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Mathematical Dynamics
Hall of Fame

The early days of modern dynamics span half a

century, beginning in the 1880’s, as described in

Part One. At this time in France, Poincaré innovated

qualitative methods. More or less simultaneously

in Russia, Liapounov pioneered stability methods.

These techniques then underwent separate, parallel
developments. By the 1930’s, important progress had

been made in Europe and America, following the lead (Q
of Poincaré. Birkhoff, at Harvard, was the outstanding \Q®
figure. Meanwhile, in Russia, the ideas of Liapounov K(b'
had grown. Andronov was an important figure in thisv
tradition. \Q

There followed a quiet period. For another ggt&r

urope

century, the tradition of Poincaré dwindled
and America. Developments in Russia Q
were forgotten in the West. During(ﬁ
period, experimental dynamics bege'l

in Europe, as described in Pa 0.

Eventually, through the
emigré mathematici
the Russian work, as Lefshetz
and Minorsky, the qualitative theory
of dynamical systems was revived in
America. Beginning in the 1950’s, a
vigorous mathematical program picked
up steam and continues today. The
global behavior of dynamical systems
is the main theme of this movement,
which we may call mathematical

dynamics.
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Here are some capsule histories.

Henri Poincaré, 1854-1912. Besides

pioneering the new methods of dynamics
and topology, Poincaré discovered tangles
and bifurcations as we know them today.

Aleksandr Mikhailovich Liapounoy,
1875-1918. In his Ph.D. thesis of 1892,
Liapounov established the Characteristic
Exponents of an equilibrium point as the
determinants of its asymptotic stability.

George David Birkhoff, 1884-1944. <Q
Birkhoff was fascinated by tangles, a

wrote several papers about them, 1{1]9ne,
he introduced the signature ofﬁQse\'lgle,
making a first step in the hig

struggle to untangle thepg~n another,

he showed that ho tangles are
always surrounded by’myriad periodic
trajectories.

Aleksandr Aleksandrovich Andronoy,
1901-1952. With co-workers Leontovich
and L.S. Pontrjagin, Andronov pioneered
the phase portrait point of view.
Andronov and Pontrjagin published a
five-page paper in 1937 which
revolutionized global dynamics. Its main
contribution was the definition of

structural stability. In the same year,
Andronov published an influential book,
written with C.E. Chaikin, on nonlinear

oscillations. @

Gaston Floquet:zHe established the
Characteristi€ Multipliers of a limit cycle
as the d inants of stability, parallel to

the GQsof Liapounov, in 1879.

@ﬁwn Lefshetz, 1884-1972. In the

orld War II years, this great innovator of
algebraic topology turned his attention to
qualitative dynamics. A text on the local
theory in 1946 was followed by a global
treatment in 1957, in which structural
stability was discussed in two-dimensional
systems. A native of Russia, he reinjected
the tradition of Liapounov into the
mainstream of Western mathematics.

Nicolai Minorsky, b. 1883. Like
Lefshetz, Minorsky emigrated to the
United States in the prewar years. His
knowledge of the Russian school of
dynamical systems theory, presented in his
book of 1952, gave great impetus to the
resumption of mathematical dynamics in
the United States.
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Henry de Baggis, b. 1916. A student
of Lefshetz, in 1947 he proved the
conjecture of Andronov and Pontrjagin
on structural stability in the plane.

Mauricio M. Peixoto. Also a student of
Lefshetz, he improved enormously on de
Baggis’s result in 1959. In doing so, he
forged the connection between dynamics

and topology which has been so fruitful in

recent years.

René Thom, b. 1923. Thom usec%alg
dynamics in his work in topolo

which he was awarded the F@edal.
In 1960 or so, he begar%% ng the
importance of the conc f structural
stability in applical@a d his very
global view of bifurcations. His program
was presented in full in his epochal book,

Structural Stability and Morphogenesis, in
1966.

