$scaling

##                     LD1         LD2
## Sepal.Length  0.8293776  0.02410215
## Sepal.Width   1.5344731  2.16452123
## Petal.Length -2.2012117 -0.93192121
## Petal.Width  -2.8104603  2.83918785

Next, you can do the usual confusion matrix to see how well the LDA model com‐
pares with the actual answers for the iris species data:

iris.lda.prediction <- predict(iris.lda, newdata = iris)

table(iris.lda.prediction$class, iris$Species)

##
##              setosa versicolor virginica
##   setosa         50          0         0
##   versicolor      0         48         1
##   virginica       0          2        49
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The LDA model seems to be pretty spot-on. Next, you can try to visualize the differ‐
ence between PCA and LDA. Let’s recall the formulations with these two models.
PCA is an unsupervised learner. We don’t tell PCA to try to separate our data based
on a certain class, it just goes about its business doing so. On the other hand, with
LDA, we do need to specify a class by which to separate, and therefore the latter is a
supervised model.

Supervised models will tend to be better at separating data than unsupervised ones.
Figure 7-6 tests this by comparing the outputs from PCA compared to LDA:

combined <- data.frame(Species = iris[, "Species"], pca = iris.pca$x,
    lda = iris.lda.prediction$x)

library(ggplot2)

library(gridExtra)
lda.plot <- ggplot(combined) + geom_point(aes(lda.LD1, lda.LD2,
    shape = Species)) + scale_shape_manual(values = c(0, 1, 2))

pca.plot <- ggplot(combined) + geom_point(aes(pca.PC1, pca.PC2,
    shape = Species)) + scale_shape_manual(values = c(0, 1, 2))

grid.arrange(pca.plot, lda.plot)

Figure 7-6. A comparison of PCA versus LDA
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Figure 7-6 shows PCA on top and LDA on the bottom. The goal here is to see how
well each model separates your data. In PCA, notice that the setosa data is well sepa‐
rated from the rest, but the versicolor data seems to have some overlap with the
virginica data at around the pca.PC1=1.5 range. In comparison, LDA also separates
the setosa data well, but it looks like it performs better at keeping the overlap
between versicolor and virginica to a minimum.

Support Vector Machines
Support vector machines, known better as SVMs, are a machine learning model that
use hyperplanes to separate data. To separate and partition our data, we find some
kind of plane (or in the cases of two-dimensional data, a line) that separates them and
use the vectors that maximize the separation in the data, as illustrated in Figure 7-7.

Figure 7-7. A plot of a simple SVM algorithm applied onto some example data; a plane,
or a line, separates our data with two support vectors yielding the maximum distance of
separation between the two types of data and the plane itself

SVMs work by employing something called the “kernel trick.” This is a method by
which we can transform the data for which we are trying to draw a decision bound‐
ary, and then apply a hyperplane separation on that transformed data.

For example, if we had data in a bull’s eye, with a small clump surrounded by a ring,
this would be impossible to separate by using a line or a two-dimensional surface.
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Instead, if we transform the data into polar coordinates, we can then separate the data
easily using a hyperplane. In practice, this transformation is more or less a black box
because the feature space can be quite complex, but the idea is still the same.

In Figure 7-8, you can see the vectors that partition the data by coming back to our
favorite iris dataset:

library("e1071")

s <- sample(150, 100)
col <- c("Petal.Length", "Petal.Width", "Species")
iris_train <- iris[s, col]
iris_test <- iris[-s, col]

svmfit <- svm(Species ~ ., data = iris_train, kernel = "linear",
    cost = 0.1, scale = FALSE)

plot(svmfit, iris_train[, col])

Figure 7-8. A plot of the data with SVM classification and boundaries overlaid

What we see as a result in Figure 7-8 are the classification boundaries as denoted by
the SVM training model. It’s pretty clear that the data in the lower left can be easily
separated from the rest and be classified appropriately, but there might be some fine-
tuning required to separate the versicolor and virginica data. The Xs on the plot
show the support vectors and the bands show the predicted class regions.
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You can use the tune function to help find the best cost parameter for optimal tuning
with the SVM:

tuned <- tune(svm, Species ~ ., data = iris_train, kernel = "linear",
    ranges = list(cost = c(0.001, 0.01, 0.1, 1, 10, 100)))

summary(tuned)

##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
##  cost
##     1
##
## - best performance: 0.04
##
## - Detailed performance results:
##    cost error dispersion
## 1 1e-03  0.70 0.09428090
## 2 1e-02  0.37 0.16363917
## 3 1e-01  0.05 0.05270463
## 4 1e+00  0.04 0.06992059
## 5 1e+01  0.05 0.07071068
## 6 1e+02  0.05 0.07071068

This reveals that the best cost parameter to use is 1, with which you can then rerun
the model, as shown in Figure 7-9:

svmfit <- svm(Species ~ ., data = iris_train, kernel = "linear",
    cost = 1, scale = FALSE)

plot(svmfit, iris_train[, col])
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Figure 7-9. A tuned SVM will have a slightly better fit to the data than an untuned one

You can use SVM classification for nonlinear decision boundaries, as well. In earlier
examples, you’ve seen how some machine learning algorithms separate data based
only on straight lines. For example, logistic regression separates data using straight
lines, and decision trees also separate data by using straight lines, but by drawing
boxes around the data.

SVMs are useful because they can employ a method known as the “kernel trick” to
transform our data, then perform operations on that transformed data. What this
allows is for us to draw curves around our data instead of just straight lines in order
to get better fits. The downside, however, comes with model explainability. Like neu‐
ral networks, we can pass data through an SVM and get some meaningful output, but
describing the process by which the transformations occur can often be swept under
the moniker of a “black box” operation.

Let’s take a look at Figure 7-10, which shows how you can employ SVMs to draw
curved decision boundaries for classification. For this example, let’s load the cats
dataset from the MASS package:

plot(x = cats$Hwt, y = cats$Bwt, pch = as.numeric(cats$Sex))
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Figure 7-10. A plot of the cats data from the MASS package

At first glance, it looks like it will be tough to separate the male cats (triangles) from
the female cats (circles). What you can do here is to run another SVM model on this
data; this will automatically produce a nonlinear boundary that you can see in
Figure 7-11:

library(MASS)
library(e1071)
data(cats)
model <- svm(Sex ~ ., data = cats)

print(model)

##
## Call:
## svm(formula = Sex ~ ., data = cats)
##
##
## Parameters:
##    SVM-Type:  C-classification
##  SVM-Kernel:  radial
##        cost:  1
##       gamma:  0.5
##
## Number of Support Vectors:  84
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summary(model)

##
## Call:
## svm(formula = Sex ~ ., data = cats)
##
##
## Parameters:
##    SVM-Type:  C-classification
##  SVM-Kernel:  radial
##        cost:  1
##       gamma:  0.5
##
## Number of Support Vectors:  84
##
##  ( 39 45 )
##
##
## Number of Classes:  2
##
## Levels:
##  F M

plot(model, cats)

Figure 7-11. The same cats data with the SVM overlay; the SVM is capable of drawing a
nonlinear classification boundary on the data, which can be useful when you’re trying to
create decision boundaries for data that overlaps
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Finally, you can use SVM classification in the standard confusion matrix to see how
well the data lines up:

data.samples <- sample(1:nrow(cats), nrow(cats) * 0.7, replace = FALSE)
training.data <- cats[data.samples, ]
test.data <- cats[-data.samples, ]

svm.cats <- svm(Sex ~ ., data = training.data)
prediction.svm <- predict(svm.cats, test.data[, -1], type = "class")

table(test.data[, 1], prediction.svm)

##    prediction.svm
##      F  M
##   F 10  7
##   M  6 21

k-Nearest Neighbors
k-nearest neighbors (kNN) is a rather simple machine learning algorithm that basi‐
cally takes all the available cases in our data and predicts a target based on some kind
of similarity measure—in this case, distance.

We can show how this works with a brief example. Suppose that I’m trying to find a
new bike to fit me. Bikes come in a variety of configurations that can have very differ‐
ent measurements depending on the size and style of fit that I want. There might be
10 or more different measurements that describe the perfect fit for me. However,
going to a bike shop and trying out different bikes takes time and I’d rather use a
mathematical approach to guess how well a bike will fit without leaving my house.

Table 7-1 collects five measurements for a group of bikes from online manuals.

