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The early days of modern dynamics span half a 
century, beginning in the 1880’s, as described in 
Part One . At this time in France, Poincaré innovated 
qualitative methods . More or less simultaneously 
in Russia, Liapounov pioneered stability methods . 
These techniques then underwent separate, parallel 
developments . By the 1930’s, important progress had 
been made in Europe and America, following the lead 
of Poincaré . Birkhoff, at Harvard, was the outstanding 
figure . Meanwhile, in Russia, the ideas of Liapounov 
had grown . Andronov was an important figure in this 
tradition .

There followed a quiet period . For another quarter 
century, the tradition of Poincaré dwindled in Europe 
and America . Developments in Russia 
were forgotten in the West . During this 
period, experimental dynamics began 
in Europe, as described in Part Two .

Eventually, through the efforts of 
emigré mathematicians familiar with 
the Russian work, such as Lefshetz 
and Minorsky, the qualitative theory 
of dynamical systems was revived in 
America . Beginning in the 1950’s, a 
vigorous mathematical program picked 
up steam and continues today . The 
global behavior of dynamical systems 
is the main theme of this movement, 
which we may call mathematical 
dynamics .

    333

Mathematical Dynamics 
Hall of Fame

Table 3.1 - The History of Global Theory

Date	 Europe/America	 Russia_________________________________________________

1850

1900

1950

2000

Poincaré	 Liapounov
Floquet	 Mandelshtam

Birkhoff
Lefshetz,	Minorsky,	 Kolmogorov
de	Baggis,	Peixoto,		 Arnol’d
Markus,	Thom,
Smale,	Pugh
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334  Global Behavior

Here are some capsule histories. 

Henri	Poincaré,	1854-1912. Besides 
pioneering the new methods of dynamics 
and topology, Poincaré discovered tangles 
and bifurcations as we know them today .

Aleksandr	Mikhailovich	Liapounov,	
1875-1918. In his Ph .D . thesis of 1892, 
Liapounov established the Characteristic 
Exponents of an equilibrium point as the 
determinants of its asymptotic stability .

George	David	Birkhoff,	1884-1944.	
Birkhoff was fascinated by tangles, and 
wrote several papers about them . In one, 
he introduced the signature of a tangle, 
making a first step in the historic 
struggle to untangle them . In another, 
he showed that homoclinic tangles are 
always surrounded by myriad periodic 
trajectories .

Aleksandr	Aleksandrovich	Andronov,	
1901-1952. With co-workers Leontovich 
and L .S . Pontrjagin, Andronov pioneered 
the phase portrait point of view . 
Andronov and Pontrjagin published a 
five-page paper in 1937 which 
revolutionized global dynamics . Its main 
contribution was the definition of 

structural stability . In the same year, 
Andronov published an influential book, 
written with C .E . Chaikin, on nonlinear 
oscillations .

Gaston	Floquet. He established the 
Characteristic Multipliers of a limit cycle 
as the determinants of stability, parallel to 
the CE’s of Liapounov, in 1879 .

Solomon	Lefshetz,	1884-1972. In the 
World War II years, this great innovator of 
algebraic topology turned his attention to 
qualitative dynamics . A text on the local 
theory in 1946 was followed by a global 
treatment in 1957, in which structural 
stability was discussed in two-dimensional 
systems . A native of Russia, he reinjected 
the tradition of Liapounov into the 
mainstream of Western mathematics .

Nicolai	Minorsky,	b.	1883. Like 
Lefshetz, Minorsky emigrated to the 
United States in the prewar years . His 
knowledge of the Russian school of 
dynamical systems theory, presented in his 
book of 1952, gave great impetus to the 
resumption of mathematical dynamics in 
the United States .

Cop
yr

igh
t 2

00
5 

Ralp
h 

Abr
ah

am



    335

Henry	de	Baggis,	b.	1916. A student 
of Lefshetz, in 1947 he proved the 
conjecture of Andronov and Pontrjagin 
on structural stability in the plane .

Mauricio	M.	Peixoto. Also a student of 
Lefshetz, he improved enormously on de 
Baggis’s result in 1959 . In doing so, he 
forged the connection between dynamics 
and topology which has been so fruitful in 
recent years .

René	Thom,	b.	1923.	Thom used 
dynamics in his work in topology, for 
which he was awarded the Field Medal . 
In 1960 or so, he began advocating the 
importance of the concept of structural 
stability in applications, and his very 
global view of bifurcations . His program 
was presented in full in his epochal book, 
Structural Stability and Morphogenesis, in 
1966 .

Lawrence	Markus,	b.	1922.	Another 
pioneer in the merger of topology and 
dynamics, he clarified the meaning of 
generic property in global dynamics, in 
1960 . This work is described in Section 
11 .1 .

Stephen	Smale,	b.	1930. Like Thom, 
Smale used dynamics in his work in 
topology, which earned a Fields Medal 
in 1960 . He then went on to study 
dynamics itself, and produced a series 
of papers in the 1960’s which have 
been very influential ever since . In one 
of these, he improved substantially on 
Birkhoff’s results on homoclinic tangles, 
as we explain in Section 14 .4 .
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In Part One, we introduced limit points and cycles in 
dimensions one, two, and three . The decomposition 
of the state space into basins of attraction, by the 
separatrices, was emphasized . In Part Two, the inset 
structure of the separatrices was developed . The 
geometry of the exceptional limit sets, determined 
by their Liapounov characteristic exponents, was 
described . In this chapter, we review all this and 
assemble it into a global overview of the phase portrait 
of a typical system .

    337

10 Global Phase Portraits
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10.1.

Multiple Attractors

Global Phase Portraits    339

10.1.1.	
In	this	example,	there	are	two attractive	points,	each	in	its	own	basin.	
The	system	is	bistable,	in	that	two	distinct	stable	equilibria	are	possible.

For pedagogic reasons, our discussion has often centered on an attractor . However, 
generic systems commonly have several attractors . So we begin this review chapter 
with an explicit acknowledgment of this fundamental feature: multiple attractors .

Let’s	begin	with	the	simplest	case,	in	which	the	state	space	is	one-
dimensional:	a	curve.

In this context, limit sets are points . Generically, point attractors and point 
repellors alternate along the curve . The repelling points separate the basins of the 
attracting points . An initial state, chosen from one of the basins, tends toward 
the unique attractor in its basin . The different attractors represent the equilibrium 
states that may be observed in this system .

In general, a one-dimensional system is multi-stable, in that more than one stable 
equilibrium point is possible .
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340  Global Behavior

10.1.2.	
Notice	that	in	this	example,	the	two	basins	are	separated	by	the	point	repellor.	Initial	points	
slightly	to	the	left	of	the	repellor	tend	to	attractor	A,	while	those	slightly	to	the	right	tend	to	
attractor	B.	This	behavior	is	roughly	like	a	mechanical	toggle	switch.

10.1.3.	
Remember	the	pendulum?	Here	is	the	magnetic	bob	from	Figure	2.1.22.	This	is	also	a	bistable	
system.	But	the	two	basins	are	two-dimensional,	so	the	separatrix	between	them	is	a	curve.	This	
curve	is repelling,	yet	not	a	repellor.	In	fact,	it	consists	of	the	inset of	the	saddle	point	between	
the	point	attractors.	This	saddle	point	represents	an	unstable equilibrium	of	the	bob,	balanced	
between	the	forces	of	the	two	magnets.	And	its	inset	represents	those	improbable	initial	states	
which	tend	to	this	unstable	equilibrium	and	balance	there.

Now	let’s	move	on	to	two	dimensions.

Not	every	separatrix	is	the	inset	of	a	saddle	point.
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Global Phase Portraits     341

10.1.4.	
Recall	this	portrait,	from	Figure	1.5.8.	Here,	the	periodic	repellor	bounds	the	two-dimensional	basin	
of	an	attractive	point.	It	is	a	separatrix.

10.1.5.	
In	this	portrait	of	a	simple	bistable	system	in	3D,	there	are	again	two	attractors.	Both	are	rest	points.	
Their	basins	are	three-dimensional,	and	are	bounded	by	a	surface.	This	surface,	the	separatrix	in	this	
example,	is	the	inset	of	a	saddle	point	of	index	1.

Two	dimensions	are	rather	special.	Let’s	have	a	look	at	the	three-
dimensional	case,	which	is	more	typical.
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Recall that the index of a saddle point is the dimension 
of its outset .

Separatrices	need	not	be	insets	of	a	saddle	point.	
They	are,	usually	(but	not	always),	insets	of	a	
nonattractive	limit	set:	point,	cycle,	or	chaos.

342  Global Behavior

10.1.6.	
Here,	for	example,	is	a	bistable	system	with	two	periodic	attractors.	Their	basins	are	bounded	by	
a	cylindrical	surface,	the	separatrix.	It	is	the	inset	of	a	periodic	saddle.

Remember that limit sets can be aperiodic, that is, 
chaotic . Thus, there may be both chaotic attractors 
and chaotic separatrices in a typical multistable system . 
Details are given in Part Two .
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Global Phase Portraits     343

10.1.7.	
This	is	one	of	
the	most	
famous	chaotic	
attractors.
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10.2.

Actual and Virtual 
Separatrices

344  Global Behavior

10.2.1.	
As	we	have	seen	in	
the	preceding	section,	
point	repellors	may	
separate	basins	in	
one-dimensional	
state	spaces.

10.2.2.	
But	if	we	connect	the	
ends	of	the	curve,	
we	have	a	unistable	
system!	There	is	only	
one	basin.	The	
separatrix	(a	single	
point	repellor)	
bounds	it,	but	does	
not	separate	
anything.	It	is	a virtual 
separatrix.

In Section 1 .5, we defined the separatrix of a dynamical system as the 
complement of the basins of attraction . That is, an initial state belongs 
to the separatrix if its future (omega) limit set is not an attractor . 
According to this agreement, the separatrix consists of the insets of 
the non-attractive (or exceptional) limit sets . (See Section 1 .5 .) But 
do they, in fact, actually separate basins? If so, they are called actual 
separatrices . But, as we shall see, it may happen that they do not 
separate basins . In this case, they are called virtual separatrices .