Lawrence Markus, b. 1922. Another
pioneer in the merger of topology and
dynamics, he clarified the meaning of
generic property in 1 dynamics, in

1960. This wo
11.1. {b
A8

Step[§|%male, b. 1930. Like Thom,
s

escribed in Section

ed dynamics in his work in

S
q(‘_&g ogy, which earned a Fields Medal

1960. He then went on to study
dynamics itself, and produced a series
of papers in the 1960’s which have
been very influential ever since. In one
of these, he improved substantially on
Birkhoff’s results on homoclinic tangles,
as we explain in Section 14.4.
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1 0 Global Phase Portraits

In Part One, we introduced limit points and cycles in
dimensions one, two, and three. The decomposition
of the state space into basins of attraction, by the
separatrices, was emphasized. In Part Two, the inset
structure of the separatrices was developed. The
geometry of the exceptional limit sets, determined

by their Liapounov characteristic exponents, was (0@
described. In this chapter, we review all this and \Q
assemble it into a global overview of the phase portrait >

\
of a typical system. ?\Q
A\
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10.1.

Multiple Attractors

For pedagogic reasons, our discussion has often centered on an attractor. However,
generic systems commonly have several attractors. So we begin this review chapter
with an explicit acknowledgment of this fundamental feature: multiple attractors.

Let’s begin with the simplest case, in which the state space is one-
dimensional: a curve.

In this context, limit sets are points. Generically, point attractors and point

repellors alternate along the curve. The repelling points separate the basins of the
attracting points. An initial state, chosen from one of the basin? ds toward
the unique attractor in its basin. The different attractors re?§§e

\
S

t the equilibrium
states that may be observed in this system.

In general, a one-dimensional system is multi-stable, in that more than one stable
equilibrium point is possible.
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dimensions.

Not every separatrix is the inset of a saddle point.
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Two dimensions are rather special. Let’s ha\n(a ook at the three-
dimensional case, which is more typical.

s
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Recall that the index of a saddle point is the dimension
of its outset.

Separatrices need not be insets of a saddle point.
They are, usually (but not always), insets of a
nonattractive limit set: point, cycle, or chaos.

Remember that limit sets can be aperiodic, that is,
chaotic. Thus, there may be both chaotic attractors
and chaotic separatrices in a typical multistable system.
Details are given in Part Two.
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10.2.

Actual and Virtual
Separatrices

In Section 1.5, we defined the separatrix of a dynamical system as the
complement of the basins of attraction. That is, an initial state belongs
to the separatrix if its future (omega) limit set is not an attractor.
According to this agreement, the separatrix consists of the insets of
the non-attractive (or exceptional) limit sets. (See Section 1.5.) But
do they, in fact, actually separate basins? If so, they are called actual
separatrices. But, as we shall see, it may happen that they do not
separate basins. In this case, they are called virtual separatrices.

Here are some examples, beginning witI{@.
()
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Likewise, in 2D, the separatrix consists of curves that are either
insets of saddle points or periodic repellors. Examples of both sorts
have been shown in the preceding section. But now look at these.

Recall that in the bistable magnetic pendulum, there is a saddle
point near the bottom, as shown in Figure 10.1.3. But like the
simple pendulum of Section 2.1, there is also a saddle point at the
top of the swing,
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This inset failed to actually separate basins because
the state space is a cylinder. Another way an inset
may fail to divide basins occurs on the Mobius
band.

e the point repellor at the center, cut
thro he remaining strip, give one end a half-
%&, and carefully paste the ends together again.
« C)
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Finally, recall that insets may be thick, or chaotic. Our

favorite example, Poincaré’s solenoid, was constructed
step by step in Section 8.1.
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11 Generic Properties

We always try to convey the features of typical, garden-variety, dynamical
systems. The exceptional cases are more complicated and numerous, and they
interrupt the discussion. Moreover, we feel that they should not arise very
often in applications, because they are exceptional. This prejudice, shared by
all dynamicists, has become a main theme in dynamical systems theory.