Table 7-1. Five measurements for a series of bikes

bike m1 m2 m3 m4 m5
my bike 25 30 11.2 12 7

test1 27 34 7 12 8

test2 22 35 12 15 8

test3 18 39 9 24 8

test4 27 39 8 28 8

test5 29 34 8 24 8

test6 11 38 8 20 7

test7 25 31 10 12 8

test8 25 33 9 21 9

test9 26 34 14 23 7

test10 27 30 12 17 9
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A very important step is to first normalize the values in the table. Doing so puts all
the measurements on an equal playing field, so if some measurements are very small,
they are not forgotten among the larger magnitude measurements. We do this by
simply dividing each measurement by the sum of the measurements in that column,
as illustrated in Table 7-2.

Table 7-2. Normalized bike measurements

bike m1 m2 m3 m4 m5 fit dist
my bike 0.0954 0.1145 0.0427 0.0458 0.0267 0.1639 0.0000

test1 0.1031 0.1298 0.0267 0.0458 0.0305 0.1766 0.0127

test2 0.0840 0.1336 0.0458 0.0573 0.0305 0.1766 0.0127

test3 0.0687 0.1489 0.0344 0.0916 0.0305 0.1933 0.0294

test4 0.1031 0.1489 0.0305 0.1069 0.0305 0.2146 0.0507

test5 0.1107 0.1298 0.0305 0.0916 0.0305 0.1984 0.0345

test6 0.0420 0.1450 0.0305 0.0763 0.0267 0.1740 0.0101

test7 0.0954 0.1183 0.0382 0.0458 0.0305 0.1661 0.0022

test8 0.0954 0.1260 0.0344 0.0802 0.0344 0.1837 0.0198

test9 0.0992 0.1298 0.0534 0.0878 0.0267 0.1948 0.0309

test10 0.1031 0.1145 0.0458 0.0649 0.0344 0.1767 0.0128

For each bike, there are measurements m1 through m5, a calculated field of fit and a
simple distance dist. In kNN distance measuring, we use the Euclidean distance
measurement given by the following:

d = m12 + m22 + m32+ . . .

This defines the fit field in Table 7-2. After we have the measurement for the bike’s
fit, we can see how far away from that baseline the bikes are by simply taking the dif‐
ference between what bike we’re interested in and the baseline. This is the dist value
in the table. We then sort by dist and the value that’s closest to the baseline is the
nearest neighbor. If we wanted k bikes that were the best fit, maybe the top three, for
example, we would simply take the top three bikes that aren’t our baseline.

For a regression example, the kNN algorithm calculates the average of our response
variable for the kNNs. The mathematical underpinnings are the same for classifica‐
tion, but tweaked slightly because those are categorical instead of numeric values.

Let’s go through a simple example from the venerable mtcars dataset:

knn.ex <- head(mtcars[, 1:3])
knn.ex
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##                    mpg cyl disp
## Mazda RX4         21.0   6  160
## Mazda RX4 Wag     21.0   6  160
## Datsun 710        22.8   4  108
## Hornet 4 Drive    21.4   6  258
## Hornet Sportabout 18.7   8  360
## Valiant           18.1   6  225

If you wanted to find the kNNs to the final row for the “Valiant” car based on the mpg
feature, you would find what the Euclidean distance is between all the other features:

knn.ex$dist <- sqrt((knn.ex$cyl - 6)^2 + (knn.ex$disp - 225)^2)
knn.ex[order(knn.ex[, 4]), ]

##                    mpg cyl disp     dist
## Valiant           18.1   6  225   0.0000
## Hornet 4 Drive    21.4   6  258  33.0000
## Mazda RX4         21.0   6  160  65.0000
## Mazda RX4 Wag     21.0   6  160  65.0000
## Datsun 710        22.8   4  108 117.0171
## Hornet Sportabout 18.7   8  360 135.0148

This example takes the values for the “Valiant” car that aren’t the feature you’re trying
to model and calculates the Euclidean distance between them. This example shows
the five nearest neighbor data points based on the selected features.

Regression Using kNN
Figure 7-12 demonstrates running a regression model with the kNN algorithm:

library(caret)

data(BloodBrain)

inTrain <- createDataPartition(logBBB, p = 0.8)[[1]]

trainX <- bbbDescr[inTrain, ]
trainY <- logBBB[inTrain]

testX <- bbbDescr[-inTrain, ]
testY <- logBBB[-inTrain]

fit <- knnreg(trainX, trainY, k = 3)

plot(testY, predict(fit, testX))
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Figure 7-12. A plot of error estimation for the data from kNN regression

Classification Using kNN
Using kNN to perform classification works roughly the same way as with regression. 
In this example, you’ll use the classification modeling system from the RWeka package.
Because this modeling suite relies on Java, you need to know what version of R you’re
running; you can check this by calling the following function:

Sys.getenv("R_ARCH")

## [1] "/x64"

This example indicates a 64-bit architecture of R.

I am also using the 64-bit version of Java, but more often than not,
issues with this system come from a type mismatch in which, for
example, you might have a 64-bit version of R installed but a 32-bit
version of Java.

In any case, running the classification system from RWeka is rather simple and pro‐
duces some nice outputs:

library(RWeka)
iris <- read.arff(system.file("arff", "iris.arff", package = "RWeka"))
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classifier <- IBk(class ~ ., data = iris)
summary(classifier)

##
## === Summary ===
##
## Correctly Classified Instances         150              100      %
## Incorrectly Classified Instances         0                0      %
## Kappa statistic                          1
## Mean absolute error                      0.0085
## Root mean squared error                  0.0091
## Relative absolute error                  1.9219 %
## Root relative squared error              1.9335 %
## Total Number of Instances              150
##
## === Confusion Matrix ===
##
##   a  b  c   <-- classified as
##  50  0  0 |  a = Iris-setosa
##   0 50  0 |  b = Iris-versicolor
##   0  0 50 |  c = Iris-virginica

Using the RWeka package, you can get all sorts of good information out without hav‐
ing to explicitly calculate it by hand. In this case, there’s a lot of error types as well as a
handy confusion matrix output all by just calling the summary of the object.

You can also evaluate the resultant RWeka object with some handy built-in cross-
validation as given by the numFolds option:

classifier <- IBk(class ~ ., data = iris, control = Weka_control(K = 20,
    X = TRUE))

evaluate_Weka_classifier(classifier, numFolds = 10)

## === 10 Fold Cross Validation ===
##
## === Summary ===
##
## Correctly Classified Instances         143               95.3333 %
## Incorrectly Classified Instances         7                4.6667 %
## Kappa statistic                          0.93
## Mean absolute error                      0.046
## Root mean squared error                  0.1653
## Relative absolute error                 10.351  %
## Root relative squared error             35.0668 %
## Total Number of Instances              150
##
## === Confusion Matrix ===
##
##   a  b  c   <-- classified as
##  50  0  0 |  a = Iris-setosa
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##   0 47  3 |  b = Iris-versicolor
##   0  4 46 |  c = Iris-virginica

Summary
In this chapter, we talked briefly about other machine learning models that you might
encounter in the field. Naive Bayesian statistics models are ones that rely on a bold
(hence, the naive part) assumption that all the features in our dataset are independent
of one another. Although this might be true in some circumstances, in many cases
there might be correlations within the data. In any case, naive Bayes models can work
very well for certain purposes.

If you’re concerned about unwanted correlations in your data, you can rely on princi‐
pal component analysis (PCA). This is a technique that reformulates your data to be
an amalgamation of a few components that explain most of the variation in the
model. By representing the data this way, you can simplify inputs to machine learning
models, but also use it as a compression technique. There are other types of compo‐
nent analysis, with linear discriminant analysis (LDA) being a strong competitor to
traditional PCA.

Often, classification exercises rely on linear boundaries to classify data into certain
groups. In this chapter, we demonstrated that you can use support vector machines
(SVMs) as a linear classifier but also for nonlinear boundaries, as well. SVMs work
based on passing the data through transformations known as a kernel trick, but can
sometimes be complex enough to be essentially treated as a black box.

Finally, you looked at regression and classification techniques with k-nearest neigh‐
bor machine learning (kNN). This is an algorithm that relies on Euclidean distance
ranking to other data points in order to make predictions. You take a baseline of data,
measure the distance between all the points, and compare other data with it. The k-
nearest data points are the values you get as a result. This handy algorithm is reasona‐
bly easy to explain and can be found in many packages throughout the R ecosystem,
including the RWeka package.
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CHAPTER 8

Machine Learning with the caret Package

So far, we’ve been doing machine learning in a very ad hoc manner. We have some
data, we want to fit a model to it, and then we tune the model to give us the best
result based on whatever sampling processes we might have done and depending on
how the data itself is organized. A lot of this relies on the ability to recognize when to
use certain algorithms. Just by visualizing a set of data, we can usually determine
whether we can slap a linear regression on it, if it makes sense. Likewise, we’ve seen
examples for which data is better suited to be clustered via a kmeans algorithm or
something similar.