Here	are	some	examples,	beginning	with	1D.
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10.2.3.	
The	saddle	point	at	the	top	of	the	swing	represents	the	watershed	between	falling	to	the	right	and	
falling	to	the	left.	Its	inset	consists	of	those	improbable	initial	states	that	tend	to	balance	at	the	top	
of	the	swing.	As	shown	here,	the	initial	states	close	to	this	inset,	to	either	side,	belong	to	the	same	
(unshaded)	basin.	Thus,	this	inset	curve	is	a	virtual separatrix.

Likewise, in 2D, the separatrix consists of curves that are either 
insets of saddle points or periodic repellors . Examples of both sorts 
have been shown in the preceding section . But now look at these .

Recall that in the bistable magnetic pendulum, there is a saddle 
point near the bottom, as shown in Figure 10 .1 .3 . But like the 
simple pendulum of Section 2 .1, there is also a saddle point at the 
top of the swing .
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This	inset	failed	to	actually	separate	basins	because	
the	state	space	is	a	cylinder.	Another	way	an	inset	
may	fail	to	divide	basins	occurs	on	the	Möbius	
band.

346  Global Behavior

10.2.4.	
Consider	first	this	
bistable	system.	Two	
basins	of	periodic	
attractors	are	
separated	by	a	periodic	
repellor.	The	periodic	
repellor	is	an	actual	
separatrix.	There	is	
also	a	point	repellor	in	
the	center.	It	is	a	virtual	
separatrix.

10.2.5.	
Now	we	have	a	
monostable	dynamical	
system.	There	is	only	
one	periodic	attractor,	
which	goes	around	
twice.	The	periodic	
repellor	remains,	and	
still	goes	around	only	
once	before	closing.	
It	no	longer	separates	
two	basins.	It	is	a	
virtual	separatrix.	And	
now,	some	examples	in	
3D.

Now	remove	the	point	repellor	at	the	center,	cut	
through	the	remaining	strip,	give	one	end	a	half-
twist,	and	carefully	paste	the	ends	together	again.
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10.2.6.	
Recall	this	portrait	
from	Figure	7.3.9.	
The	inset	of	a	
periodic	saddle	in	
three-dimensional	
Euclidean	space	is	
twisted	an	even	
number	of	times.	
It	still	bounds	two	
basins,	and	is	an	
actual	separatrix.

10.2.7.	
On	the	other	hand,	
as	shown	in	Figure	
7.3.10,	it	may	twist	
an	odd	number	of	
times.	Then	it	
bounds	only	one	
basin,	and	is	a	
virtual	separatrix.

Finally, recall that insets may be thick, or chaotic . Our 
favorite example, Poincaré’s solenoid, was constructed 
step by step in Section 8 .1 .
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10.2.8.	
The	fractal	inset	of	this	periodic	saddle	of	homoclinic	type	is	twisted	once,	as	
shown	in	Figure	8.1.7.	It	is	a	virtual	separatrix.
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11 Generic Properties

We always try to convey the features of typical, garden-variety, dynamical 
systems . The exceptional cases are more complicated and numerous, and they 
interrupt the discussion . Moreover, we feel that they should not arise very 
often in applications, because they are exceptional . This prejudice, shared by 
all dynamicists, has become a main theme in dynamical systems theory .

The properties characterizing these typical systems are called generic properties . 
Although this name was established early in the program, it turned out that 
it might have been better to call them weakly generic properties . For it has 
become commonplace to observe exceptional behavior (violating a so-called 
generic property) very frequently . An explanation for this paradox will be 
given in Part Four, “Bifurcation Behavior .” Meanwhile, with this warning, we 
will continue to call these properties generic!

A considerable portion of the history of mathematical dynamics has been 
dominated by the search for generic properties . These define a class of phase 
portraits that are far simpler than arbitrary ones . The goal of the search is 
to narrow down the complexity of the portraits enough to allow a complete 
classification . This was achieved for dynamical systems in the plane by 
Peixoto around 1959 . This gave the whole program a tremendous boost, 
but the higher dimensional generic systems are still hopelessly complex . This 
chapter presents the fundamentals of this program, initiated by Andronov and 
Leontovich in 1934 .

The prototypical results, due to Peixoto, apply to orientable (untwisted) 
surfaces . An early global result for other state spaces was found by Lawrence 
Markus around 1960 . Definitive results were obtained by Ivan Kupka and 
Stephen Smale in 1964 . Now we will describe the essence of this main theme 
in the theory .

We begin with the definition of the most important global properties of 
dynamical systems, or vectorfields: G1, G2, and G3 . Then, in a final section, 
we describe the official meaning of generic property and state the Kupka-Smale 
Theorem: Properties G1, G2 and G3 are generic .
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11.1.

Property G1 for 
Critical Points

Generic Properties    351

11.1.1.	
This	is	Figure	
6.4.8,	showing	
the	five	
elementary	
critical	points	in	
2D.	There	are	
seven	
hyperbolic	
critical	points,	
namely,	these	
five	together	
with	the	radial	
attractor	and	
the	radial	
repellor.

Here, radial means that the CE’s are real and equal . 
The radial type is intermediate between the spiral and nodal types .

To	begin,	let’s	recall	the	distinction	between	hyperbolic	and	
nonhyperbolic	critical	points.

In Chapter 6 we created an atlas of limit points . Using their CE’s, we 
carefully distinguished the hyperbolic and nonhyperbolic cases . We brushed 
aside the nonhyperbolic cases, claiming they are nondegenerate, exceptional, 
or nongeneric . The global formulation of this assertion is the part of the Kupka-
Smale Theorem asserting the genericity of property G1, for critical points . In 
this section, we describe this property of critical points (that is, limit points) .
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11.1.2.	
This	is	a	
nonhyperbolic	
critical	point	
called	a	center.	
The	CE’s	are	
shown	in	the	
inset	window.

11.1.3.	
This	is	another	
type	of	
nonhyperbolicity.

11.1.4.	
This	is	the	worst	
case	of	
nonhyperbolicity.	
Many	more	
different	portraits	
are	possible	with	
both	CE’s	zero	
than	in	the	two	
cases	above.
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Now	we	are	ready	for	property	G1.
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11.1.5.	
A	dynamical	system	has	property	G1	if	all	of	its	critical	points	are	elementary.	In	this	example,	each	
and	every	critical	point	is	elementary.

In the literature of dynamical systems theory, this 
definition usually has hyperbolic in place of elementary . 
But this version probably results in a more satisfactory 
theory, from the point of view of the experimentalist, 
or in the context of applications .

For	the	eight	elementary	critical	points	that	
occur	in	3D,	see	Figures	6.5.5.	and	6.5.6.
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11.2.

Property G2 for 
Closed Orbits

In Chapter 7, we created an atlas of limit cycles . Using 
their CM’s, we carefully distinguished the hyperbolic and 
nonhyperbolic cases . As in the case of limit points, we 
neglected the nonhyperbolic cases . The global justification 
of this neglect is the part of the Kupka-Smale Theorem 
asserting the genericity of property G2, for limit cycles . In 
this section, we describe this property of limit cycles .

To	begin,	let’s	recall	the	distinction	between	
hyperbolic	and	nonhyperbolic	limit	cycles.	For	2D,	
these	were	shown	in	Figure	7.2.7.
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11.2.1.	
In	2D,	a	limit	cycle	
has	only	one	
characteristic	
multiplier	(CM),	
which	is	real.	
These	are	the	only	
hyperbolic	limit	
cycles	in	2D.	The	
absolute	value	of	
the	CM	is	smaller	
than	1	(periodic	
attractor)	or	
greater	than	1	
(periodic	repellor).
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In the nonhyperbolic case, the CM is equal to plus or 
minus 1, and the limit cycle may be an attractor, a 
repellor, or neither . Here are two examples, with the 
CM equal to plus 1 .
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11.2.2.	
This	portrait,	called	
a	center,	has	more	
or	less	concentric	
limit	cycles.	Each	
of	them	in	
nonhyperbolic.

11.2.3.	
This	portrait	has	a	
single	limit	cycle.	
It	attracts	on	one	
side,	and	repels	on	
the	other.	Its	CM	
of	plus	1	is	not	
enough	
information	to	
predict	its	
attracting/	
repelling	behavior.
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This completes our partial survey of limit cycles in 2D . In 
3D, each limit cycle has two CM’s . They may be conjugate 
complex, or both real . If they are both real, they may be 
distinct or identical . This brings up the distinction between 
hyperbolic and the similar idea, elementary . The actual 
definition of hyperbolic limit cycle in any one dimension 
is: there are no CM’s of absolute value 1 . Elementary is 
a little stronger . An elementary limit cycle is one which is 
hyperbolic, plus all its CM’s are distinct .

All the elementary limit cycles in 3D are shown in Figure 
7 .5 .7 .

Here	is	the	definition	of	G2.

356  Global Behavior

11.2.4.	
A	dynamical	system	satisfies	property	G2	if	each	and	every	one	of	its	limit	cycles	is	
elementary.	In	this	example	on	the	two-dimensional	torus,	there	are	several	limit	cycles	in	
a	braid,	and	each	is	elementary.
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11.3.

Property G3 for Saddle 
Connections in 2D

Every trajectory of a dynamical system comes from somewhere 
and goes somewhere . That is, it has an alpha limit set and an 
omega limit set . Every trajectory is in the outset of its alpha 
limit set, and at the same time in the inset of its omega limit 
set . Thus, outsets and insets normally intersect each other .

However, most of the time, a trajectory comes from a repellor 
and goes to an attractor . Exceptionally, one comes from a 
repellor and goes to a saddle, or comes from a saddle and also 
goes to a saddle . Such a trajectory is called a saddle connection, 
or a heteroclinic trajectory . It is even possible for a trajectory to 
connect a saddle to itself! This is called a homoclinic trajectory . 
Poincaré realized that these trajectories were particularly 
important in the qualitative behavior of dynamical systems .

Note that a heteroclinic trajectory always belongs to the outset 
of a saddle (the donor), and to the inset of a saddle (the 
receptor) as well . Therefore, the donor outset and the receptor 
inset must intersect, and their intersection contains the entire 
heteroclnic trajectory . Generally, the intersection of a saddle 
outset and a saddle inset contains not just one, but an entire 
family of heteroclinic trajectories . Property G3 concerns the 
quality of the intersection of insets and outsets of limit sets 
of saddle type, especially saddle points and periodic saddles . 
It requires that these intersections all be transverse (that is, 
cleanly crossing) .