The properties characterizing these typical systems are called generic properties.
Although this name was established early in the program, it tum@ut that

it might have been better to call them weakly generic properti r it has
become commonplace to observe exceptional behavior (vipldiing a so-called
generic property) very frequently. An explanation for ?@aradox will be
given in Part Four, “Bifurcation Behavior.” Meanv@e, with this warning, we
will continue to call these properties generic! \Q

A considerable portion of the history of ma@ematical dynamics has been
dominated by the search for generic pr, ies. These define a class of phase
portraits that are far simpler than a ones. The goal of the search is

to narrow down the complexity aof the portraits enough to allow a complete
classification. This was achiev@{for dynamical systems in the plane by
Peixoto around 1959. This {Q

but the higher dimensi eneric systems are still hopelessly complex. This

the whole program a tremendous boost,

chapter presents t mentals of this program, initiated by Andronov and
Leontovich in 1934

The prototypical results, due to Peixoto, apply to orientable (untwisted)
surfaces. An early global result for other state spaces was found by Lawrence
Markus around 1960. Definitive results were obtained by Ivan Kupka and
Stephen Smale in 1964. Now we will describe the essence of this main theme
in the theory.

We begin with the definition of the most important global properties of
dynamical systems, or vectorfields: G1, G2, and G3. Then, in a final section,
we describe the official meaning of generic property and state the Kupka-Smale
Theorem: Properties G1, G2 and G3 are generic.
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11.1.

Property G1 for
Critical Points

To begin, let’s recall the distinction between hyperbolic and
nonhyperbolic critical points.

In Chapter 6 we created an atlas of limit points. Using their CE’s, we

carefully distinguished the hyperbolic and nonhyperbolic cases. We brushed
aside the nonhyperbolic cases, claiming they are nondegenerate, exceptional,
or nongeneric. The global formulation of this assertion is the part of the Kupka—
Smale Theorem asserting the genericity of property G1, for critica &mts

this section, we describe this property of critical points (that is, points).

portrait

attractors

=5
-
8

v

repe/{ors

Here, radial means that the CE’s are real and equal.
The radial type is intermediate between the spiral and nodal types.
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Now we are ready for property G1.

\J
In the literature of @Qmical systems theory, this
definition usually has hyperbolic in place of elementary.
But this version probably results in a more satisfactory
theory, from the point of view of the experimentalist,
or in the context of applications.

For the eight elementary critical points that
occur in 3D, see Figures 6.5.5. and 6.5.6.
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11.2.

Property G2 for
Closed Orbits

In Chapter 7, we created an atlas of limit cycles. Using
their CM’s, we carefully distinguished the hyperbolic and
nonhyperbolic cases. As in the case of limit points, we
neglected the nonhyperbolic cases. The global justification
of this neglect is the part of the Kupka-Smale Theorem
asserting the genericity of property G2, for limit cycles. In
this section, we describe this property of limit cycles.

To begin, let’s recall the distinctign between
hyperbolic and nonhyperbolic lmtit cycles. For 2D,
these were shown in Figur

portra.ii‘

attractor

repellor

SR

CM<T or CM>1

nan-/lyperbo((c

it
-l o

CM.==] or CM.=1
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In the nonhyperbolic case, the CM is equal to plus or
minus 1, and the limit cycle may be an attractor, a
repellor, or neither. Here are two examples, with the
CM equal to plus 1.
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This completes our partial survey of limit cycles in 2D. In
3D, each limit cycle has two CM’s. They may be conjugate
complex, or both real. If they are both real, they may be
distinct or identical. This brings up the distinction between
hyperbolic and the similar idea, elementary. The actual
definition of hyperbolic limit cycle in any one dimension

is: there are no CM’s of absolute value 1. Elementary is

a little stronger. An elementary limit cycle is one which is
hyperbolic, plus all its CM’s are distinct.

All the elementary limit cycles in 3D are shown in Figure

7508

Here is the definition of G2. ((\
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11.3.

Property G3 for Saddle
Connections in 2D

Every trajectory of a dynamical system comes from somewhere
and goes somewhere. That is, it has an alpha limit set and an
omega limit set. Every trajectory is in the outset of its alpha
limit set, and at the same time in the inset of its omega limit
set. Thus, outsets and insets normally intersect each other.