One issue that we’ve seen is that a lot of these algorithms can be very different from
one another. The options for the lm() function are quite different from that of the
nnet() function. Surely there exists something that provides a common interface for
all these different yet commonly used algorithms. We’re in luck with R in that the
caret package offers a powerhouse of tools for us to use to help streamline our model
building.

The name “caret” is an acronym that stands for “Classification and Regression Train‐
ing,” but the package itself is capable of much more. In the R ecosystem, there are
hundreds of machine learning packages. Becoming familiar with the quirks and spe‐
cial functionality for each one can be a daunting task. Lucky for us, caret provides a
common interface for all of these packages. Caret also provides great functionality for
splitting our data. It’s trivial for us to split a data frame into a 70% train and a 30% test
set, but for more complex ways of splitting the data and sampling it, such as stratified
random sampling, caret provides a nice way to accomplish that. The caret package is
also a robust system for feature selection. We can ask caret to help select which col‐
umns or features best suit the type of model we want to run. Finally, caret can help
with a more streamlined way to tune our models. As previously mentioned, not only
can some models be different in what options they take, but sometimes they can be
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horribly complicated. caret provides nice functionality for simplification without
loss of robust model tuning capabilities.

The Titanic Dataset
In this chapter, we focus on seeing how caret helps when working on a famous data‐
set: that of the doomed ocean liner the Titanic, which sank in the North Atlantic
Ocean in 1912. This dataset is often used in educational contexts for many reasons.
It’s a very well-known historical event, so most people dealing with the data already
have some context as to the background for it. The Titanic dataset is also a good
proxy for other types of commonly seen data in industry, such as data for customer
profiles.

The goal for this chapter is to use the caret package to build a machine learning
model in which you will try and predict whether someone survived their trip on the
ill-fated ocean liner. You will build a model with the function form that we’ve seen
earlier in this book written like train(Survived ~ .), where you are modeling off
the Survived parameter. However, to model from all of the other data that you’re
interested in, we might need to clean up and organize the data a bit better than its
original form.

Let’s explore the data at a top level to become better acquainted with it:

train <- read.csv("train.csv")
str(train)

## 'data.frame':    891 obs. of  12 variables:
##  $ PassengerId: int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Survived   : int  0 1 1 1 0 0 0 0 1 1 ...
##  $ Pclass     : int  3 1 3 1 3 3 1 3 3 2 ...
##  $ Name       : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 
277 16 559 520 629 417 581 ...
##  $ Sex        : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 2 1 1 ...
##  $ Age        : num  22 38 26 35 35 NA 54 2 27 14 ...
##  $ SibSp      : int  1 1 0 1 0 0 0 3 0 1 ...
##  $ Parch      : int  0 0 0 0 0 0 0 1 2 0 ...
##  $ Ticket     : Factor w/ 681 levels "110152","110413",..: 524 597 670 50 
473 276 86 396 345 133 ...
##  $ Fare       : num  7.25 71.28 7.92 53.1 8.05 ...
##  $ Cabin      : Factor w/ 148 levels "","A10","A14",..: 1 83 1 57 1 1 131 1 
1 1 ...
##  $ Embarked   : Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 4 2 ...

Some of this data might look like something you see in a typical customer churn anal‐
ysis. There’s a unique ID for each passenger; a binary value that indicates whether the
passenger survived; what travel class they were on board (First, Second, or Third);
personal information data in the form of name, gender, age; the number of siblings or
spouses with whom they were traveling; number of parents or children with whom
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they were traveling; their ticket number; the ticket fare; cabin number; and point of
embarkation (C is Cherbourg, Q is Queenstown, and S is Southampton).

Some of this data isn’t very useful for the analysis you’ll perform. Things like unique
identifiers don’t reveal anything about trends and only serve to conflate the models.
PassengerId and Name we can forget about using in that case. The information in the
ticket could be useful, but the formatting is a nightmare. Cabin data could be useful,
but there are a lot of missing values. So for this exercise, let’s set aside PassengerId,
Name, Ticket, and Cabin.

Data Wrangling
There are some clean-up steps that you want to perform before unleashing your
models on the data. Notice that the port of embarkation has a couple of blank values,
Age has some NA values, and you might want to split up some of the data from SibSp
and Parch into more coherent forms so that the model knows how to deal with that
information better. Let’s deal with the missing Embarked data first:

table(train$Embarked)

##
##       C   Q   S
##   2 168  77 644

In this code chunk, there are two blanks, 168 people embarked from Cherbourg, 77
people embarked from Queenstown, and 644 embarked from Southampton. Let’s
make an assumption (more formally known as an imputation) that those two blanks
can be labeled as whatever the largest factor is for that variable. So in this case, you’re
assuming the blanks are from Southampton because most of the Embarked data points
are, so it’s probably a safe bet. If the data were more homogeneous, you would need to
formulate a more complicated solution, as illustrated here:

train$Embarked[train$Embarked == ""] <- "S"

Now you’ve assigned those blanks to the value that has the most frequency. Up next,
let’s look at the ages in the data:

table(is.na(train$Age))[2]/table(is.na(train$Age))[1]

##      TRUE
## 0.2478992

summary(train$Age)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's
##    0.42   20.12   28.00   29.70   38.00   80.00     177

This code informs us that almost 25% of the Age data is missing. If you look at the
summary statistics for that column, you could do the same process that you did
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before by simply replacing all the missing values with whatever the most frequent (in
this case, the median) value is for that data. You would be reassigning every missing
person’s age to be 28 in that case, but intuitively that seems like you would be making
a rather bold assumption. A safer bet would be to simply add a label if the age is miss‐
ing for a given person and fill in that data later by using the power of caret:

train$is_age_missing <- ifelse(is.na(train$Age), 1, 0)

Now, consolidate the data that has the number of siblings and spouses (SibSp) and
the parents and children (Parch) the person was traveling with into a total number of
travelers. This will help with the model selection later on:

train$travelers <- train$SibSp + train$Parch + 1

Next, you need to factorize some of the data:

train$Survived <- as.factor(train$Survived)
train$Pclass <- as.factor(train$Pclass)
train$is_age_missing <- as.factor(train$is_age_missing)

Finally, you want to subset your data to just the features in which you’re interested:

train2 <- subset(train, select = c(Survived, Pclass, Sex, Age,
    SibSp, Parch, Fare, Embarked, is_age_missing, travelers))

caret Unleashed
Now that we have the Titanic data in a cleaned-up form, it’s time to begin using the
caret package. R has many machine learning models built in or accessible via pack‐
age download. However, the power with caret is that we can do much more than just
simply training machine learning models. We can use caret as a data preprocessing
tool to help with data imputation, we can use it to split our data into training and test
sets, and we can leverage it for cross-validation techniques in addition to its great
flexibility for model training.

Imputation
In this subsection, we’re going to revisit the problem you saw earlier of having a lot of
missing ages in the data. We hinted earlier that caret is good at figuring this out and,
in fact, it supports many different methods of imputation. caret supports imputation
by picking the median (similar to how you picked the values for the missing embark
location earlier); it supports a method to impute based on k-nearest neighbors
(kNN), which could be useful in other situations; and it supports imputation via bag‐
ged decision trees, which are similar enough in theory to random forests. In this case,
you’re going with the bagged decision trees because it’s the most accurate method.
Despite the computational heft of this method, this particular dataset is small enough
that you can run this without a major time penalty.
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The limitation with imputation in caret is that you need to change all of the factor
variables into numeric data for the process to work correctly. For example, the Embark
data is categorical with three values (C,Q,S); this needs to be transposed into numeric
values. You might be tempted to relabel C to 0, Q to 1, and S to 2, but this would per‐
form poorly with the model. Instead, you need to take that data and pivot it such that
you have a column that is either 0 or 1 if its Embark is C, 0 or 1 if its Embark is Q, and
likewise for S. This will be more obvious when you run the code:

library(caret)

dummy <- dummyVars(~., data = train2[, -1])
dummy_train <- predict(dummy, train2[, -1])
head(dummy_train)

##   Pclass.1 Pclass.2 Pclass.3 Sex.female Sex.male Age SibSp Parch    Fare
## 1        0        0        1          0        1  22     1     0  7.2500
## 2        1        0        0          1        0  38     1     0 71.2833
## 3        0        0        1          1        0  26     0     0  7.9250
## 4        1        0        0          1        0  35     1     0 53.1000
## 5        0        0        1          0        1  35     0     0  8.0500
## 6        0        0        1          0        1  NA     0     0  8.4583
##   Embarked. Embarked.C Embarked.Q Embarked.S is_age_missing.0
## 1         0          0          0          1                1
## 2         0          1          0          0                1
## 3         0          0          0          1                1
## 4         0          0          0          1                1
## 5         0          0          0          1                1
## 6         0          0          1          0                0
##   is_age_missing.1 travelers
## 1                0         2
## 2                0         2
## 3                0         1
## 4                0         2
## 5                0         1
## 6                1         1

This code splits the possible categorical values that Pclass could take (1,2,3) into sep‐
arate columns that are a binary indicator if they were first class, second class, or third
class. Likewise with the other categorical variables only. Amazingly, caret is smart
enough to perform this functionality only on the factor variables, not the data that’s
already numeric. Now, all of our data is in a handy numerical form and makes more
sense from a modeling standpoint.