In state spaces of one dimension, there are no saddles . In two 
dimensions, hyperbolic saddle points have invariant curves as 
inset and outset . There are no periodic saddles . In this section, 
we briefly explain property G3 in dimension two only . The full 
story is told in detail in Chapters 13 and 14 .

In	two	dimensions,	a	dynamical	system	satisfies	
property	G3	if	it	has	no	saddle	connections	at	all.
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11.3.2.	
This	system	has	no	saddle	connection.	The	outset	of	the	saddle	points	on	the	left	consists	of	two	
trajectories,	which	go	to	attractors	(not	shown).	The	inset	of	the	saddle	point	on	the	right	consists	
of	two	trajectories,	which	come	from	repellors	(not	shown).	One	of	the	trajectories	leaving	the	left	
saddle	narrowly	misses	one	of	the	trajectories	approaching	the	saddle	on	the	right.	This	portrait	is	
obtained	from	the	preceding	one	by	a	slight	perturbation.

11.3.1.	
This	is	a	saddle	connection	in	2D.	The	dashed	trajectory	comprises	half	of	the	outset	of	the	
hyperbolic	saddle	point	on	the	left,	its	donor.	Simultaneously,	it	is	half	of	the	inset	of	the	
hyperbolic	saddle	point	on	the	right,	its	receptor.	As	this	system	contains	a	saddle	connection,	
it	does	not	satisfy	G3.
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Property	G3	is	a	global	property.	It	requires,	in	
two	dimensions,	that	each	saddle	outset	avoid	
coinciding	with	any	saddle	inset.
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11.3.3.	
The	magnetic	pendulum	is	a	global	system	satisfying	property	G3.	All	four	saddle	outset	
trajectories	successfuly	avoid	all	four	saddle	inset	trajectories.	(See	Figure	2.1.22.)

Cop
yr

igh
t 2

00
5 

Ralp
h 

Abr
ah

am



11.4.

Properties G4 and F

Another generic property, G4, will be described in 
Chapter 15 . It was originally formulated by Peixoto, in 
its oriented, two-dimensional version: The system has 
no nontrivial recurrence. Here is the main example of 
nontrivial recurrence .
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11.4.1.	
Recall	this	solenoid,	from	
Figures	1.4.11,	4.4.21,	and	
4.4.22.	All	trajectories	on	
this	torus	are	recurrent	
in	the	sense	that	their	
omega	(and	alpha)	limit	
sets	are	the	entire	torus.	
Thus,	if	we	choose	any	
little	disk	in	the	torus,	
each	trajectory	recurs,	or	
passes	through	that	disk	
again	and	again	in	its	
future	(and	past).	We	call	
such	a	system	a	limit 
torus.

In other words, a limit torus is topologically transitive, as 
described in Figure 9 .2 .11 . It shares this property of all 
the known chaotic attractors and limit sets . But, it occurs 
in two-dimensional systems, while chaotic sets do not . 
So in 2D, the toroidal solenoid is the main example of 
nontrivial recurrence, while in 3D the situation is much 
more complicated .
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Finally,	there	is	one	more	generic	property	we	
must	describe,	one	which	is	special	to	the	2D	
case.

A dynamical system has property F if it has only a 
finite number of limit sets . In the 2D context, limit sets 
must be limit points, limit cycles or limit tori . This is 
a classical result of two-dimensional dynamic systems 
theory, known as the Poincaré-Bendixson theorem . Thus 
a 2D system satisfying G4 (no limit tori) will also satisfy 
property F if it has only a finite number of limit points 
and only a finite number of limit cycles .

Generic Properties     361

11.4.2.	
Here	is	a	2D	
system	violating	
property	F.	It	has	
a	center:	an	
infinite	number	
of	limit	cycles,	
arranged	as	
concentric	cycles	
around	a	limit	
point.	See	
Figures	2.1.18,	
2.2.3,	and	2.2.5	
for	examples.

These properties G1, G2, G3, G4 and F, 
were all introduced by Andronov, de Baggis, 
and Peixoto in their historical works on 
structural stability in 2D . We now turn to 
that subject .
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In the applications of dynamics in various fields, the 
dynamics - that is, the actual vectorfield - can never 
be specified exactly . In fact, outside of a few cases in 
theoretical physics, one basically makes a rough guess . 
The mathematical theory of dynamical systems might 
be useful anyway, if it can describe features of the phase 
portrait that persist when the vectorfield is allowed to 
move around . This idea, now called structural stability, 
emerged early in the history of dynamics .

    363

12 Structural Stability
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12.1.

Stability Concepts

The idea of structural stability seems to have appeared 
first in the 1930’s, in the writings of Andronov and 
collaborators, in Russia . It was introduced to North 
America by Lefshetz, the great topologist, and has 
played a central role in the development of the subject 
ever since .
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12.1.1.	
The	criteria	for	structural	stability	rely	upon	two	
supplementary	notions:	perturbation	and	topological	
equivalence.	A	perturbation of	a	vectorfield	means	the	
addition	to	it	of	a	relatively	small	vectorfield,	frequently	
unspecified.	Here	we	show	the	effect	of	a	perturbation,	at	a	
single	point	in	the	state	space.

12.1.2.	
Here	we	show	the	effect	of	a	global	perturbation.	The	perturbation	is	itself	a	vectorfield,	as	
shown	here.	The	effect	of	adding	this	perturbing	vectorfield	to	the	original	one	(on	the	left)	is	to	
modify	it	at	every	point	in	the	state	space.
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12.1.4.	
But	the	point	repellor	on	the	left	is	not topologically equivalent to	the	center	on	the	right.	A	
homeomorphism	cannot	map	a	spiral	onto	a	circle.

To be faithful to the theory in higher dimensions, we will need also the concept of 
epsilon equivalence . This is a topological equivalence of dynamical systems, in which 
the deforming homeomorphism only stretches or slides the state space a small amount 
(measured by epsilon) . Likewise, in the spirit of classical mathematics, we will call a 
perturbation a delta perturbation, if it is small (measured by delta) .

12.1.3.	
These	two	point	attractors	are	topologically equivalent.	A	homeomorphism	can	deform	one	
into	the	other,	preserving	the	integral	curves.

Topological equivalence, or synonymously, topological conjugacy, of two phase portraits, 
means there is a homeomorphism of the state space, or continuous “rubber sheet” 
deformation, which maps one of the portraits to the other, preserving the arrow of time 
on each trajectory .

Here	are	some	topologically	equivalent	portraits	in	two	dimensions.
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Now	we	use	both	of	these	stability	concepts,	
delta	perturbation	and	epsilon	equivalence,	to	
introduce	the	idea	of	structural	stability.

A vectorfield has the property of structural stability 
if (choosing epsilon) all delta perturbations of it 
(sufficiently small) have epsilon equivalent phase 
portraits .

Here	is	a	simple	example.
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12.1.5.	
Imagine	a	system	with	a	spiral	attractor	which	attracts	very weakly.	By	adding	a	medium-sized	
perturbation	pointing	outward,	we	might	be	able	to	change	it	into	a	spiral	repellor.

12.1.6.	
But	adding	a	delta	perturbation	pointing	outward	(sufficiently	feeble)	may	make	our	attractor	
weaker,	but	it	still	attracts.	It	is	topologically	(in	fact,	epsilon)	equivalent	to	the	original	system.	
This	is	an	example	of	a	structurally stable system.
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12.1.7.	
Now	consider	this	dynamical	system,	a	center.	The	addition	of	a	delta	perturbation,	pointing	
outward	(no	matter	how	weak)	results	in	a	point	repellor,	which	is	not	topologically	equivalent	to	
the	center.	This	is	a	primary	example	of	a	structurally unstable system.

12.1.8.	
In	fact,	the	center	may	be	perturbed	into	either	a	point	repellor	or	a	point	attractor,	depending	
on	the	inclination	of	the	perturbation.
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12.1.9.	
On	the	other	hand,	this	portrait	is	structurally	stable.	The	inclination	of	
the	perturbation	may	make	the	periodic	attractor	smaller	or	larger,	but	the	
perturbed	portraits	are	all	topologically	equivalent.

12.1.10.	
Here	is	another	important	example.	Consider	a	system	with	a	saddle	connection,	as	in	Figure	
11.3.1.	Adding	a	delta	perturbation	pointing	downward	(or	upward),	we	destroy	the	saddle	
connection.	The	resulting	phase	portrait	is	not	topologically	equivalent.	These	two	examples	
illustrate	all	basic	types	of	structural	instability	in	2D.
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12.2.

Peixoto’s Theorem
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12.2.1.	
A	state	space	is	called	compact	if	it	can	be	described	as	a	surface	(of	
whatever	dimension)	in	a	finite	region	of	Euclidean	space	(of	a	higher	
dimension)	which	is	a	closed	set.	Here,	closed means	no	holes	or	loose	ends.	
A	surface	is	orientable if	it	has	two	sides	inside	and	outside.	The	surfaces	
shown	here	are	all	compact	and	orientable.	All state spaces in this section 
will be assumed to be compact, orientable 2D surfaces.

12.2.2.	
This	excludes	a	sphere	with	a	hole,	the	Klein	bottle,	the	upper	hemisphere,	
and	so	on.	Nevertheless,	the	theory	described	here	has	been	extended	to	
many	of	these	spaces	as	well.1

Now	we	go	on	to	Peixoto’s	historic	theorem,	relating	the	generic	
properties	of	the	preceding	chapter	to	structural	stability	in	2D.

A watershed in the history of dynamics, Peixoto’s work brought together 
different topology and classical dynamics, ushering in a new age of 
mathematical dynamics . The attempts to extend his 2D results to 3D and 
beyond characterized the early days of this new approach, in the 1960’s .

Peixoto’s	result	applies	to	a	very	restricted	class	of	state	spaces,	
called compact, orientable surfaces.	We	start	with	these.
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Now we are ready to state Peixoto’s theorem . We will use property S as a synonym 
for structural stability .

Peixoto’s	theorem:	among	all	smooth	dynamical	systems	on	a	compact,	
orientable	surface,
A.	properties	G1,	G2,	G3,	G4	and	F	are	generic,
B.	property	S	is	equivalent	to	these	properties	(A),	and
C.	property	S	is	generic.