However, most of the time, a trajectory comes from a repellor

and goes to an attractor. Exceptionally, one comes from a

repellor and goes to a saddle, or comes from a saddle and also

goes to a saddle. Such a trajectory is called a saddle connection, @
or a heteroclinic trajectory. It is even possible for a trajectory

connect a saddle to itself! This is called a homoclinic trajec@:
Poincaré realized that these trajectories were particula?p
important in the qualitative behavior of dynamical\tz{t ms

.

Note that a heteroclinic trajectory always belo Qy the outset
of a saddle (the donor), and to the inset of le (the
receptor) as well. Therefore, the donorg\@t and the receptor
inset must intersect, and their inter; contains the entire
heteroclnic trajectory. Generally,&h' ihtersection of a saddle
outset and a saddle inset con;&*not just one, but an entire
family of heteroclinic traj§

quality of the intersecti

.

. Property G3 concerns the
insets and outsets of limit sets
of saddle type, esp

It requires that thes&intersections all be transverse (that is,

ddle points and periodic saddles.

cleanly crossing).

In state spaces of one dimension, there are no saddles. In two
dimensions, hyperbolic saddle points have invariant curves as
inset and outset. There are no periodic saddles. In this section,
we briefly explain property G3 in dimension two only. The full
story is told in detail in Chapters 13 and 14.

In two dimensions, a dynamical system satisfies
property G3 if it has no saddle connections at all.
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Property G3 is a global property. It requires, in
two dimensions, that each saddle outset avoid
coinciding with any saddle inset.
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11.4.

Properties G4 and F

Another generic property, G4, will be described in
Chapter 15. It was originally formulated by Peixoto, in
its oriented, two-dimensional version: The system has

no nontrivial recurrence. Here is the main example of
nontrivial recurrence.

OQ* In other words, a limit torus is topologically transitive, as
C) described in Figure 9.2.11. It shares this property of all
the known chaotic attractors and limit sets. But, it occurs
in two-dimensional systems, while chaotic sets do not.
So in 2D, the toroidal solenoid is the main example of
nontrivial recurrence, while in 3D the situation is much
more complicated.
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Finally, there is one more generic property we
must describe, one which is special to the 2D
case.

A dynamical system has property F if it has only a

finite number of limit sets. In the 2D context, limit sets
must be limit points, limit cycles or limit tori. This is

a classical result of two-dimensional dynamic systems
theory, known as the Poincaré-Bendixson theorem. Thus
a 2D system satisfying G4 (no limit tori) will also satisfy
property F if it has only a finite number of limit points

and only a finite number of limit cycles.

These properties G1, G2, G3, G4 and E
were all introduced by Andronov, de Baggis,
and Peixoto in their historical works on
structural stability in 2D. We now turn to
that subject.
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1 2 Structural Stability

In the applications of dynamics in various fields, the

dynamics - that is, the actual vectorfield - can never

be specified exactly. In fact, outside of a few cases in

theoretical physics, one basically makes a rough guess.

The mathematical theory of dynamical systems might

be useful anyway, if it can describe features of the phase

portrait that persist when the vectorfield is allowed to

move around. This idea, now called structural stability, @
emerged early in the history of dynamics. (50(0
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12.1.

Stability Concepts

The idea of structural stability seems to have appeared
first in the 1930’s, in the writings of Andronov and
collaborators, in Russia. It was introduced to North
America by Lefshetz, the great topologist, and has
played a central role in the development of the subject
ever since.
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Topological equivalence, or synonymously, topological conjugacy, of two phase portraits,
means there is a homeomorphism of the state space, or continuous “rubber sheet”
deformation, which maps one of the portraits to the other, preserving the arrow of time
on each trajectory.

Here are some topologically equivalent portraits in two dimensions.

To be faithful to the theory in higher dimensions, we will need also the concept of

epsilon equivalence. This is a topological equivalence of dynamical systems, in which
the deforming homeomorphism only stretches or slides the state space a small amount
(measured by epsilon). Likewise, in the spirit of classical mathematics, we will call a
perturbation a delta perturbation, if it is small (measured by delta).
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Now we use both of these stability concepts,
delta perturbation and epsilon equivalence, to
introduce the idea of structural stability.