The next step is to use the preProcess function. Notice that the preview still shows
an NA value for one passenger; this is the step that fills in that value. The preProcess
function is very powerful and offers more than 15 different methods to model the
values you want, but let’s stick with bagImpute for now:
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pre.process <- preProcess(dummy_train, method = "bagImpute")
imputed.data <- predict(pre.process, dummy_train)
head(imputed.data)

##   Pclass.1 Pclass.2 Pclass.3 Sex.female Sex.male      Age SibSp Parch
## 1        0        0        1          0        1 22.00000     1     0
## 2        1        0        0          1        0 38.00000     1     0
## 3        0        0        1          1        0 26.00000     0     0
## 4        1        0        0          1        0 35.00000     1     0
## 5        0        0        1          0        1 35.00000     0     0
## 6        0        0        1          0        1 31.36861     0     0
##      Fare Embarked. Embarked.C Embarked.Q Embarked.S is_age_missing.0
## 1  7.2500         0          0          0          1                1
## 2 71.2833         0          1          0          0                1
## 3  7.9250         0          0          0          1                1
## 4 53.1000         0          0          0          1                1
## 5  8.0500         0          0          0          1                1
## 6  8.4583         0          0          1          0                0
##   is_age_missing.1 travelers
## 1                0         2
## 2                0         2
## 3                0         1
## 4                0         2
## 5                0         1
## 6                1         1

The single NA age that you had earlier has now been predicted via bagged decision
trees to have an age of 28.96071. Great! All the NA values are now gone and replaced
with numeric predictions. The last step is to take these predicted values and put those
back into the original training set:

train$Age <- imputed.data[, 6]
head(train$Age, 20)

##  [1] 22.00000 38.00000 26.00000 35.00000 35.00000 31.36861 54.00000
##  [8]  2.00000 27.00000 14.00000  4.00000 58.00000 20.00000 39.00000
## [15] 14.00000 55.00000  2.00000 33.41508 31.00000 25.73630

At this point, you have some filled-in ages that were previously NAs, as denoted by the
number of digits after the decimal. You’ve predicted ages of 28.96071, 33.02747, and
24.55931 for the first 20 entries in the data.

Data Splitting
Let’s now see how you can use caret to split the data into training and test sets. If the
dataset had close to 50% of survivors, we could do a simple random sample by just
plucking out half the data on which to train. Instead, you need to do a stratified ran‐
dom sample because of the imbalance between those who survived and those who
didn’t. This next step will keep the proportions of the Survived feature the same
across each of the stratified splits. You’re instructing the createDataPartition
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function that you want this split to run only once, but in theory you could run it mul‐
tiple times. You’re taking 70% for training data, and, finally, the list option just gives
you the row numbers of the partition that you can pass back into the training data to
effectively split it:

set.seed(123)
partition_indexes <- createDataPartition(train$Survived, times = 1,
    p = 0.7, list = FALSE)
titanic.train <- train[partition_indexes, ]
titanic.test <- train[-partition_indexes, ]

caret Under the Hood
Before you jump into training models with caret, let’s take a quick peek under the
hood of the all the stuff you can play around with regarding model tuning. At the
highest level, caret looks like this:

train.model <- train(Survived ~ ., data = titanic.train, method = "xgbTree",
    tuneGrid = tune.grid, trControl = train.control)

You likely see a similar form to other machine learning model training scenarios you
looked at for which there is a response—in this case, Survived being modeled against
all the other features in your dataset. Let’s expand on the other features:

data

This one is pretty self-explanatory—it’s the object from which you’re getting your
training data.

method

This is the specific machine learning algorithm that you want to deploy. The one
you’re using for the moment, xgbTree, is a form of extreme gradient boosted
decision trees.

tuneGrid

This is a data frame of parameters that you can pass to your model training and
have the model train and evaluate for those parameters and then move on to the
next set of parameters. This is model dependent, but you’ll see how you can bet‐
ter understand how to use it.

trControl

The train control options let you specify how you want to do cross-validation
techniques for training.
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Caret Methods in Focus
Let’s dive a little deeper into the method. Here we can specify a specific machine
learning algorithm to use for model training. The list of legal methods to use is colos‐
sal and is included in the appendix of this book. There are more than 200 methods
that you can plug and play in here to change machine learning models on the fly. If
we didn’t want to worry about the tuning parameter grid, we could simply hot swap
out xgbTree with rf, and now we are doing a random forest model. We could swap
out rf with nnet, and now we’re doing a neural network. It’s almost shocking how
easy caret makes trying out different machine learning algorithms!

Further, with our method of xgbTree, we can look at all the different inner workings
going on by calling the getModelInfo function from caret:

getModelInfo("xgbTree")

There’s a whole host of things buried inside each of the over 200 models available
from caret. Some of these are just descriptive entries for the model, others are input
components to each caret model, and some are optional:

label

Name of the model—in this case, “eXtreme Gradient Boosting”

library

The necessary libraries to run this model. caret prompts you to download the
libraries if you don’t already have them installed, and will load them on the fly if
you do.

type

Is the model capable of handling regression, classification, or both? In this case
both, because we have “Both” as the output.

parameters

This is a data frame of the parameters, parameter classes (i.e., numeric), and spe‐
cific labels used to tune the model.

grid

Function used to create the tuning grid, unless otherwise specified by the user.

loop

Optional parameter that allows users to create multiple submodel predictions
from the same object.

fit

This is what actually fits the model.

predict

Function for creating model predictions.
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prob

Where appropriate, this function creates class probabilities.

predictors

Optional function that returns the names of the features we used as our predic‐
tors in our model.

varImp

Optional function that calculates variable importance.

levels

Optional function, typically used for classification models that use a specific S4
method.

tags

Descriptive entries on what the model is specifically capable of. Here we have the
tags: “tree-based model, boosting, ensemble model, implicit feature selection.”

sort

Function that sorts the parameter by decreasing order of complexity.

Diving deeper into the parameters field, you can see all the different ways that you
can tune this specific model:

xgb.params <- getModelInfo("xgbTree")
xgb.params$xgbTree$parameters

##          parameter   class                          label
## 1          nrounds numeric          # Boosting Iterations
## 2        max_depth numeric                 Max Tree Depth
## 3              eta numeric                      Shrinkage
## 4            gamma numeric         Minimum Loss Reduction
## 5 colsample_bytree numeric     Subsample Ratio of Columns
## 6 min_child_weight numeric Minimum Sum of Instance Weight

We can compare the tuning parameters for different models, as well:

nnet.params <- getModelInfo("nnet")
nnet.params$nnet$parameters

##   parameter   class         label
## 1      size numeric #Hidden Units
## 2     decay numeric  Weight Decay

This wealth of information teaches us not only what a new and potentially unfamiliar
algorithm is capable of, but how it works at the code level and how best to tune it for
optimal results.
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Model Training
Finally, we can get to the actual meat of the model building. You first need to specify
what training controls to pass to the model. Basically, you’re telling caret how you
want the model built. The key point here is that the process for training the model is
actually independent of whatever model you select! You’re telling caret that you’d
like to do 10-fold cross-validation, repeated three times, and then go through a grid
search. A grid search is when you go through a collection of parameters and choose
the optimal ones. Essentially, this is making 30 pseudo-models and selecting the
parameters that correspond to the best one; here’s how to do it:

train.control <- trainControl(method = "repeatedcv", number = 10,
    repeats = 3, search = "grid")

In the following code, the expand.grid() function creates all of the permutations of
all the values passed into it and creates a unique row for each permutation:

tune.grid <- expand.grid(eta = c(0.05, 0.075, 0.1),
                         nrounds = c(50, 75, 100),
                         max_depth = 6:8,
                         min_child_weight = c(2.0, 2.25, 2.5),
                         colsample_bytree = c(0.3, 0.4, 0.5),
                         gamma = 0
                         #subsample = 1
                         )
head(tune.grid)

##     eta nrounds max_depth min_child_weight colsample_bytree gamma
## 1 0.050      50         6                2              0.3     0
## 2 0.075      50         6                2              0.3     0
## 3 0.100      50         6                2              0.3     0
## 4 0.050      75         6                2              0.3     0
## 5 0.075      75         6                2              0.3     0
## 6 0.100      75         6                2              0.3     0

The resultant data frame has 243 combinations of the values you put into the
expand.grid() function. You’re asking caret to run 10-fold cross-validation three
times on each of these values that you pass into the algorithm. Thus, now you’re
actually training 7,290 different models! That’s going to take forever to compute,
right?