Clearly C follows from A and B, but this is the most exciting aspect of the theorem . For 
it says that in applications, this strong kind of stability is to be expected as the typical 
case, while structural instability is pathological .

Here,	generic	is	a	technical	term,	which	we	translate	as	typical sometimes.	
However,	the	atypical	cases	(especially	those	in	which	property	G4	is	
violated)	are	so	frequently	observed	in	experiments	that	we	should	use	
weakly generic	as	the	technical	term,	and	understand typical	as	meaning 
slightly more probable	than	the	exceptional	cases.	The	reason	for	this	
paradox	is	that	the	Kronecker	(solenoidal)	flows	on	the	torus	(See	Part	One)	
occur	for	a	fat fractal or	thick Cantor set	of	leaves	in	Thom’s	big	picture.2	
This	will	be	explained	in	more	detail	in	Part	Four.

Part A was generalized promptly to higher dimensions, except for the genericity of F, 
which failed, along with C . Part B also was generalized, by Smale and Palis . More 
about this in later chapters .

Peixoto’s	
proof	is	
outlined	
in	the	next	
section.	
Here,	we	
give	some	
examples.

12.2.3.	
Here	is	a	
system	
exhibiting	
G1-G4	plus	F,	
and	thus	S.
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12.2.4.	
A	delta	perturbation	yields	an	epsilon	equivalent	portrait.

12.2.5.	
Here	is	a	torus	with	a	solenoidal	flow.	It	violates	property	G4,	so	by	part	B	of	Peixoto’s	theorem,	it	is	
not	structurally	stable.	By	part	C,	it	can	be	changed	to	an	S	system	by	a	delta	perturbation.	Warning: 
This	delta	perturbation	may	be	rare,	or	hard	to	find,	since	it	belongs	to	the	complement	of	a	thick	
Cantor	set,	as	explained	in	Part	Four.

But Peixoto’s theorem says more: saddle connections are 
structurally unstable, as we saw in Section 11 .3 .

Peixoto’s	theorem	says	still	more:	nontrivial	recurrence	
(solenoidal	flow	on	a	torus)	can	be	perturbed	(in	Thom’s	
big	picture)	into	a	structurally	stable	system.
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12.2.6.	
This	S	system	will	not	have	any	limit	points	or	limit	tori,	but	it	must	have	limit	sets.	So,	there	
are	some	limit	cycles,	braided	around	the	torus.	They	occur	in	pairs,	alternately	attracting	and	
repelling.	The	implications	for	frequency	entrainment	of	coupled	oscillators	are	discussed	in	
detail	in	Chapter	5.		
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12.3.

Peixoto’s Proof

We break the proof into five steps:

1 . G1 implies FP (finite number of limit points) .
2 . G2 implies FC (finite number of limit cycles) .
3 . G4 implies no limit tori .

Therefore, G1, G2, and G4 imply F .
4 . G1, G2, G3, and G4 (and hence F) imply S .
5 . S implies G1, G2, G3, and G4 .
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12.3.1.	
Step 1: Generic 
property G1 implies 
there are only a finite 
number of limit 
points.	For	in	the	
compact	state	space,	
an	infinite	number	of	
critical	points	would	
have	to	contain	a	
convergent	sequence	
as	shown	here.	And	
the	critical	point	at	
the	end	of	the	
sequence	will	have	to	
violate	G1.
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12.3.2.	
Similarly,	generic	property	G2	implies	there	are	only	a	finite	
number	of	limit	cycles.	This	is	special	to	two	dimensions,	
where	an	infinite	number	of	limit	cycles	would	be	forced	
to	“pile	up.”	That	is,	either	they	must	converge	to	a	limit	
cycle,	as	shown	here	(violating	the	generic	condition	G2	-	
hyperbolic	limit	cycles),	or	they	must	accumulate	at	a	limit	
point	(violating	G1	-	hyperbolic	limit	points).

12.3.3.	
Step 2: If the system 
is generic (G1, G2, G3, 
and G4), then it has 
only a finite number 
of limit points, a finite 
number of limit cycles, 
and no other limit sets.	
This	is	called	property 
F.	Further,	they	are	
all	hyperbolic,	and	
there	are	no	saddle	
connections.	Here	is	a	
typical	portrait	of	this	
type.

The proof of this step used topology and calculus, 
and is not terribly difficult .

The proof of Step 2 requires the infamous Closing 
Lemma. This is used to eliminate the possibility of a 
toroidal limit set . First proved in the present context 
by Peixoto, it has been wonderfully generalized by 
Pugh and Robinson .3
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12.3.4.	
Step 3: These generic properties (G1, G2, G3, G4, and perforce F) ensure structural stability.	An	
arbitrary	small	perturbation	of	the	portrait	shown	in	the	preceding	panel	produces	an	equivalent	
portrait.

12.3.5.	
Step 4: Structural stability ensures the generic properties (G1, G2, G3, G4, and necessarily, F).	
The	preceding	section	gives	examples	showing	how	structural	stability	ensures	the	first	three	
properties.	Here	is	an	example	showing	how	G4	is	ensured.	The	center	portrait	has	a	toroidal	limit	
set	with	no	limit	cycles	or	limit	points.	The	only	limit	set	is	the	entire	state	space,	a	torus.	Small	
perturbation	can	produce	the	two	portraits	shown	below,	which	are	not	topologically	equivalent.	
The	difficult	Closing	Lemma	is	used	in	this	step	also.	Warning: Again,	the	perturbations	producing	
these	structurally	stable	(braided)	flows	from	the	solenoidal	flow	can	be	rare,	or	hard	to	find,	
because	of	belonging	to	the	complement	of	a	thick	Cantor	set.

The proof of this step requires the actual construction 
of a topological deformation from the original portrait 
to the perturbed one, but is not too difficult .
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Limit points and cycles of saddle type may be 
distributed throughout the state space . Each has insets 
and outsets, which wander around near each other . 
Intersections are not unlikely . These, called saddle 
connections, consist of trajectories of the dynamical 
system that lead from one saddle (called the donor) to 
another (the receptor) . This connecting curve is called 
a heteroclinic trajectory if the donor and receptor saddles 
are different, or a homoclinic trajectory if they are the 
same . This chapter is devoted to saddle connections 
by heteroclinic trajectories which satisfy the generic 
property G3, or transversality . The homoclinic case (a 
trajectory connects a saddle to itself) is described in the 
next chapter .

In state spaces of one dimension, there are no saddles . 
In two dimensions, there are generic saddle points 
with one-dimensional insets and outsets . In the three-
dimensional cases, there are generic saddle points 
and cycles, of which the insets and outsets may be 
surfaces . In this chapter, we will describe all of the 
transverse heteroclinic saddle connections in two and 
three dimensions: limit point to limit point, limit point 
to limit cycle, and cycle to cycle .

   377

13 Heteroclinic Tangles
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13.1.

Point to Point

First, consider phase portraits in the plane, with two 
hyperbolic limit points of saddle type . The insets of 
each are curves, likewise their outsets . These curves are 
trajectories of the dynamical system .
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13.1.1.	
These	three	phase	portraits	each	have	two	hyperbolic	limit	points	of	saddle	type.	The	end	ones	
have	no	saddle	connection,	while	the	one	in	the	center	has	a	single	heteroclinic	trajectory.	The	
sequence	has	occurred	previously	in	Part	One,	under	the	name	saddle switching.	It	represents	
the	actual	coincidence	of	the	outset	from	the	left	saddle	and	the	inset	to	the	one	on	the	right.	
The	transverse	intersection	of	two	curves	in	the	plane	must	be	in	isolated	points.	Therefore,	this	
intersection	is	not	transverse.	It	is	a	nongeneric	saddle	connection.	There	are	not	transverse	
saddle	connections	in	the	two-dimensional	case.
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380  Global Behavior

13.1.2.	
A	saddle	point	of	index	1	cannot	have	a	transverse	connection	to	a	saddle	point	of	index	2,	in	three	
dimensions.	Three	closely	related	portraits	are	shown	here,	in	analogy	to	saddle	switching	in	the	
two-dimensional	case.	The	one	in	the	center	has	a	nontransverse	heteroclinic	trajectory	connecting	
the	two	saddle	points.

13.1.3.	
The	next	donor,	a	saddle	point	of	index	2,	cannot	have	a	transverse	connection	to	a	saddle	point	of	
index	2	(same	receptor	as	above),	in	three	dimensions.	Here	again,	three	similar	portraits	are	shown.	
The	one	in	the	center	is	an	example	of	a	nontransverse	heteroclinic	trajectory.

And	now,	on	to	two	hyperbolic	saddle	points	in	3D.

In the three-dimensional case, there are several possibilities . There are two types 
of topologically distinct hyperbolic saddle points: index 1 (inset two-dimensional) 
and index 2 (inset one-dimensional, outset two-dimensional) . Each can be a 
donor or receptor of a saddle connection . But transverse saddle connections, in 
3D, only occur between two-dimensional outsets and two-dimensional insets . 
Such an intersection consists of a single curve, a trajectory .
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13.1.4.	
Transverse	connection	from	a	saddle	point	of	index	1	to	a	saddle	point	of	index	1	(like	the	
case	of	index	1	to	index	2,	and	index	2	to	index	2,	described	above)	cannot	occur	in	three	
dimensions.

13.1.5.	
In	this	fourth	case,	a	heteroclinic	trajectory	leads	
from	a	saddle	point	of	index	2	to	one	of	
index	1.	The	outset	of	the	donor	and	the	inset	
of	the	receptor	are	both	two-dimensional.	Thus,	
a	transverse	intersection	of	them	in	a	one-
dimensional	curve	(necessarily	a	trajectory	of	the	
dynamical	system)	is	possible.	A	nontransverse	
intersection	along	a	heteroclinic	trajectory	is	also	
possible	-	for	example,	the	two	surfaces	could	
be	tangent	to	each	other,	along	their	intersection.	
Here,	the	transverse	case	is	illustrated.	This	is	
the	only	generic	(transverse)	connection	between	
saddle	points	in	three	dimensions.Cop
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382  Global Behavior

13.1.6.	
The	preceding	
illustration	shows	the	
transversely	connected	
saddle	points,	assuming	
both	are	the	radial	
(nonspiral)	type.	Here,	
the	donor	has	been	
replaced	by	a	spiral	
type.	This	is	
topologically	equivalent	
to	the	preceding	
portrait.