A vectorfield has the property of structural stability
if (choosing epsilon) all delta perturbations of it
(sufficiently small) have epsilon equivalent phase
portraits.

Here is a simple example.
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12.2.

Peixoto’s Theorem

Now we go on to Peixoto’s historic theorem, relating the generic
properties of the preceding chapter to structural stability in 2D.

A watershed in the history of dynamics, Peixoto’s work brought together
different topology and classical dynamics, ushering in a new age of
mathematical dynamics. The attempts to extend his 2D results to 3D and
beyond characterized the early days of this new approach, in the 1960’s.

Peixoto’s result applies to a very restricted class of state spaces,
called compact, orientable surfaces. We start with these.
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Now we are ready to state Peixoto’s theorem. We will use property S as a synonym
for structural stability.

Peixoto’s theorem: among all smooth dynamical systems on a compact,
orientable surface,

A. properties G1, G2, G3, G4 and F are generic,

B. property S is equivalent to these properties (A), and

C. property S is generic.

Clearly C follows from A and B, but this is the most exciting aspect of the theorem. For
it says that in applications, this strong kind of stability is to be expected as the typical
case, while structural instability is pathological.

Here, generic is a technical term, which we translate as typical sometimes.
However, the atypical cases (especially those in which ng&rty G4 is
violated) are so frequently observed in experiments )? we should use
weakly generic as the technical term, and under typical as meaning
slightly more probable than the exceptional cases: The reason for this
paradox is that the Kronecker (solenoidal) flt@ts on the torus (See Part One)
occur for a fat fractal or thick Cantor set aves in Thom’s big picture.’
This will be explained in more detail i Four.

Part A was generalized promptly to hi imensions, except for the genericity of E
which failed, along with C. Part B as generalized, by Smale and Palis. More
about this in later chapters. X

Peixoto’s
proof is
outlined

in the next
section.
Here, we
give some
examples.
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e connections are
ection 11.3.

But Peixoto’s theorem says more:
structurally unstable, as we sa

Peixoto’s theorem says'still more: nontrivial recurrence
(solenoidal flow on \Qus) can be perturbed (in Thom’s
big picture) into Q&&urally stable system.
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12.3.

Peixoto’s Proof

We break the proof into five steps:

1. G1 implies FP (finite number of limit points).
2. G2 implies FC (finite number of limit cycles).
3. G4 implies no limit tori.

Therefore, G1, G2, and G4 imply E
4. G1, G2, G3, and G4 (and hence F) imply S.
5. S implies G1, G2, G3, and G4.
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The proof of this step used topology and calculus, be
and is not terribly difficult. ‘Q

The proof of Step 2 requires the infamous Closing
Lemma. This is used to eliminate the possibility of a
toroidal limit set. First proved in the present context

by Peixoto, it has been wonderfully generalized by
Pugh and Robinson.’
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The proof of this step requike’’the actual construction

of a topological deform&tie

from the original portrait
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13 Heteroclinic Tangles

Limit points and cycles of saddle type may be

distributed throughout the state space. Each has insets

and outsets, which wander around near each other.

Intersections are not unlikely. These, called saddle

connections, consist of trajectories of the dynamical

system that lead from one saddle (called the donor) to (Q
another (the receptor). This connecting curve is called \Q®
a heteroclinic trajectory if the donor and receptor saddles &(b

are different, or a homoclinic trajectory if they are the \Q

same. This chapter is devoted to saddle connectio%?\

by heteroclinic trajectories which satisfy the ge

property G3, or transversality. The homoclin &a

trajectory connects a saddle to itself) is s&:d in the

next chapter. Q

In state spaces of one dimension tﬁl{e are no saddles.

In two dimensions, there are &nc saddle points

*

with one-dimensional inset\ outsets. In the three-
dimensional cases, ther@ generic saddle points
and cycles, of whicgﬁal

surfaces. In this chapter, we will describe all of the

sets and outsets may be

transverse heteroclinic saddle connections in two and
three dimensions: limit point to limit point, limit point
to limit cycle, and cycle to cycle.
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13.1.