As it happens, there’s a nice package for parallelizing R code to make things like this
run faster. From the doSnow package, you can use a function that will run several
instances of R all at the same time with your code. The registerDoSnow() function
tells caret that it can now use the available clusters for processing:

library(doSNOW)
cl <- makeCluster(3, type = "SOCK")
registerDoSNOW(cl)
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Now for actually using caret for training. Here you have a similar structure to what
you’ve seen in previous algorithms. You are taking the response variable, Survived,
and modeling all the other factors against it. You are using an xg-boost algorithm in
particular and having it iterate over all the different permutations of tuning parame‐
ters given by the grid that you expanded earlier. Finally, you’re instructing it to use
the training controls of 10-fold cross-validation and doing it three times. You then
stop the parallelized cluster setup to save computational resources, given that you’re
done with the exhaustive training procedure:

caret.cv <- train(Survived ~ ., data = titanic.train, method = "xgbTree",
    tuneGrid = tune.grid, trControl = train.control)
stopCluster(cl)

Here are the results:

caret.cv

This displays the results for each one of the combinations of modeling outputs.
There’s so much outputted to the console that a lot ends up being truncated from
view, but the take-home message is at the end:

This says in order to select the optimal values for modeling, here are the xg-boost
hyperparameters (from the earlier grid expand exercise) that work the best. Now that
you have your trained model object, you can pass that into a prediction function to
model the likelihood that someone survived the Titanic disaster:
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preds <- predict(caret.cv, titanic.test)

Finally, you assess the model’s capability by running it through a confusion matrix to
see how well it will work with brand-new data:

confusionMatrix(preds, titanic.test$Survived)

## Confusion Matrix and Statistics
##
##           Reference
## Prediction   0   1
##          0 151  32
##          1  13  70
##
##                Accuracy : 0.8308
##                  95% CI : (0.7803, 0.8738)
##     No Information Rate : 0.6165
##     P-Value [Acc > NIR] : 2.211e-14
##
##                   Kappa : 0.6292
##  Mcnemar's Test P-Value : 0.00729
##
##             Sensitivity : 0.9207
##             Specificity : 0.6863
##          Pos Pred Value : 0.8251
##          Neg Pred Value : 0.8434
##              Prevalence : 0.6165
##          Detection Rate : 0.5677
##    Detection Prevalence : 0.6880
##       Balanced Accuracy : 0.8035
##
##        'Positive' Class : 0
##

The confusionMatrix function provided by caret is very powerful. It provides a
whole host of statistical information that you can use to determine model accuracy,
not only for classification, but for regression problems as well. Step by step, you begin
with an actual confusion matrix. The correct values predicted by the model are on the
diagonal, so in this case it predicted correctly 153 values of the data that were Sur‐
vived=0, but incorrectly predicted 29 of them. Likewise, with the other value of Sur‐
vived=1 for which it predicted 73 correct values and 11 incorrect ones. The accuracy
was about 85%, which is not bad.

Output from this function are also sensitivity and specificity. Sensitivity, in this case,
is simply the correctly predicted 'Positive' Class out of the total number, so 153/
(153+11), which gives 0.9329. What that means in English is that 93% of the time,
you can correctly predict whether someone died on the Titanic. Similarly, specificity
is the other column of data in the confusion matrix, which would be calculated like
73/(73+29) and gives 0.7157. This is predicting how accurately someone lived or not.
What this tells you is that you need to do more diligence in terms of finding some
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features that better predict how people survived the Titanic, given that the model is
already pretty accurate at predicting whether they died.

Comparing Multiple caret Models
So far, you’ve run one machine learning algorithm (extreme gradient boosted deci‐
sion trees) on the Titanic data and achieved a pretty decent result. caret makes it
very easy to plug and play different machine learning algorithms so that you can
compare and contrast the results. Suppose that you want to compare how well a ran‐
dom forest and a neural network fare in terms of accuracy. All you would need to do
is just replace "xgboost" with "rf". For the moment, ignore the specific tuning grid
parameters and just run it normally:

cl <- makeCluster(3, type="SOCK")
registerDoSNOW(cl)

caret.rf <- train(Survived ~ .,
                  data = titanic.train,
                  method = "rf",
                  #tuneGrid = tune.grid,
                  trControl = train.control)

stopCluster(cl)

confusionMatrix(predict(caret.rf, titanic.test), titanic.test$Survived)

## Confusion Matrix and Statistics
##
##           Reference
## Prediction   0   1
##          0 151  39
##          1  13  63
##
##                Accuracy : 0.8045
##                  95% CI : (0.7517, 0.8504)
##     No Information Rate : 0.6165
##     P-Value [Acc > NIR] : 3.037e-11
##
##                   Kappa : 0.5656
##  Mcnemar's Test P-Value : 0.0005265
##
##             Sensitivity : 0.9207
##             Specificity : 0.6176
##          Pos Pred Value : 0.7947
##          Neg Pred Value : 0.8289
##              Prevalence : 0.6165
##          Detection Rate : 0.5677
##    Detection Prevalence : 0.7143
##       Balanced Accuracy : 0.7692
##
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##        'Positive' Class : 0
##

The accuracy here, without any specific tuning done, is 80%. Not bad for just a simple
change of a few characters in the training model. The xgboost model yielded 85%
accuracy, and that was after a lengthy tuning process. Suppose that you want to run a
generalized linear model, instead. You can run the same logic with that by providing
glm as your algorithm of choice:

cl <- makeCluster(3, type="SOCK")
registerDoSNOW(cl)

caret.nnet <- train(Survived ~ .,
                  data = titanic.train,
                  method = "glm",
                  #tuneGrid = tune.grid,
                  trControl = train.control)

stopCluster(cl)

confusionMatrix(predict(caret.nnet, titanic.test), titanic.test$Survived)

## Confusion Matrix and Statistics
##
##           Reference
## Prediction   0   1
##          0 107  38
##          1  57  64
##
##                Accuracy : 0.6429
##                  95% CI : (0.5821, 0.7004)
##     No Information Rate : 0.6165
##     P-Value [Acc > NIR] : 0.20669
##
##                   Kappa : 0.2704
##  Mcnemar's Test P-Value : 0.06478
##
##             Sensitivity : 0.6524
##             Specificity : 0.6275
##          Pos Pred Value : 0.7379
##          Neg Pred Value : 0.5289
##              Prevalence : 0.6165
##          Detection Rate : 0.4023
##    Detection Prevalence : 0.5451
##       Balanced Accuracy : 0.6399
##
##        'Positive' Class : 0
##

The accuracy output for this is not so good, but you could likely solve that issue by
fine-tuning your grid parameters.
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Summary
We’ve covered a lot in this chapter about the machine learning package in R called
caret. While its name stands for “Classification and Regression Training,” you
learned that caret is capable of much more. In particular, you saw how you can use it
for data imputation, data splitting and sampling, and, finally, for model training.

Model training in caret is a breeze and very simple. We used the following form:

caret.cv <- train(Survived ~ ., data = titanic.train, method = "xgbTree",
    tuneGrid = tune.grid, trControl = train.control)

You were able to see the results of the training exercise by looking at the output train‐
ing object—in this case, caret.cv. In that training object, you could see the results
for accuracy based on all the input tuning parameters that you ran with the data.
There was a lot of output, but the training object is smart enough to select the group‐
ing of training parameters that yields the best accuracy for use in predictive parts of
your workflow.