13.1.7.	
In	this	example,	both	
the	donor	and	the	
receptor	are	of	the	
spiral	type.	Again,	this	
is	topologically	
equivalent	to	the	
preceding	portraits.
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13.2.

Outsets of the Lorenz Mask

Recall the Lorenz mask, from Part Two . This was 
the first chaotic attractor to be firmly established in 
experimental dynamics . It is actually made of tangled 
outsets . Here, developed in stages, is the complex of 
point-to-point tangles found in the Lorenz system .1 
There is a radial saddle point of index 1 (the receptor) 
situated between two spiral saddle points of index 2 
(the donors) . The outset surfaces of the two donors 
are heteroclinically incident to the inset surface of the 
receptor .
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13.2.1.
Here	are	two	saddle	
points,	A	and	Y.	
They	are	hyperbolic,	
in	three	
dimensions.	One,	A,	
has	index	2,	with	
spiral	dynamics	on	
its	planar	outset	
(shaded),	Out(A).	
The	other,	Y,	has	
index	1,	with	nodal	
dynamics	on	its	

planar	inset	
(dotted),	In(Y).	The	two	outsets	are	attractive,	as	shown	by	the	neighboring	trajectories.	As	Out(A)	
and	In(Y)	are	both	two-dimensional,	they	could	intersect	transversely	in	three	space.	If	they	did,	the	
transversal	intersection	would	have	to	be	a	trajectory,	called	a	heteroclinic trajectory.

Next,	we	will	build	up	this	complex,	step	by	step.
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384  Global Behavior

13.2.2.	
Adding	another	saddle	point,	B,	essentially	identical	to	A,	we	make	a	yoke	like	this.	Both	A	and	
B	are	heteroclinic	to	Y.	They	are	transversely heteroclinic,	as	the	two	planar	outsets	(shaded)	
intersect	the	planar	inset	(dotted)	transversely.	There	are	two heteroclinic trajectories	in	this	
yoke.	Note	that	the	arriving	outsets	are	incident	upon	the	departing	outset,	at	Y.	We	call	this	a	
neat yoke.	Next,	we	will	see	where	these	outsets	end	up.
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13.2.3.	
As	the	arriving	outsets,	Out	(A)	and	Out	(B),	both	have	spiral	dynamics,	the	departing	outset	that	
bounds	them,	Out	(Y),	swirls	around	and	reinserts,	as	shown	here.	It	cannot	go	off	to	infinity,	as	
the	Lorenz	system	has	a	repellor	at	infinity.
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13.2.4.	
The	result	of	reinserting	is	this:	as	each	branch	of	Out	(Y)	swirls	around	one	of	the	shaded	
outsets,	it	approaches	near	the	other	shaded	outset.	It	gets	attracted,	as	outsets	are	attractive.	
Thus,	the	omega	limit	set	of	Out(Y)	is	within	the	closure	of	the	union	of	the	three	yoked	outsets.
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13.2.5.	
And	here,	for	comparison,	is	a	computer	drawing	by	Robert	Shaw	of	the	Lorenz	attractor.	Inspection	
of	the	equations	reveals	the	three	distinguished	saddle	points,	right	where	we	want	them.	But	
the	planar	inset	of	the	saddle	point	in	the	lower	center	is	qualitatively	invisible.	It	is	a	kind	of	a	
separatrix.	Now	we	will	add	it	to	the	picture,	with	its	full	extension.
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388  Global Behavior

13.2.6.	
Referring	to	Figure	13.2.4,	we	run	the	flow	backwards	in	time,	to	extend	the	planar	(dotted)	inset	
outward	from	Y.	It	follows	the	heteroclinic	trajectories	(dashed)	back	to	the	yoked	saddles,	A	
and	B,	scrolling	as	it	goes.
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13.2.7.	
Extending	the	dotted	inset	farther	backwards	in	time,	it	scrolls	up	tightly	around	the	one-
dimensional insets	of	A	and	B,	In	(A)	and	In	(B).	
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13.2.8.	
Extending	the	dotted	inset	farther	backwards	still,	the	four	ends	of	the	scrolls	are	pulled	out	
along	the	curves,	In	(A)	and	In	(B),	toward	their	source	at	infinity.

The chaotic Lorenz attractor is composed of a yoke of 
tangles, folded into itself . Perhaps all of the familiar chaotic 
attractors have such an outset structure . But even in 
nonchaotic systems, the tangles are very important features .

We	resume	now	our	excursion	into	tangles.
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13.3.

Point to Cycle
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13.3.1.	
A	heteroclinic	trajectory	from	a	saddle	point	of	index	1	to	a	saddle	cycle	can	never	be	transverse	
in	three	dimensions.	Here	is	a	nongeneric	portrait,	in	the	center,	flanked	by	two	nearby	generic	
ones.

13.3.2.	
Similarly,	a	heteroclinic	trajectory	from	a	saddle	cycle	to	a	saddle	point	of	index	2	is	nongeneric.

There is only one kind of hyperbolic saddle cycle in 3D: index 1 (two-dimensional inset 
and outset) . The two-dimensional outset of a hyperbolic limit point of index 2 can have 
a transverse intersection with the two-dimensional inset of such a limit cycle .
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392  Global Behavior

13.3.3.	
The	two	preceding	panels	illustrate	nongeneric	connections	between	a	saddle	cycle	and	a	saddle	
point	of	the	radial	type.	Here	is	an	analog,	with	the	radical	point	replaced	by	a	spiral.
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13.3.4.	
In	this	example,	the	outset	of	a	saddle	point	of	index	2	actually	coincides	with	the	inset	of	a	
saddle	cycle.	These	nongeneric	examples	illustrate	a degeneracy of order 1:	only	one	condition	
of	genericity	has	been	violated.Cop
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13.3.5.	
Nevertheless,	
heteroclinic	
connection	from	a	
saddle	point	of	
index	2	to	a	saddle	
cycle	can	occur	
generically	in	three	
dimensions.	Here	is	
the	first	step	in	the	
visualization	of	this	
configuration.

13.3.6.	
To	generate	more	
of	the	picture,	the	
inset	of	the	limit	
cycle	(upper	cone	
above)	must	be	
extended	further	
into	the	past,	to	see	
how	the	trajectories	
spiraling	into	the	
limit	cycle	must	
have	come	from	
near	the	inset	
trajectories	of	the	
limit	point.
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13.3.7.	
Before,	the	saddle	point	of	radial	type	was	shown.	Here,	it	has	been	replaced	by	a	spiraling	one.	
These	two	distinctive	types	of	heteroclinic	behavior	are	topologically	equivalent,	however.
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13.3.8.	
The	heteroclinic	portraits	just	described	can	be	transformed	into	two	other	generic	portraits	by	
reversing	the	direction	of	time.	Thus,	the	prior	connection,	on	the	left,	suggests	a	new	sort,	on	the	
right,	in	which	the	heteroclinic	trajectory	goes	from	a	saddle	cycle	to	a	saddle	point	of	index	2.

13.3.9.	
These	two	forms,	radial	and	spiral,	of	the	generic	saddle	connection	result.	As	above,	they	are	
topologically	equivalent.

All of the forms of this section could be reversed, by 
changing the direction of time, to provide examples of 
heteroclinic tangles from a limit cycle to a limit point: 
cycle to point .
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13.4.

Cycle to Cycle

Thus far, three generic and topologically distinct saddle 
connections have been described:

— saddle point index 2 to saddle point index 1,
— saddle point index 2 to saddle cycle,
— saddle cycle to saddle point index 1 .

In three dimensions, there is just one more .
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13.4.1.	
The	outset	of	a	saddle	
cycle	(two-dimensional)	
can	intersect	the	inset	
of	another	saddle	cycle	
(also	two-dimensional)	
transversely,	in	a	(one-
dimensional)	curve	of	
intersection,	necessarily	
a	spiraling	trajectory.	
This	fourth	type	of	
generic	heteroclinic	
behavior	is	decidedly	
complicated.
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13.4.2.	
To	dissect	the	complicated	structure	of	such	a	connection	between	limit	cycles,	Poincaré	
introduced	the	transverse section,	and	the first return map.	Within	the	cross-section	(the	
Poincaré section)	the	two	limit	cycles	are	represented	by	points,	and	their	insets	and	outsets	
by	curves.	The	intersection	of	the	outset	of	the	donor	cycle	(above)	and	the	inset	of	the	
receptor	cycle	(below)	is	a	heteroclinic	trajectory,	represented	in	the	Poincaré	section	by	the	
point	designated	H.
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13.4.3.	
This	picture,	understood	by	Poincaré	and	fully	analyzed	by	Birkhoff	and	Smith,3	involves	a	doubly	
infinite	sequence	of	intersections	of	the	curves	representing	the	inset	and	outset.	For	the	marked	
point,	H,	representing	the	heteroclinic	trajectory,	is	mapped	by	the	Poincaré	first	return	map	into	
another	point,	H+,	which	is	also	in	both	curves.	This	point,	H+,	is	actually	on	the	same	heteroclinic	
trajectory	as	H,	at	a	later	time.	Further,	the	image	of	H+	is	another	point,	H++,	through	which	
both	curves	must	cross.

The completion of this drawing, showing the full tangle of curves within 
the Poincaré section, was carried out brilliantly by Birkhoff . His topological 
analysis of this picture reveals that between the points of intersection, H 
and H+, there must be, assuming G3, an odd number of others .

This	contstruction	of	Birkhoff	is	carried	out	in	the	next	section.
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13.5.

Birkhoff’s Signature

The successive intersections of the inset and outset, curves 
within the Poincaré section, shown above, are all points 
belonging to a single heteroclinic trajectory . However, there 
may be (in fact, must be) other intersections, belonging to 
other heteroclinic trajectories . Our task now is to chart all 
of these, and the course of the inset and the outset curves 
between intersection points .
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13.5.1.	
Here	is	a	close-up	view	of	
two	successive	
intersections,	H	and	H+,	
belonging	to	a	single	
heteroclinic	trajectory.	They	
are	shown	here	on	a	piece	
of	the	inset	curve	of	the	
saddle	point	on	the	right,	
representing	the	receptor	
saddle	cycle.	Through	H+	
passes	a	short	piece	of	
the	outset	curve	of	the	
saddle	point	on	the	left,	
representing	the	donor	
saddle	cycle.	How	can	we	
fill	in	the	entire	donor	
outset	curve,	connecting	
these	short	segments?