Point to Point

First, consider phase portraits in the plane, with two
hyperbolic limit points of saddle type. The insets of
each are curves, likewise their outsets. These curves are
trajectories of the dynamical system.
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And now, on to two hyperbolic saddle points in 3D.

In the three-dimensional case, there are several possibilities. There are two types
of topologically distinct hyperbolic saddle points: index 1 (inset two-dimensional)
and index 2 (inset one-dimensional, outset two-dimensional). Each can be a
donor or receptor of a saddle connection. But transverse saddle connections, in
3D, only occur between two-dimensional outsets and two-dimensional insets.

Such an intersection consists of a single curve, a trajectory.







382 Global Behavior




Heteroclinic Tangles

383

13.2.

Outsets of the Lorenz Mask

Recall the Lorenz mask, from Part Two. This was

the first chaotic attractor to be firmly established in
experimental dynamics. It is actually made of tangled
outsets. Here, developed in stages, is the complex of
point-to-point tangles found in the Lorenz system.'
There is a radial saddle point of index 1 (the receptor)
situated between two spiral saddle points of index 2
(the donors). The outset surfaces of the two donors
are heteroclinically incident to the inset surface of the
receptor.

Next, we will build up this complex, step by step.
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Heteroclinic Tangles
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The chaotic Lorenz attractor is composed of a yoke of

tangles, folded into itself. Perhaps all of the familiar chaotic
attractors have such an outset structure. But even in
nonchaotic systems, the tangles are very important features.

We resume now our excursion into tangles.
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13.3.

Point to Cycle

There is only one kind of hyperbolic saddle cycle in 3D: index 1 (two-dimensional inset
and outset). The two-dimensional outset of a hyperbolic limit point of index 2 can have

a transverse intersection with the two-dimensional inset of such a limit cycle.
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All of the forms of this section could be reversed, by
changing the direction of time, to provide examples of

heteroclinic tangles from a limit cycle to a limit point:
cycle to point.
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13.4.

Cycle to Cycle

Thus far, three generic and topologically distinct saddle
connections have been described:

— saddle point index 2 to saddle point index 1,

— saddle point index 2 to saddle cycle,

— saddle cycle to saddle point index 1.

In three dimensions, there is just one more.
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The completion of this drawing, showing the full tangle of curves within
the Poincaré section, was carried out brilliantly by Birkhoff. His topological
analysis of this picture reveals that between the points of intersection, H
and H+, there must be, assuming G3, an odd number of others.

This contstruction of Birkhoff is carried out in the next section.
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13.5.

Birkhoff’s Signature

The successive intersections of the inset and outset, curves

within the Poincaré section, shown above, are all points
belonging to a single heteroclinic trajectory. However, there
may be (in fact, must be) other intersections, belonging to
other heteroclinic trajectories. Our task now is to chart all
of these, and the course of the inset and the outset curves
between intersection points.

Notice the arrows on the outset segments,
indicating the out-directions on the outset curve,
away from the donor.
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Some more complicated examples are given in the
next chapter.

Meanwhile, the inset curve of the receptor is
still only half-drawn. Where is its past?
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If this object were set down upon a rotating
phonograph turntable, it would look rather like a
bolt being screwed down.
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The behavior of the trajectory passing by a cycle-to-cycle
heteroclinic tangle is a spiraling asymptotic approach along the
inset of the donor, followed by a period of entrapment, spiraling
along the screw thread of the heteroclinic tangle, and finally an
asymptotic escape, along the outset of the receptor. Thus, the
heteroclinic tangle provides a model for transient oscillation.

In summary, there are no generic saddle connections in two-
dimensional dynamical systems. In three dimensions, there
are four topologically distinct types. In higher dimensions, the
situation is even more complicated.