Finally, you took the training object and passed it through the predict() function
and then passed that predicted result through caret’s confusionMatrix() function.
Using the specific confusionMatrix() function from caret is great because not only
do you get the actual confusion matrix itself, but you get a whole host of other infor‐
mation shot out directly to the screen without any manual processing. You achieve
accuracy, a 95% confidence interval, sensitivity, specificity, and many other statistical
benchmarks against which you can compare just how well the model performed.

caret’s design makes it very easy to switch what algorithm you use, as well. By simply
chaining the xgbTree value in the train() function to something like rf for a ran‐
dom forest or glm for a generalized linear model, you can cover an entire range of
machine learning models in a short period of time, without having to learn the
intense intricacies of every model.

caret offers a dizzying number of models to choose from, though. Figuring out
which one to use first is totally dependent on the data and the data scientist at the
helm. This book includes an appendix that, using model information from caret,
details each machine learning method available to use, if it’s usable for classification,
regression, or both, what the function call is to use it specifically, and some keywords
that describe its functionality.
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APPENDIX A

Encyclopedia of Machine Learning Models
in caret

Although this list is long, it is by no means completely comprehensive. These are
machine learning algorithms that we use with the caret package discussed in this
book in more detail. One of the major powers of caret is that it gives you the ability
to switch very quickly from using, for example, a random forest machine learning
algorithm to a neural network. With caret, all we would need to do is change rf in
our model to nnet. This appendix provides a reference to look up all of the available
machine learning algorithm calls, what libraries they depend on, an overall descrip‐
tion or label, and their model type (regression, classification, or both).

Table A-1. Machine learning algorithms in caret

Algorithm name Library dependencies Label Type
ada ada, plyr Boosted Classification Trees Classification

AdaBag adabag, plyr Bagged AdaBoost Classification

AdaBoost.M1 adabag, plyr AdaBoost.M1 Classification

adaboost fastAdaboost AdaBoost Classification Trees Classification

amdai adaptDA Adaptive-Mixture Discriminant Analysis Classification

ANFIS frbs Adaptive-Network-Based Fuzzy Inference System Regression

avNNet nnet Model-Averaged Neural Network Both

awnb bnclassify Naive Bayes Classifier with Attribute Weighting Classification

awtan bnclassify Tree-Augmented Naive Bayes Classifier with Attribute Weighting Classification

bag caret Bagged Model Both

bagEarth earth Bagged MARS Both

bagEarthGCV earth Bagged MARS using gCV Pruning Both

bagFDA earth, mda Bagged-Flexible Discriminant Analysis Classification
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Algorithm name Library dependencies Label Type
bagFDAGCV earth Bagged FDA using gCV Pruning Classification

bartMachine bartMachine Bayesian Additive Regression Trees Both

bayesglm arm Bayesian Generalized Linear Model Both

bdk kohonen Self-Organizing Map Both

binda binda Binary Discriminant Analysis Classification

blackboost party, mboost, plyr Boosted Tree Both

blasso monomvn The Bayesian lasso Regression

blassoAveraged monomvn Bayesian Ridge Regression (Model Averaged) Regression

Boruta Boruta, randomForest Random Forest with Additional Feature Selection Both

bridge monomvn Bayesian Ridge Regression Regression

brnn brnn Bayesian Regularized Neural Networks Regression

BstLm bst, plyr Boosted Linear Model Both

bstSm bst, plyr Boosted Smoothing Spline Both

bstTree bst, plyr Boosted Tree Both

C5.0 C50, plyr C5.0 Classification

C5.0Cost C50, plyr Cost-Sensitive C5.0 Classification

C5.0Rules C50 Single C5.0 Ruleset Classification

C5.0Tree C50 Single C5.0 Tree Classification

cforest party Conditional Inference Random Forest Both

chaid CHAID Chi-squared Automated Interaction Detection Classification

CSimca rrcovHD SIMCA Classification

ctree party Conditional Inference Tree Both

ctree2 party Conditional Inference Tree Both

cubist Cubist Cubist Regression

dda sparsediscrim Diagonal Discriminant Analysis Classification

deepboost deepboost DeepBoost Classification

DENFIS frbs Dynamic Evolving Neural-Fuzzy Inference System Regression

dnn deepnet Stacked AutoEncoder Deep Neural Network Both

dwdLinear kerndwd Linear Distance Weighted Discrimination Classification

dwdPoly kerndwd Distance-Weighted Discrimination with Polynomial Kernel Classification

dwdRadial kernlab, kerndwd Distance-Weighted Discrimination with Radial Basis Function
Kernel

Classification

earth earth Multivariate Adaptive Regression Spline Both

elm elmNN Extreme Learning Machine Both

enet elasticnet Elasticnet Regression

enpls.fs enpls Ensemble Partial Least Squares Regression with Feature Selection Regression

enpls enpls Ensemble Partial Least Squares Regression Regression

evtree evtree Tree Models from Genetic Algorithms Both
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Algorithm name Library dependencies Label Type
extraTrees extraTrees Random Forest by Randomization Both

fda earth, mda Flexible Discriminant Analysis Classification

FH.GBML frbs Fuzzy Rules Using Genetic Cooperative-Competitive Learning and
Pittsburgh

Classification

FIR.DM frbs Fuzzy Inference Rules by Descent Method Regression

foba foba Ridge Regression with Variable Selection Regression

FRBCS.CHI frbs Fuzzy Rules Using Chi’s Method Classification

FRBCS.W frbs Fuzzy Rules with Weight Factor Classification

FS.HGD frbs Simplified TSK Fuzzy Rules Regression

gam mgcv Generalized Additive Model using Splines Both

gamboost mboost, plyr Boosted Generalized Additive Model Both

gamLoess gam Generalized Additive Model using LOESS Both

gamSpline gam Generalized Additive Model using Splines Both

gaussprLinear kernlab Gaussian Process Both

gaussprPoly kernlab Gaussian Process with Polynomial Kernel Both

gaussprRadial kernlab Gaussian Process with Radial Basis Function Kernel Both

gbm gbm, plyr Stochastic Gradient Boosting Both

gcvEarth earth Multivariate Adaptive Regression Splines Both

GFS.FR.MOGUL frbs Fuzzy Rules via MOGUL Regression

GFS.GCCL frbs Fuzzy Rules Using Genetic Cooperative-Competitive Learning Classification

GFS.LT.RS frbs Genetic Lateral Tuning and Rule Selection of Linguistic Fuzzy
Systems

Regression

GFS.THRIFT frbs Fuzzy Rules via Thrift Regression

glm native Generalized Linear Model Both

glmboost plyr, mboost Boosted Generalized Linear Model Both

glmnet glmnet glmnet Both

glmStepAIC MASS Generalized Linear Model with Stepwise Feature Selection Both

gpls gpls Generalized Partial Least Squares Classification

hda hda Heteroscedastic Discriminant Analysis Classification

hdda HDclassif High-Dimensional Discriminant Analysis Classification

hdrda sparsediscrim High-Dimensional Regularized Discriminant Analysis Classification

HYFIS frbs Hybrid Neural Fuzzy Inference System Regression

icr fastICA Independent Component Regression Regression

J48 RWeka C4.5-like Trees Classification

JRip RWeka Rule-Based Classifier Classification

kernelpls pls Partial Least Squares Both

kknn kknn k-Nearest Neighbors Both

knn native k-Nearest Neighbors Both
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Algorithm name Library dependencies Label Type
krlsPoly KRLS Polynomial Kernel Regularized Least Squares Regression

krlsRadial KRLS, kernlab Radial-Basis Function Kernel Regularized Least Squares Regression

lars lars Least Angle Regression Regression

lars2 lars Least Angle Regression Regression

lasso elasticnet The lasso Regression

lda MASS Linear Discriminant Analysis Classification

lda2 MASS Linear Discriminant Analysis Classification

leapBackward leaps Linear Regression with Backwards Selection Regression

leapForward leaps Linear Regression with Forward Selection Regression

leapSeq leaps Linear Regression with Stepwise Selection Regression

Linda rrcov Robust Linear Discriminant Analysis Classification

lm native Linear Regression Regression

lmStepAIC MASS Linear Regression with Stepwise Selection Regression

LMT RWeka Logistic Model Trees Classification

loclda klaR Localized Linear Discriminant Analysis Classification

logicBag logicFS Bagged Logic Regression Both

LogitBoost caTools Boosted Logistic Regression Classification

logreg LogicReg Logic Regression Both

lssvmLinear kernlab Least Squares Support Vector Machine Classification

lssvmPoly kernlab Least Squares Support Vector Machine with Polynomial Kernel Classification

lssvmRadial kernlab Least Squares Support Vector Machine with Radial Basis Function
Kernel