Notice	the	arrows	on	the	outset	segments,	
indicating	the	out-directions	on	the	outset	curve,	
away	from	the	donor.
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13.5.2.	
The	simplest	solution	
might	be	just	to	
connect	up	the	loose	
ends,	as	shown	here.	
Unfortunately,	this	
does	not	work.	The	
out-directions	must	
connect	properly,	
without	conflict.

13.5.3.	
This	drawing	shows	three	possible	connections	for	the	outset	curves,	joining	the	short	segments	
without	conflict	of	the	out-directions.	The	complete	outset	segment,	joining	two	successive	points	
corresponding	to	the	same	heteroclinic	trajectory,	H	and	H+,	cuts	through	the	inset	segment	joining	
the	same	two	points	in	an	odd	number	of	points,	all	heteroclinic,	but	belonging	to	different	
heteroclinic	trajectories.	The	two	complete	segments,	joining	H	and	H+,	comprise	the	figure	Birkhoff	
called	the	signature of	the	saddle	connection.
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Some	more	complicated	examples	are	given	in	the	
next	chapter.
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13.5.4.	
This	shows	the	simplest	
possible	Birkhoff	signature.	The	
odd	number	of	interpolated	
heteroclinic	points	is	only	1.	
This	point,	1,	represents	
another	heteroclinic	trajectory,	
sharing	the	same	donor	and	
receptor,	and	possessing	its	
own	signature	(not	shown).

13.5.5.	
Reinserting	this	Birkhoff	
signature	into	the	starting	
picture	of	this	section,	together	
with	two	of	its	forward	images	
under	the	first	return	map,	we	
have	a	roughly	complete	idea	
of	the	donor	outset.	There	are	
many	possibilities	for	the	future	
of	the	outset,	but	here	we	
have	used	only	the	simplest	
signature,	as	shown	in	the	
preceding	panel.	In	this	case,	
there	is	an	infinite	sequence	of	
points	of	intersection,	H,	H+,	
H++,	…	,	all	belonging	to	a	
single	heteroclinic	trajectory.

Meanwhile,	the	inset	curve	of	the	receptor	is	
still	only	half-drawn.	Where	is	its	past?
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13.5.6.	
Extending	the	receptor’s	
inset	backwards	in	time,	
we	obtain	the	
predecessor	of	H,	H-,	
its	predecessor,	H—,	and	
so	on.	This	completes	a	
doubly	infinite	sequence,	
corresponding to one full 
heteroclinic	trajectory.	
Likewise,	the	
interspersed	heteroclinic	
trajectory	contributes	a	
complementary	doubly	
infinite	sequence	as 
shown here,	in the 
Poincaré section.
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13.5.7.	
The	doubly	infinite	sequences	each	correspond	to	a	heteroclinic	trajectory	of	intersection	of	
the	donor’s	outset	and	the	receptor’s	inset,	in	the	original	three-dimensional	context.	Here,	the	
generic	connection	of	saddle	cycles	in	three	dimensions	is	shown,	with	all	its	complex	structure.	
A	section	has	been	removed	here,	for	improved	visibility.

If	this	object	were	set	down	upon	a	rotating	
phonograph	turntable,	it	would	look	rather	like	a	
bolt	being	screwed	down.
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13.5.8.	
In	the	three-dimensional	
case,	there	are	several	
possibilities,	summarized	
in	this	table.	The	two	
types	of	topologically	
distinct	hyperbolic	saddle	
points	(of	index	1	and	
2)	and	the	unique	
hyperbolic	saddle	cycle	
are	each	possibly	donors,	
or	receptors,	of	a	saddle	
connection.	The	nine	
possibilities	are	pictured	
here,	with	the	donors	
down	the	left,	and	the	
receptors	along	the	top.	
Note	the	order	and	
orientation	of	the	donors	
is	not	the	same	as	those	
of	the	receptors.

In summary, there are no generic saddle connections in two-
dimensional dynamical systems . In three dimensions, there 
are four topologically distinct types . In higher dimensions, the 
situation is even more complicated .

The	generic	property	G3	for	dynamical	systems	is	this:	
all inset and outset intersections are transverse.	The	
genericity	of	this	property,	like	the	properties	G1	and	
G2,	is	established	by	the	theorem	of	Kupka	and	Smale.

The behavior of the trajectory passing by a cycle-to-cycle 
heteroclinic tangle is a spiraling asymptotic approach along the 
inset of the donor, followed by a period of entrapment, spiraling 
along the screw thread of the heteroclinic tangle, and finally an 
asymptotic escape, along the outset of the receptor . Thus, the 
heteroclinic tangle provides a model for transient oscillation .
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In addition to the four kinds of transverse saddle 
connections described in the preceding chapter, there 
is one more that can occur in three dimensions . This 
is the connection from a saddle cycle to itself, called 
a homoclinic connection . Homoclinic connections are 
much more important than heteroclinic ones, as 
they occur as exceptional limit sets within separatrices . 
Further, as shown by Birkhoff and Smith,1 they are 
full of limit cycles . The study of this complicated case, 
initiated by Poincaré, is still in progress . An advance 
was made by Smale2 in 1963 . Many topologically 
different forms are possible . This chapter describes the 
main ideas of the three-dimensional context, including 
some constructions not previously published .
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14 Homoclinic Tangles
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14.1.

Homoclinic Cycles

By definition, a homoclinic trajectory must belong to 
the inset and outset of the same limit set . In the generic 
context of properties G1, G2, and G3, this limit set may 
not be a point . The simplest generic case is a limit cycle 
of saddle type, in three dimensions . In this section, we 
dissect this case .
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14.1.1.	
Here	the	outset	of	the	limit	cycle,	at	the	top,	is	pulled	down	like	a	sleeve	turned	inside	out.	The	
inset,	below,	is	likewise	pulled	up.	Then,	they	are	pushed	through	each	other,	to	produce	the	
beginning	of	an	extensive	intersection.Cop
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14.1.2.	
To	visualize	the	intersection,	we	cut	through	it	with	a	Poincaré	section.	The	procedure	is	the	same	
as	the	heteroclinic	case,	described	in	the	preceding	chapter	(see	13.4.2.).

14.1.3.	
As	in	the	preceding	chapter	(see	
13.5.1.),	the	outset	surface	of	
the	receptor	limit	cycle	(in	this	
case,	they	are	the	same	cycle)	
intersect	the	Poincaré	section	in	
two	curves,	the	outset	and	inset	
curves.	These	curves	intersect	
once	at	the	point	cut	by	the	
limit	cycle	(shown	as	a	curved	
arrow	here),	and	again	at	a	
point	cut	by	the	homoclinic	
trajectory,	such	as	the	
homoclinic	point	H,	shown	here.

The	key	to	the	analysis	is	the	first	return	map,	which	
maps	the	Poincaré	section	into	itself,	corresponding	
to	one	revolution	around	the	limit	cycle.

What	happens	to	the	homoclinic	point	after	another	
revolution	around	the	limit	cycle?
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14.1.4.	
As	in	the	heteroclinic	case	(again,	see	13.5.1.),	this	point	is	mapped	to	another,	H+,	closer	to	the	limit	
point.	This	image	point	is	on	the	inset	curve,	as	this	curve	is	mapped	into	itself	by	the	first	return	
map.	Further,	this	curve	consists	of	all	the	incoming	points.	However,	the	image	point	must	also	be	
on	the	outset	curve,	which	is	also	mapped	into	itself	by	the	first	return	map,	and	which	consists	of	all	
outgoing	points.	The	homoclinic	points,	H	and	H+,	are	both	outgoing	and	incoming,	by	assumption.	
Thus	through	the	image	point,	H+,	there	must	also	pass	a	piece	of	the	outset	curve,	shown	here	with	
its	out-direction	indicated	by	an	arrow.

14.1.5.	
As	in	the	heteroclinic	case	(see	13.5.2.),	direct	connection	leads	
to	a	conflict	of	out-directions.	Thus	…	

How	may	these	outset	segments	be	connected,	
so	as	to	obtain	the	entire	outset?
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14.1.6.	
…	as	in	the	heteroclinic	
case	(see	13.5.3.),	the	outset	
segment	from	H	to	H+	must	
cross	the	inset	segment	
(between	the	same	two	
points)	an	odd	number	of	
times.	This	is	the	simplest	
legal	construction,	illustrating	
the	Birkhoff signature	in	the	
homoclinic	case.

14.1.7.
Reiterating	the	first	return	
map	again	and	again,	the	
outset	segments	push	up	
against	the	inset	curve,	near	
the	limit	point.

14.1.8.	
Repeating	the	construction	
for	negative	times	(iterating	
the	prior return map),	the	
inset	segments	pile	up	
against	the	outset	curve,	
again	near	the	limit	point.	
Thus,	we	obtain	a	full	picture	
of	the	entire	homoclinic 
tangle,	as	shown	in	this	
drawing	of	a	tangle	studied	
by	Hayashi,3	the	greatest	
master	of	experimental	
tangle	art.
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14.1.9.	
Here	is	the	tangle	within	the	Poincaré	section,	replaced	within	the	original	3D	context	(compare	
with	13.5.7.).	The	behavior	of	a	nearby	trajectory	is	a	spiraling	asymptotic	approach,	along	the	
non-tangled	half	of	the	inset	surface,	followed	by	a	period	of	chaotic	motion,	entrapped	within	the	
tangle,	and	finally	a	spiraling	asymptotic	escape,	along	the	non-tangled	half	of	the	outset	surface.	
Thus,	the	homoclinic	tangle	provides	a	model	for	transient chaos.

This tangle, based on the simplest Birkhoff signature, 
reveals additional intersections of inset and outset 
loops . This deeper structure is not determined by 
the Birkhoff signature . Thus, to fully describe the 
structure of the tangle, additional signatures must be 
specified .

In	the	next	section,	we	introduce	a	sequence	
of	signatures,	published	here	for	the	first	time,	
for	the	full	description	of	a	homoclinic	tangle	
in	3D.
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14.2.