The generic property G3 for dynamical systems is this:
all inset and outset intersections are transverse. The
genericity of this property, like the properties G1 and
G2, is established by the theorem of Kupka and Smale.
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1 4 Homoclinic Tangles

In addition to the four kinds of transverse saddle
connections described in the preceding chapter, there
is one more that can occur in three dimensions. This
is the connection from a saddle cycle to itself, called
a homoclinic connection. Homoclinic connections are
much more important than heteroclinic ones, as

they occur as exceptional limit sets within separatrices. @
Further, as shown by Birkhoff and Smith,' they are \Q(O
full of limit cycles. The study of this complicated case, &(b

initiated by Poincaré, is still in progress. An advance ?\
was made by Smale’ in 1963. Many topologically
different forms are possible. This chapter descri‘b@ﬁ
main ideas of the three-dimensional conte uding
some constructions not previously publiﬁjd.

Q
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14.1.

Homoclinic Cycles

By definition, a homoclinic trajectory must belong to
the inset and outset of the same limit set. In the generic
context of properties G1, G2, and G3, this limit set may
not be a point. The simplest generic case is a limit cycle
of saddle type, in three dimensions. In this section, we
dissect this case.
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The key to the analysis.is the first return map, which
maps the Poincaré\Qction into itself, corresponding

to one revolut@@i'ound the limit cycle.

What happens to the homoclinic point after another
revolution around the limit cycle?
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0
How may these outset segments be cQHected,
so as to obtain the entire outset?QG.)
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U
This tangle, based on the simple ‘I;kkhoff signature,
reveals additional intersectio inset and outset

loops. This deeper strucn%é not determined by

the Birkhoff signature , to fully describe the
structure of the tar@ additional signatures must be
specified.

In the next section, we introduce a sequence
of signatures, published here for the first time,
for the full description of a homoclinic tangle
in 3D.
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14.2.

Signature Sequence

During the preparation of a preliminary edition of this
work in 1980, we tried to deform the Hayashi tangle
(shown in the preceding panel, 14.1.8.) into the Smale
horseshoe (described in the next section; see also Figure
8.1.10.). Although the two homoclinic tangles have the
same Birkhoff signature, we were unable to deform the
Hayashi tangle into the horseshoe.

In trying to understand the difference between these two
exemplary tangles, we developed an infinite sequence of
signatures. The first of these is th hoff signature,
which is the same for the two les. The second,
however, is different. Thus, Q@ could not be deformed,
one into the other. This our signature conjecture:
if two tangles have thgssame signature sequence they are

topologically equi(v)}{%m

In this secti e construct the signature

sequen ep by step, for the Hayashi tangle. In
the Q@cﬁon, we will apply it to the Smale

ho:Q'e oe tangle.










Homoclinic Tangles 417




418 Global Behavior

The Birkhoff signature is the first of our sequence.
The figure in the inset above is the second. Let’s try
out these two on another example.
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These two signatures are the first of an infinite s{\
sequence. See if you can draw the third {b
signature in the examples above. ?‘Q
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14.3.

Horseshoes

In this section, we will tackle another tangle, called Smale’s
horseshoe. This third example originated as a geometric

construction, but was subsequently observed in the forced
Van der Pol system,*and many others. Along the way, we
will give an idea of the third signature of a tangle.
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Smale’s analysis of this

particular tangle, based
on combing it out and
applying symbolic
dynamics, might be
applied to other

homoclinic tangles,
through careful use of
the signature sequence.

The theory of homoclinic tangles is very important, and yet little known. Even

in three dimensions, the lowest in which they occur generically, there are
outstanding problems. In higher dimensions, little is known. Poincaré expressed
the fear that they might defy analysis forever, but the theory of horseshoes,

and the work of Zeeman, Newhouse, and others® on more general shoes, gives
hope.
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14.4.

Hypercycles

An even more complicated situation occurs generically
in dimension three or more. The insets and outsets

of these may have transverse intersections, tangles, and
heteroclinic trajectories in a daisy chain, called a hypercycle,
or heteroclinic cycle.
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Cycles of heteroclinically related critical points

are endemic in real dynamical systems, and are
vitally involved in chaotic motions.
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15 Nontrivial Recurrence

In the history of dynamics, as in philosophy, the concept

of recurrence frequently recurs. A periodic trajectory

has the recurrence property: every one of its states

will recur again and again. This is called trivial

recurrence. The recurrence property also applies to

more complicated (aperiodic) trajectories. This is called

nontrivial recurrence. This concept already surfaced in

the generic property G4, described in Section 11.3, and \Q(b
in the chaotic attractors of Part Two. In this chapter, \(b‘
more versions of this important phenomenon will be ?\

described. \Q
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15.1.