Classification

lvq class Learning Vector Quantization Classification

M5 RWeka Model Tree Regression

M5Rules RWeka Model Rules Regression

manb bnclassify Model Averaged Naive Bayes Classifier Classification

mda mda Mixture Discriminant Analysis Classification

Mlda HiDimDA Maximum Uncertainty Linear Discriminant Analysis Classification

mlp RSNNS Multilayer Perceptron Both

mlpML RSNNS Multilayer Perceptron, with multiple layers Both

mlpSGD FCNN4R Multilayer Perceptron Network by Stochastic Gradient Descent Regression

mlpWeightDecay RSNNS Multilayer Perceptron Both

mlpWeightDecayMLRSNNS Multilayer Perceptron, multiple layers Both

multinom nnet Penalized Multinomial Regression Classification

nb klaR Naive Bayes Classification

nbDiscrete bnclassify Naive Bayes Classifier Classification

nbSearch bnclassify Semi-Naive Structure Learner Wrapper Classification

neuralnet neuralnet Neural Network Regression
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Algorithm name Library dependencies Label Type
nnet nnet Neural Network Both

nnls nnls Non-Negative Least Squares Regression

nodeHarvest nodeHarvest Tree-Based Ensembles Both

oblique.tree oblique.tree Oblique Trees Classification

OneR RWeka Single-Rule Classification Classification

ordinalNet ordinalNet, plyr Penalized Ordinal Regression Both

ORFlog obliqueRF Oblique Random Forest Classification

ORFpls obliqueRF Oblique Random Forest Classification

ORFridge obliqueRF Oblique Random Forest Classification

ORFsvm obliqueRF Oblique Random Forest Classification

ownn snn Optimal-Weighted Nearest Neighbor Classifier Classification

pam pamr Nearest Shrunken Centroids Classification

parRF e1071, randomForest,
foreach

Parallel Random Forest Both

PART RWeka Rule-Based Classifier Classification

partDSA partDSA partDSA Both

pcaNNet nnet Neural Networks with Feature Extraction Both

pcr pls Principal Component Analysis Regression

pda mda Penalized Discriminant Analysis Classification

pda2 mda Penalized Discriminant Analysis Classification

penalized penalized Penalized Linear Regression Regression

PenalizedLDA penalizedLDA, plyr Penalized Linear Discriminant Analysis Classification

plr stepPlr Penalized Logistic Regression Classification

pls pls Partial Least Squares Both

plsRglm plsRglm Partial Least Squares Generalized Linear Models Both

polr MASS Ordered Logistic or Probit Regression Classification

ppr native Projection Pursuit Regression Regression

protoclass proxy, protoclass Greedy Prototype Selection Classification

pythonKnnReg rPython Knn regression via sklearn.neighbors.KNeighborsRegressor Regression

qda MASS Quadratic Discriminant Analysis Classification

QdaCov rrcov Robust Quadratic Discriminant Analysis Classification

qrf quantregForest Quantile Random Forest Regression

qrnn qrnn Quantile Regression Neural Network Regression

randomGLM randomGLM Ensembles of Generalized Linear Models Both

ranger e1071, ranger Random Forest Both

rbf RSNNS Radial-Basis Function Network Both

rbfDDA RSNNS Radial-Basis Function Network Both

Rborist Rborist Random Forest Both
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Algorithm name Library dependencies Label Type
rda klaR Regularized Discriminant Analysis Classification

relaxo relaxo, plyr Relaxed Lasso Regression

rf randomForest Random Forest Both

rFerns rFerns Random Ferns Classification

RFlda HiDimDA Factor-Based Linear Discriminant Analysis Classification

rfRules randomForest,
inTrees, plyr

Random Forest Rule-Based Model Both

ridge elasticnet Ridge Regression Regression

rlda sparsediscrim Regularized Linear Discriminant Analysis Classification

rlm MASS Robust Linear Model Regression

rmda robustDA Robust Mixture Discriminant Analysis Classification

rocc rocc ROC-Based Classifier Classification

rotationForest rotationForest Rotation Forest Classification

rotationForestCp rpart, plyr,
rotationForest

Rotation Forest Classification

rpart rpart CART Both

rpart1SE rpart CART Both

rpart2 rpart CART Both

rpartCost rpart Cost-Sensitive CART Classification

rpartScore rpartScore, plyr CART or Ordinal Responses Classification

rqlasso rqPen Quantile Regression with LASSO penalty Regression

rqnc rqPen Non-Convex Penalized Quantile Regression Regression

RRF randomForest, RRF Regularized Random Forest Both

RRFglobal RRF Regularized Random Forest Both

rrlda rrlda Robust Regularized Linear Discriminant Analysis Classification

RSimca rrcovHD Robust SIMCA Classification

rvmLinear kernlab Relevance Vector Machines with Linear Kernel Regression

rvmPoly kernlab Relevance Vector Machines with Polynomial Kernel Regression

rvmRadial kernlab Relevance Vector Machines with Radial Basis Function Kernel Regression

SBC frbs Subtractive Clustering and Fuzzy c-Means Rules Regression

sda sda Shrinkage Discriminant Analysis Classification

sddaLDA SDDA Stepwise Diagonal Linear Discriminant Analysis Classification

sddaQDA SDDA Stepwise Diagonal Quadratic Discriminant Analysis Classification

sdwd sdwd Sparse Distance Weighted Discrimination Classification

simpls pls Partial Least Squares Both

SLAVE frbs Fuzzy Rules Using the Structural Learning Algorithm on Vague
Environment

Classification

slda ipred Stabilized Linear Discriminant Analysis Classification
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Algorithm name Library dependencies Label Type
smda sparseLDA Sparse Mixture Discriminant Analysis Classification

snn snn Stabilized Nearest Neighbor Classifier Classification

sparseLDA sparseLDA Sparse Linear Discriminant Analysis Classification

spikeslab spikeslab, plyr Spike and Slab Regression Regression

spls spls Sparse Partial Least Squares Both

stepLDA klaR, MASS Linear Discriminant Analysis with Stepwise Feature Selection Classification

stepQDA klaR, MASS Quadratic Discriminant Analysis with Stepwise Feature Selection Classification

superpc superpc Supervised Principal Component Analysis Regression

svmBoundrange
String

kernlab Support Vector Machines with Boundrange String Kernel Both

svmExpoString kernlab Support Vector Machines with Exponential String Kernel Both

svmLinear kernlab Support Vector Machines with Linear Kernel Both

svmLinear2 e1071 Support Vector Machines with Linear Kernel Both

svmLinearWeights e1071 Linear Support Vector Machines with Class Weights Classification

svmPoly kernlab Support Vector Machines with Polynomial Kernel Both

svmRadial kernlab Support Vector Machines with Radial Basis Function Kernel Both

svmRadialCost kernlab Support Vector Machines with Radial Basis Function Kernel Both

svmRadialSigma kernlab Support Vector Machines with Radial Basis Function Kernel Both

svmRadialWeights kernlab Support Vector Machines with Class Weights Classification

svmSpectrumString kernlab Support Vector Machines with Spectrum String Kernel Both

tan bnclassify Tree-Augmented Naive Bayes Classifier Classification

tanSearch bnclassify Tree-Augmented Naive Bayes Classifier Structure Learner
Wrapper

Classification

treebag ipred, plyr, e1071 Bagged CART Both

vbmpRadial vbmp Variational Bayesian Multinomial Probit Regression Classification

vglmAdjCat VGAM Adjacent Categories Probability Model for Ordinal Data Classification

vglmContRatio VGAM Continuation Ratio Model for Ordinal Data Classification

vglmCumulative VGAM Cumulative Probability Model for Ordinal Data Classification

widekernelpls pls Partial Least Squares Both

WM frbs Wang and Mendel Fuzzy Rules Regression

wsrf wsrf Weighted Subspace Random Forest Classification

xgbLinear xgboost eXtreme Gradient Boosting Both

xgbTree xgboost, plyr eXtreme Gradient Boosting Both

xyf kohonen Self-Organizing Maps Both
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Index

Symbols
~ (function operator), 15, 21

A
a-priori probabilities, 162
accuracy (classification benchmark), 66
Adjusted R-squared value, 23, 74
advanced methods, 159-184

k-nearest neighbors, 179-183
naive Bayes classification, 159-162
principal component analysis, 163-173
support vector machines, 173-179

algorithms
defined, 6, 8
in caret, 201
models vs., 6-7

AND gate, 36-38, 109

B
Bayesian statistics

basics, 159
naive Bayes classification, 159-162

bias
in sampling, 46-50
variance and, 46

bias node, 111
bias variable, 36
binary classification, 98-101

C
call, 73
caret package, 185-199

classification with, 132

comparing multiple models, 197
data splitting, 190
encyclopedia of machine learning algo‐

rithms in, 201
imputation with, 188-190
logistic regression with, 105
model training, 194-197
model tuning, 129, 191-193
neural networks with, 131-132
regression with, 131
Titanic dataset and, 186-188
using, 188-198