Signature Sequence

During the preparation of a preliminary edition of this 
work in 1980, we tried to deform the Hayashi tangle 
(shown in the preceding panel, 14 .1 .8 .) into the Smale 
horseshoe (described in the next section; see also Figure 
8 .1 .10 .) . Although the two homoclinic tangles have the 
same Birkhoff signature, we were unable to deform the 
Hayashi tangle into the horseshoe .

In trying to understand the difference between these two 
exemplary tangles, we developed an infinite sequence of 
signatures . The first of these is the Birkhoff signature, 
which is the same for the two examples . The second, 
however, is different . Thus, they could not be deformed, 
one into the other . This led to our signature conjecture: 
if two tangles have the same signature sequence they are 
topologically equivalent .

In	this	section,	we	construct	the	signature	
sequence,	step	by	step,	for	the	Hayashi	tangle.	In	
the	next	section,	we	will	apply	it	to	the	Smale	
horseshoe	tangle.
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14.2.1.	
Here,	again,	is	the	Hayashi	
tangle.	It	is	not	a	
mathematician’s	pipe	dream,	
but	was	laboriously	drawn	
by	Hayashi,	from	extensive	
simulations	of	the	Duffing	
system	(for	the	forced	
pendulum,	see	Part	One)	with	
an	electronic	analog	
computer.	How	can	we	give	
a	full	characterization	of	this	
tangle?	Let’s	single	out	a	
homoclinic	point,	such	as	H,	
and	its	image	H+.
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14.2.2.	
Extracting	the	inset	and	outset	curve	
segments	bounded	by	these	two	points,	
we	obtain	the	Birkhoff	signature.	Again	it	
is	the	simplest	possible	one	(see	Figure	
13.5.3	for	three	alternatives).	To	some	
extent,	it	characterizes	the	chief	feature	
of	the	tangle.

14.2.3.	
For	example,	here	is	another	tangle.	
At	first	glance,	it	appears	significantly	
different	from	the	preceding	one.

14.2.4.	
Extracting	a	Birkhoff	signature,	we	see	
that	it	is	indeed	different.	And	this	does	
seem	to	capture	the	chief	feature	of	this	
new	tangle.
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14.2.5.	
Now	let’s	return	to	the	
old	tangle.	Notice	how	
inset	loops	may	cross	
through	several	outset	
loops.	We	want	to	
capture	a	signature	of	
this	larger-scale	behavior	
of	the	figure,	
corresponding	to	its	
minor	features.	We	will	
proceed	in	steps.

14.2.6.	
Step 1.	Single	out	a	homoclinic	point	
and	its	image,	and	draw	the	Birkhoff	
signature	they	determine.	Draw	it	
again,	straightened	out,	as	shown	in	
the	inset.

14.2.7.	
Step 2.	Extend	the	signature	another	
iteration,	by	applying	the	first	return	
map.	Here	we	see	both	the	Birkhoff	
signature	and	it	entire	image.	
Straighten	out	this	figure	also,	as	
shown	in	the	inset.
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14.2.8.	
Step 3.	Repeat	the	preceding	step	again,	and	in	
general,	as	many	times	as	you	can,	as	long	as	
the	elongating	outset	loops	never	come	back	to	
cross	a	part	of	the	original	signature,	or	its	forward	
iterations.

14.2.9.	
Step 4.	Repeat	the	single	iteration	step	once	
more.	This	time,	one	of	the	elongating	upper	loops	
will	make	a	new	intersection	with	a	segment	of	
the	inset	curve	belonging	to	the	original	Birkhoff	
signature,	or	one	of	its	forward	iterations.	In	this	
example,	four	new	crossings	have	all	appeared	at	
once.
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The	Birkhoff	signature	is	the	first	of	our	sequence.	
The	figure	in	the	inset	above	is	the	second.	Let’s	try	
out	these	two	on	another	example.

418  Global Behavior

14.2.10.	
This	is	yet	another	
tangle.	It	looks	like	
Hayashi’s,	but	is	
not.	The	Birkhoff	
signature	(shown	in	
the	inset)	is	the	
same.	Will	our	
second	signature	
reveal	the	
difference?

14.2.11.	
The	first	iteration	
of	the	fundamental	
(Birkhoff)	signature	
comes	close	to	the	
fundamental,	but	
does	not	cross	it.	
The	second	image	
crosses	the	
fundamental.	The	
figure	in	the	inset	is	
the	second	
signature	of	this	
tangle.
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14.2.12.	
Here,	for	comparison,	
is	the	second	
signature	of	the	two	
tangles.	The	new	
tangle	has	two	humps,	
while	the	Hayashi	
tangle	has	three,	
under	the	arching	
inset	loop.	They	are	
topologically	
inequivalent	tangles.

These	two	signatures	are	the	first	of	an	infinite	
sequence.	See	if	you	can	draw	the	third	
signature	in	the	examples	above.
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14.3.

Horseshoes

In this section, we will tackle another tangle, called Smale’s 
horseshoe . This third example originated as a geometric 
construction, but was subsequently observed in the forced 
Van der Pol system,4

 and many others . Along the way, we 
will give an idea of the third signature of a tangle .
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14.3.1.	
Here	is	yet	another	homoclinic	tangle,	the	famous	horseshoe of Smale.	Note	that	the	first	
signature	is	the	familiar	simplest	one.	But	in	the	second	signature,	shown	in	the	inset,	the	hump	
has	been	twisted	back,	creating	two	new	intersections.	To	further	characterize	this	tangle,	we	
must	draw	the	third	signature.
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14.3.2.	
Here	are	the	first	
four	signatures	of	
our	signature	
sequence,	for	
Smale’s	horseshoe.	
The	third	signature	
is	not	identical	to	
the	third	signature	
of	the	preceding	
example	(try	it	and	
see).

14.3.3.	
The	horseshoe	has	been	untangled	by	Smale5	in	a	most	ingenious	way.	Choosing	a	curved	
rectangular	patch	in	the	Poincaré	section	with	some	care,	and	applying	the	first	return	map	yields	
another	rectangular	patch	crossing	the	original	patch	at	each	end.	Now,	deform	the	whole	picture	
by	lassoing	the	two	patches	around	the	waist	and	pulling	gently.	
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14.3.4.	
Continue	to	pull	
the	upper	patch	
upwards	by	the	
waist,	while	
pushing	down	on	
the	ends.	The	
idea	is	to	
straighten	out	
the	lower	patch.

14.3.5.	
There	is	the	fully	
untangled	tangle,	
the	horseshoe	of	
Smale.	It	is	
topologically	
equivalent	to	the	
messy	original	
tangle,	yet	it	
admits	a	full	
analysis,	as	
shown	by	Smale.	
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14.3.6.	
The	analysis	is	based	
upon	a	clever	scheme	
for	labeling	all	the	
points	of	intersection	
of	the	insets	and	
outsets	within	the	
Poincaré	section.

Smale’s analysis of this 
particular tangle, based 
on combing it out and 
applying symbolic 
dynamics, might be 
applied to other 
homoclinic tangles, 
through careful use of 
the signature sequence .

The	theory	of	homoclinic	tangles	is	very	important,	and	yet	little	known.	Even	
in	three	dimensions,	the	lowest	in	which	they	occur	generically,	there	are	
outstanding	problems.	In	higher	dimensions,	little	is	known.	Poincaré	expressed	
the	fear	that	they	might	defy	analysis	forever,	but	the	theory	of	horseshoes,	
and	the	work	of	Zeeman,	Newhouse,	and	others6	on	more	general	shoes,	gives	
hope.	

14.3.7.	
Looking	at	a	portion	
of	the	outset	through	
a	microscope,	we	see	
an	infinite	set	of	
horizontal	lines.	Their	
intersection	with	a	
vertical	line	(such	as	
the	left	edge	of	the	
box	here)	is	much	like	
Cantor’s	middle	thirds	
set	(see	Figure	9.4.7.).Cop

yr
igh

t 2
00

5 
Ralp

h 
Abr

ah
am



14.4.

Hypercycles

An even more complicated situation occurs generically 
in dimension three or more . The insets and outsets 
of these may have transverse intersections, tangles, and 
heteroclinic trajectories in a daisy chain, called a hypercycle, 
or heteroclinic cycle .

424  Global Behavior

14.4.1.	
Here	is	the	simplest	example	of	a	cycle.	In	a	three-dimensional	state	space,	two	closed	orbits	of	
saddle	type	(index	1)	have	heteroclinic	trajectories,	each	to	the	other.	
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14.4.2.	
This	situation	may	be	described	by	this	diagram,	called	a	directed graph,	or	quiver.	This	has	a	
vertex	for	each	of	the	limit	cycles,	and	was	introduced	by	Peixoto7	to	describe	generic	systems	in	
two-dimensional	state	spaces.

14.4.3.	
More	complicated	cycles	may	involve	larger	sets	of	critical	points,	closed	orbits,	and	even	more	
complicated	limit	sets,	in	a	daisy	chain	of	saddle	connections.	
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14.4.4.	
Here	is	a	hypercycle	involving	three	limit	cycles	of	saddle	type.	Each	is	heteroclinic	to	
each	of	the	others.	In	all	of	these	situations,	it	can	be	proved,	by	topological	analysis,	
that	each	of	the	limit	sets	involved	is	actually	homoclinic.	That	is,	membership	in	a	
heteroclinic	cycle	implies	homoclinicity.

Cycles of heteroclinically related critical points 
are endemic in real dynamical systems, and are 
vitally involved in chaotic motions . 
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In the history of dynamics, as in philosophy, the concept 
of recurrence frequently recurs . A periodic trajectory 
has the recurrence property: every one of its states 
will recur again and again . This is called trivial 
recurrence . The recurrence property also applies to 
more complicated (aperiodic) trajectories . This is called 
nontrivial recurrence . This concept already surfaced in 
the generic property G4, described in Section 11 .3, and 
in the chaotic attractors of Part Two . In this chapter, 
more versions of this important phenomenon will be 
described . 

    427

15 Nontrivial Recurrence
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15.1.

Nearly Periodic Orbits

Nontrivial Recurrence    429

15.1.1.	
A	homoclinic	limit	cycle	provides	good	examples	of	nearly	periodic	points.	Here	is	a	Poincaré	
section	of	a	homoclinic	tangle.	Look	carefully	at	the	trajectory	of	the	point	a0.