Nearly Periodic Orbits

Recall that generic property G4 limits the types of almost-periodic
motions. Discovered by Peixoto in two dimensions, its genericity was
established by Pugh in higher dimensions.' Suppose that we take

a sequence of points in the state space, converging (approaching
asymptotically closer and closer) to a point, and that each of

the points belongs to a closed orbit (limit cycle, or periodic
trajectory). Topological consequences of the generic condition G3
(transversality) force the periods of these periodic trajectories to

get longer and longer. Thus, the oscillations they represent have
frequencies that get lower and lower. The limit point of the origi
sequence lies on a trajectory that need not be periodic. But i@
nearly periodic, in that observations cannot distinguish it fQ a low-

frequency oscillation. We will denote the set of all ne eriodic
points of the dynamical system by NP. ‘Q
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Expansion of the tangle shows how the periodic orbits
fit into this picture, from the cover of Hayashi’s

collected works.*
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We may use the expansion of the tangle as a magnifier, to

zoom into the microstructure of the tangle.
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We may continue to zoom into this microscopic

structure of the tangle.
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By starting with other small rectangles and making
judicious use of the zoom method, additional
periodic points may be found.

X
. ﬁus the original homoclinic point is the limit of a
Q

quence of periodic points in the Poincaré section. In

Qﬁ the three-dimensional state space, a sequence of closed
C)O orbits (periodic trajectories) asymptotically approach

the homoclinic trajectory. Thus, every point on the
homoclinic trajectory is nearly periodic, yet not periodic.
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15.2.
Why Peixoto’s Theorem
Failed in 3D

As described in Section 12.2, Peixoto’s theory of
structurally stable systems is restricted to the two-
dimensional case. In the case of state spaces of three
dimensions or more, it is still true that structurally stable
systems must have the four generic properties: G1, G2,
G3, and G4. But these conditions no longer ensure
structural stability. In fact, structurally stable systems are
rare (that is, hard to find) in higher dimensions. A
complete characterization of struc

dimensional systems (having a
accomplished recently.” This ion describes the failure,

dimensions.

and the remnants of Pei%@
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The progress of dynamical systems theory stalled briefly at
this point, until it occurred to Smale to regard a homoclinic

tangle as a generalized limit cycle and propose generic
properties for it as a unit. He called this a basic set. The main
example is the horseshoe, dissected in the preceding chapter.
This was a prototype for the chaotic attractors, described in
Part Two. One of the fundamental properties of a basic set is
nonwanderingness, described in the next section.
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15.3.

Nonwandering Points

One of the most restrictive versions of the recurrence
property is near-periodicity, defined above, in Section 15.1.
And one of the least restrictive versions is the property of
nonwandering, defined in this section.
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On the other hand, it may happen that, no mat’e&ow
small you draw the original disk, it always ?& back to
overlap itself. Or, it may never cease ov ing itself, no
matter how long you wait. In these the original point
is a nonwandering point. The set of dlf nonwandering points
of a given dynamical system ws@e denoted by NW.
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Generic property G4, discussed previously in Section 11.4,
can now be simply stated: NP = NW. That is, a dynamical
system has property G4 if its every nonwandering point can
be approximated by periodic points (points belonging to
limit cycles). This property is generic, as proved by Peixoto
(in 2D) and Pugh (in higher dimensions).

C)O Warning: As described briefly in Chapter 12, this
property is generic only in a very weak sense. The
reason is that the violation of G4 by persistent
solenoidal flows (equivalent to irrational Kronecker
flows on invariant tori) occurs with positive
expectation. Thus, in the sense of probability, G4
violation is also generic. We may call this the G4
paradox. It will be explained further in Part Four.
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