Classification and Regression Training (see
caret package)

classification and regression trees (CARTs), 55,
135

classification modeling, 24-30
conditional inference trees, 155
decision trees for, 151
defined, 20
k-nearest neighbors, 182
logistic regression, 24-26, 92-93
neural networks for, 130
neural networks with caret, 132
random forests, 157
supervised clustering methods, 26-30
training/test sets, 63-69

cluster sampling, 48
clustering, supervised, 26-30
coefficient of determination, 9
coefficient of linear equation, 73
complexity parameter, 148-150
computation, in modeling, 10
compute layer, 38, 114-119

209



conditional inference trees, 32, 152-155
classification models with, 155
regression models with, 154

conditional probabilities, 162
confidence interval, 11
confusion matrix, 30, 63
confusionMatrix() function, 196
cross-validation, 12, 67-69

D
data

goodness of fit, 87-91
testing (see training and testing of data)

data frames, 14
data splitting, 11, 54

regression models, 23
with caret, 190

data wrangling, 187
decision boundary, 93, 121
decision trees, 135-151

advantages/disadvantages of, 140-151
deciding how to split, 138-140
entropy and information gain, 139
for classification, 151
for regression, 151
nodes, 31
overfitting, 141-144
pruning, 145-150
simple tree model, 135-137

dependent events/probabilities, 160

E
entropy of trees, 139
equation, defined, 8
errors in regression models, 9
Euclidean distance, 180
events, independent vs. dependent, 160

F
F-statistic, 74
F1 score (classification benchmark), 66
feature scaling, 128-129
features, regularization and, 78
formula or function operator (), 15, 21
function, defined, 8

G
gain, 139

generalized linear model, 99
goodness of fit, 87-91

model simplicity and, 89-91
RMSE and, 87

H
hidden layers, 38, 114-119
holdout cross-validation technique, 67

I
imputation, 188-190
independent events/probabilities, 160
information gain, 139
input layer, 38

K
k-fold cross-validation, 13, 67-69
k-means clustering, 27-30
k-nearest neighbors (kNN), 179-183

classification using, 182
regression using, 181

kernel trick, 173, 176

L
lasso regression, 78-80
linear discriminant analysis (LDA), 169-173
linear regression, 72-80, 106

function call for, 7
logistic regression vs., 25, 91
multivariate regression, 74-78
regularization, 78-80
simplest algorithm for, 6

lm() function, 7, 21
logic gates, 36-38, 109
logistic regression, 24-26, 91-107

binary classification, 98-101
decision boundary, 93
linear regression vs., 25, 91
motivation for classification, 92-93
multiclass classification, 101-104
sigmoid function, 94-98
with caret, 105

M
machine learning (generally)

supervised, 19-40
unsupervised, 40-43

Mean Absolute Error (MAE), 63
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mixed models (supervised learning), 31-40
defined, 20
neural networks, 35-39
random forests, 34
SVMs, 39
tree-based models, 31-34

models, 1-18
accuracy vs. complexity, 89
algorithms vs., 6-7
basics, 1-6
comparing with caret, 197
cross-validation, 12
data training, 11
defined, 2, 8
limitations, 8
R and, 13-17
report vs., 1
simplicity and goodness of fit, 89-91
statistics and computation with, 10
terminology, 7
training with caret, 194-197
training/testing of data (see training and

testing of data)
tuning features in caret, 191-193

multiclass classification, 101-104
multilayer neural networks, 120-125
multilayer perceptrons (MLPs), 124-125
multiple R-squared value, 74
multivariate regression, 74-78

N
naive Bayes classification, 159-162

application of, 161
Bayesian statistics and, 159

neural networks, 35-39, 109-133
building a simple network with R, 111-119
for classification, 130, 132
for regression, 125-129, 131
hidden compute nodes for, 114-119
layers of, 38
multilayer, 120-125
multiple compute outputs for, 113
single-layer, 109
with caret, 131-132

O
one-versus-all/one-versus-many test, 102
output layer, 38
overfitting

avoiding, 87-91
trees and, 141-144

oversampling, 48
(see also stratified random sampling)

P
p-value, 10, 74
parameters, defined, 46
perceptron, 125

(see also multilayer perceptrons)
poly() function, 84
polynomial regression, 81-87, 81
population, defined, 45
precision (classification benchmark), 66
predict() function, 126
principal component analysis (PCA), 163-173
prior distribution of data, 170
probabilities

a-priori, 162
conditional, 162
independent vs. dependent, 160

pruning, 145-150
purity, 136

Q
quadratic fit, 59-59

R
R (generally)

advantages of, 13
and machine learning, 15
and models, 13-17
drawbacks, 16
sampling in, 51-54

R Markdown, 14
R Studio, 13
R-squared value, 9
random forests, 34, 155-157

classification with, 157
regression with, 156

random sampling, defined, 47
regression models, 20-24, 71-107

decision trees for, 151
defined, 20
errors in, 9
goodness of fit with data, 87-91
linear regression, 72-80
logistic regression, 91-107
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model simplicity and goodness of fit, 89-91
multivariate regression, 74-78
neural networks for, 125-129
neural networks with caret, 131
polynomial regression, 81-87
regularization, 78-80
training/test sets, 22-24, 55-63
using k-nearest neighbors, 181
with conditional inference trees, 154
with random forests, 156

regularization, 78-80
Relative Absolute Error (RAE), 63
replacement, defined, 51
report

defined, 7
model vs., 1

residual standard error, 74
residuals, 73, 86
Root Relative Squared Error (RRSE), 63
root-mean-square error (RMSE)

and goodness of fit, 87
for regression model, 24
for regression training/test sets, 57-61, 63

rpart package, 145-150
RWeka package, 182

S
sample, defined, 45
sampling, 45-54

bias in, 46-50
in R, 51-54
techniques, 12

sensitivity benchmark, 65
sigmoid function, 36, 94-98
simple random sampling, 47
specificity benchmark, 65
standard error, 74
statistics

defined, 46
in modeling, 10

stratified random sampling
defined, 48
in R, 51-53

supervised clustering, 26-30
supervised learning, 19-40

classification models, 24-30
data training/testing, 22-24
defined, 19

mixed methods, 31-40
regression models, 20-24

support vector machines (SVMs), 39, 173-179
systematic sampling

defined, 49
in R, 53

T
t-value, 74
testing (see training and testing of data)
Titanic dataset

about, 186-188
data wrangling, 187
using caret with, 188-198

training and testing of data, 22-24
classification modeling, 63-69
cross-validation, 12, 67-69
data splitting with caret, 190
for modeling, 11
for predictive models, 54-69
reasons to make a test set, 55
regression modeling, 55-63
roles of training/test sets, 55
with caret, 194-197

tree-based models, 31-34, 135-158
conditional inference trees, 152-155
deciding how to split, 138-140
decision trees, 135-151
decision trees for classification, 151
decision trees for regression, 151
decision trees pros/cons, 140-151
entropy and information gain, 139
overfitting, 141-144
pruning, 145-150
random forests, 155-157
simple tree model, 135-137

tuning of models, 12
(see also training and testing of data)
cross-validation and, 12
features in caret, 191-193

U
unsupervised learning, 19, 40-43

V
validation (see training and testing of data)
variance, bias and, 46
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The animal on the cover of Introduction to Machine Learning with R is an Australian
raven (Corvus coronoides), an intelligent bird with glossy black feathers and (as an
adult) striking white eyes. It is sometimes casually referred to as a crow, though this
raven is distinguishable from Australian crow species due to its fluffy throat hackles.
There is no consistent distinction between crows and ravens, though in general,
crows are categorized as such based on their smaller size. The Australian raven is
found in the southern and eastern regions of the continent—its natural habitat is
woodland, but it has adapted readily to life in urban areas.

The Australian raven is omnivorous (though it tends to eat more meat), with a diet of
fruit, insects, eggs, carrion, small animals, and grains. It’s also opportunistic and
known to scavenge through human garbage. This bird is about 18–21 inches long.
Pairs of ravens mate for life, and work together to construct an untidy bowl-shaped
nest of sticks lined with grass and other soft materials. The raven is territorial, and
when encountering intruders, will vocalize a loud warning or chase them away.

In some aboriginal traditions, the character Crow is a trickster figure, while the lore
of the Noongar people says that these birds carry the spirits of the dead to the after‐
life. Other Australians have nicknamed them “undertakers of the bush.”

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.
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