Recall that generic property G4 limits the types of almost-periodic 
motions . Discovered by Peixoto in two dimensions, its genericity was 
established by Pugh in higher dimensions .1 Suppose that we take 
a sequence of points in the state space, converging (approaching 
asymptotically closer and closer) to a point, and that each of 
the points belongs to a closed orbit (limit cycle, or periodic 
trajectory) . Topological consequences of the generic condition G3 
(transversality) force the periods of these periodic trajectories to 
get longer and longer . Thus, the oscillations they represent have 
frequencies that get lower and lower . The limit point of the original 
sequence lies on a trajectory that need not be periodic . But it is 
nearly periodic, in that observations cannot distinguish it from a low-
frequency oscillation . We will denote the set of all nearly periodic 
points of the dynamical system by NP .
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Expansion of the tangle shows how the periodic orbits 
fit into this picture, from the cover of Hayashi’s 
collected works .2
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15.1.2.	
Inside	this	tangle,	there	must	be	a	periodic	orbit.3	Let’s	follow	the	small	red	rectangle,	marked	c0.	
Its	sides	are	segments	of	insets	and	outsets.	After	one	revolution	around	the	ring,	its	first	return	
to	the	Poincaré	section	is	again	a	small	rectangle	c1.	Note	that	it	is	stretched	in	one	direction	
and	compressed	in	the	other.	Now	follow	its	next	five	revolutions,	noting	that	inset	segments	
are	stretched	to	longer	inset	segments,	and	outset	segments	are	compressed	to	shorter	outset	
segments.	Note	that	c5	intersects	c0.
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15.1.3.	
Now	take	the	little	piece	of	c0	intersected	by	c5	and	follow	it	around	five	times.	It	will	again	pass	
through	the	initial	rectangle.	Continuing	in	this	way,	we	obtain	a	sequence	of	nested	boxes,	which	
converge	to	a	periodic	point	of	period	five,	as	predicted	by	the	theorem	of	Birkhoff	and	Smith.4

We	may	use	the	expansion	of	the	tangle	as	a	magnifier,	to	
zoom	into	the	microstructure	of	the	tangle.
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15.1.4.	
Now	let’s	select	two	points	a0	and	b0,	and	follow	their	fates.	The	line	segment	a0b0	becomes,	
after	five	revolutions,	the	segment	a0b0.

15.1.5.	
All	the	intersections	of	the	inset	within	this	stretched	segment	ab,	must	also	be	found	in	the	
shorter	segment	ab,	but	they	are	five generations smaller.
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We	may	continue	to	zoom	into	this	microscopic	
structure	of	the	tangle.
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15.1.6.	
A	few	repetitions	of	the	magnification	method	suffice	to	locate	the	periodic	point	as	accurately	
as	needed.	It	is	within	the	small	tangle.
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By	starting	with	other	small	rectangles	and	making	
judicious	use	of	the	zoom	method,	additional	
periodic	points	may	be	found.
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15.1.7.	Closer	to	the	homoclinic	point	a0	there	must	be	another	periodic	point	with	a	higher	period,	
such	as	c0	shown	here.	And	even	closer,	another	with	an	even	higher	period,	such	as	d0.	These	may	
be	located	as	accurately	as	needed	by	the	zoom	method	described	above.

Thus the original homoclinic point is the limit of a 
sequence of periodic points in the Poincaré section . In 
the three-dimensional state space, a sequence of closed 
orbits (periodic trajectories) asymptotically approach 
the homoclinic trajectory . Thus, every point on the 
homoclinic trajectory is nearly periodic, yet not periodic .
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15.1.8.	
Here,	highly	magnified,	is	a	sequence	of	periodic	points	approaching	closer	and	closer	to	a	
homoclinic	point,	which	is	nearly	periodic,	yet	not	actually	periodic.
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15.2.

Why Peixoto’s Theorem 
Failed in 3D

As described in Section 12 .2, Peixoto’s theory of 
structurally stable systems is restricted to the two-
dimensional case . In the case of state spaces of three 
dimensions or more, it is still true that structurally stable 
systems must have the four generic properties: G1, G2, 
G3, and G4 . But these conditions no longer ensure 
structural stability . In fact, structurally stable systems are 
rare (that is, hard to find) in higher dimensions . A 
complete characterization of structural stability in three-
dimensional systems (having a global section) has been 
accomplished recently .5 This section describes the failure, 
and the remnants of Peixoto’s theory that apply in higher 
dimensions .
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15.2.1.	
It	is	Step	1	in	Peixoto’s	proof	which	is	specifically	two-dimensional.	That	step	established	that	
there	are	only	a	finite	number	of	closed	orbits	(limit	cycles)	in	the	two-dimensional	case.	Here	is	
an	example	of	a	generic	portrait	in	three-dimensions.	The	homoclinic	tangle	forces	the	occurrence	
of	an	infinite	number	of	limit	cycles,	as	described	in	the	preceding	section.	This	example	makes	
Step	2	wrong	as	well,	as	Step	2	is	a	simple	consequence	of	Step	1.
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15.2.3.	
Step	4	fails	in	higher	
dimensions.	Structural	
stability	does	ensure	the	
four	generic	conditions.	
This	is	a	relatively	easy	
result,	due	to	Markus	and	
Robinson.7	But	structural	
stability	does	not	ensure	
property	F,	the	finiteness	
of	the	limit	sets.	The	
generic	homoclinic	tangles	
can	be	structurally	stable,	
as	Smale	has	shown	for	
the	example	shown	here.8

The progress of dynamical systems theory stalled briefly at 
this point, until it occurred to Smale to regard a homoclinic 
tangle as a generalized limit cycle and propose generic 
properties for it as a unit . He called this a basic set . The main 
example is the horseshoe, dissected in the preceding chapter . 
This was a prototype for the chaotic attractors, described in 
Part Two . One of the fundamental properties of a basic set is 
nonwanderingness, described in the next section .

15.2.2.	
Step	3	remains	true	in	
higher	dimensions.	It	
assumes	property F:	the	
limit	sets	consist	of	a	
finite	number	of	limit	
points	and	limit	cycles	
only,	as	well	as	the	four	
generic	conditions.	These	
are	sufficient	to	ensure	
structural	stability.	This	is	
a	difficult	result,	due	to	
Palis	and	Smale.6	Here	
is	an	example	of	such	
a	portrait,	in	three	
dimensions.
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15.3.

Nonwandering Points

One of the most restrictive versions of the recurrence 
property is near-periodicity, defined above, in Section 15 .1 . 
And one of the least restrictive versions is the property of 
nonwandering, defined in this section .
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15.3.1.	
Suppose,	having	picked	out	a	point	in	the	state	space	and	a	little	disk	centered	on	it,	that	
we	follow	the	future	meandering	of	the	entire	disk.	If	wide	enough,	it	may	meet	up	with	itself	
along	its	meander.

Cop
yr

igh
t 2

00
5 

Ralp
h 

Abr
ah

am



Nontrivial Recurrence    439

15.3.2.	
If	so,	start	with	a	smaller	disk,	and	repeat	the	contruction.	If	now	the	meandering	disk	leaves	
its	original	position,	wanders	away,	and	never	returns	to	overlap	its	original	position,	then	the	
original	point	at	the	center	of	the	disk	is	called	a	wandering point.

15.3.3.	
For	example,	a	limit	point	(equilibrium)	is	nonwandering.	
The	little	disk	is	tied	down	at	the	center.

On the other hand, it may happen that, no matter how 
small you draw the original disk, it always comes back to 
overlap itself . Or, it may never cease overlapping itself, no 
matter how long you wait . In these cases, the original point 
is a nonwandering point . The set of all nonwandering points 
of a given dynamical system will be denoted by NW .
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15.3.4.	
Similarly,	a	closed	orbit	(limit	cycle)	is	nonwandering.	The	center	of	the	little	disk	keeps	passing	
through	the	initial	point,	again	and	again.	In	fact,	the	set	of	nearly-periodic	points,	NP,	is	
contained	in	the	set	of	nonwandering	points,	NW,	for	topological	reasons.

15.3.5.	
Here	is	an	
outstanding	example	
of	a	nonwandering	
point	which	is	not 
nearly periodic.	In	
this	solenoidal	flow	
on	the	torus,	called	a	
Kronecker irrational 
flow,	every	point	is	
nonwandering,	yet	no	
point	is	periodic,	or	
even	nearly	periodic.
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15.3.6.	
This	is	an	example	of	a	nonwandering	point	which	is	not	itself	recurrent	in	any	sense.	The	flow	
has	a	limit	cycle	of	saddle	(index	1)	type,	which	is	homoclinic,	and	satisfies	G3	(transversal	
intersection).	The	heteroclinic	trajectories	within	this	tangle	are	nonwandering.

15.3.7.	
The	theorem	of	Birkhoff	and	Smith,	later	generalized	to	higher	dimensions	by	Smale,	shows	that	
these	trajectories	are	nearly	periodic.	That	is,	they	are	approximated	by	limit	cycles	of	very	low	
frequencies.	The	heteroclinic	trajectories	belonging	to	a	heteroclinic	cycle	of	tangles	are	also	
nearly	periodic.
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Generic property G4, discussed previously in Section 11 .4, 
can now be simply stated: NP = NW . That is, a dynamical 
system has property G4 if its every nonwandering point can 
be approximated by periodic points (points belonging to 
limit cycles) . This property is generic, as proved by Peixoto 
(in 2D) and Pugh (in higher dimensions) .
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15.3.8.	
The	proof	of	the	genericity	of	this	property	is	intuitively	simple,	yet	it	is	one	of	the	most	difficult	
in	the	whole	literature	of	mathematical	dynamics	to	carry	out	in	detail.	The	kep	step,	called	the	
Closing Lemma,	makes	small	changes	in	the	vectorfield,	so	that	a	closed	orbit	is	found	in	the	
disk	that	meets	itself.

Warning:	As	described	briefly	in	Chapter	12,	this	
property	is	generic	only	in	a	very	weak	sense.	The	
reason	is	that	the	violation	of	G4	by	persistent	
solenoidal	flows	(equivalent	to	irrational	Kronecker	
flows	on	invariant	tori)	occurs	with	positive	
expectation.	Thus,	in	the	sense	of	probability,	G4	
violation	is	also	generic.	We	may	call	this	the	G4	
paradox.	It	will	be	explained	further	in	Part	Four.
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