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The early days of modern dynamics span half a 
century, beginning in the 1880’s, as described in 
Part One. At this time in France, Poincaré innovated 
qualitative methods. More or less simultaneously 
in Russia, Liapounov pioneered stability methods. 
These techniques then underwent separate, parallel 
developments. By the 1930’s, important progress had 
been made in Europe and America, following the lead 
of Poincaré. Birkhoff, at Harvard, was the outstanding 
figure. Meanwhile, in Russia, the ideas of Liapounov 
had grown. Andronov was an important figure in this 
tradition.

There followed a quiet period. For another quarter 
century, the tradition of Poincaré dwindled in Europe 
and America. Developments in Russia 
were forgotten in the West. During this 
period, experimental dynamics began 
in Europe, as described in Part Two.

Eventually, through the efforts of 
emigré mathematicians familiar with 
the Russian work, such as Lefshetz 
and Minorsky, the qualitative theory 
of dynamical systems was revived in 
America. Beginning in the 1950’s, a 
vigorous mathematical program picked 
up steam and continues today. The 
global behavior of dynamical systems 
is the main theme of this movement, 
which we may call mathematical 
dynamics.

    333

Mathematical Dynamics 
Hall of Fame

Table 3.1 - The History of Global Theory

Date	 Europe/America	 Russia_________________________________________________

1850

1900

1950

2000

Poincaré	 Liapounov
Floquet	 Mandelshtam

Birkhoff
Lefshetz, Minorsky,	 Kolmogorov
de Baggis, Peixoto, 	 Arnol’d
Markus, Thom,
Smale, Pugh
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334  Global Behavior

Here are some capsule histories. 

Henri Poincaré, 1854-1912. Besides 
pioneering the new methods of dynamics 
and topology, Poincaré discovered tangles 
and bifurcations as we know them today.

Aleksandr Mikhailovich Liapounov, 
1875-1918. In his Ph.D. thesis of 1892, 
Liapounov established the Characteristic 
Exponents of an equilibrium point as the 
determinants of its asymptotic stability.

George David Birkhoff, 1884-1944. 
Birkhoff was fascinated by tangles, and 
wrote several papers about them. In one, 
he introduced the signature of a tangle, 
making a first step in the historic 
struggle to untangle them. In another, 
he showed that homoclinic tangles are 
always surrounded by myriad periodic 
trajectories.

Aleksandr Aleksandrovich Andronov, 
1901-1952. With co-workers Leontovich 
and L.S. Pontrjagin, Andronov pioneered 
the phase portrait point of view. 
Andronov and Pontrjagin published a 
five-page paper in 1937 which 
revolutionized global dynamics. Its main 
contribution was the definition of 

structural stability. In the same year, 
Andronov published an influential book, 
written with C.E. Chaikin, on nonlinear 
oscillations.

Gaston Floquet. He established the 
Characteristic Multipliers of a limit cycle 
as the determinants of stability, parallel to 
the CE’s of Liapounov, in 1879.

Solomon Lefshetz, 1884-1972. In the 
World War II years, this great innovator of 
algebraic topology turned his attention to 
qualitative dynamics. A text on the local 
theory in 1946 was followed by a global 
treatment in 1957, in which structural 
stability was discussed in two-dimensional 
systems. A native of Russia, he reinjected 
the tradition of Liapounov into the 
mainstream of Western mathematics.

Nicolai Minorsky, b. 1883. Like 
Lefshetz, Minorsky emigrated to the 
United States in the prewar years. His 
knowledge of the Russian school of 
dynamical systems theory, presented in his 
book of 1952, gave great impetus to the 
resumption of mathematical dynamics in 
the United States.
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Henry de Baggis, b. 1916. A student 
of Lefshetz, in 1947 he proved the 
conjecture of Andronov and Pontrjagin 
on structural stability in the plane.

Mauricio M. Peixoto. Also a student of 
Lefshetz, he improved enormously on de 
Baggis’s result in 1959. In doing so, he 
forged the connection between dynamics 
and topology which has been so fruitful in 
recent years.

René Thom, b. 1923. Thom used 
dynamics in his work in topology, for 
which he was awarded the Field Medal. 
In 1960 or so, he began advocating the 
importance of the concept of structural 
stability in applications, and his very 
global view of bifurcations. His program 
was presented in full in his epochal book, 
Structural Stability and Morphogenesis, in 
1966.

Lawrence Markus, b. 1922. Another 
pioneer in the merger of topology and 
dynamics, he clarified the meaning of 
generic property in global dynamics, in 
1960. This work is described in Section 
11.1.

Stephen Smale, b. 1930. Like Thom, 
Smale used dynamics in his work in 
topology, which earned a Fields Medal 
in 1960. He then went on to study 
dynamics itself, and produced a series 
of papers in the 1960’s which have 
been very influential ever since. In one 
of these, he improved substantially on 
Birkhoff’s results on homoclinic tangles, 
as we explain in Section 14.4.
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In Part One, we introduced limit points and cycles in 
dimensions one, two, and three. The decomposition 
of the state space into basins of attraction, by the 
separatrices, was emphasized. In Part Two, the inset 
structure of the separatrices was developed. The 
geometry of the exceptional limit sets, determined 
by their Liapounov characteristic exponents, was 
described. In this chapter, we review all this and 
assemble it into a global overview of the phase portrait 
of a typical system.

    337

10	Global Phase Portraits
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10.1.

Multiple Attractors

Global Phase Portraits    339

10.1.1. 
In this example, there are two attractive points, each in its own basin. 
The system is bistable, in that two distinct stable equilibria are possible.

For pedagogic reasons, our discussion has often centered on an attractor. However, 
generic systems commonly have several attractors. So we begin this review chapter 
with an explicit acknowledgment of this fundamental feature: multiple attractors.

Let’s begin with the simplest case, in which the state space is one-
dimensional: a curve.

In this context, limit sets are points. Generically, point attractors and point 
repellors alternate along the curve. The repelling points separate the basins of the 
attracting points. An initial state, chosen from one of the basins, tends toward 
the unique attractor in its basin. The different attractors represent the equilibrium 
states that may be observed in this system.

In general, a one-dimensional system is multi-stable, in that more than one stable 
equilibrium point is possible.
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340  Global Behavior

10.1.2. 
Notice that in this example, the two basins are separated by the point repellor. Initial points 
slightly to the left of the repellor tend to attractor A, while those slightly to the right tend to 
attractor B. This behavior is roughly like a mechanical toggle switch.

10.1.3. 
Remember the pendulum? Here is the magnetic bob from Figure 2.1.22. This is also a bistable 
system. But the two basins are two-dimensional, so the separatrix between them is a curve. This 
curve is repelling, yet not a repellor. In fact, it consists of the inset of the saddle point between 
the point attractors. This saddle point represents an unstable equilibrium of the bob, balanced 
between the forces of the two magnets. And its inset represents those improbable initial states 
which tend to this unstable equilibrium and balance there.

Now let’s move on to two dimensions.

Not every separatrix is the inset of a saddle point.
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Global Phase Portraits     341

10.1.4. 
Recall this portrait, from Figure 1.5.8. Here, the periodic repellor bounds the two-dimensional basin 
of an attractive point. It is a separatrix.

10.1.5. 
In this portrait of a simple bistable system in 3D, there are again two attractors. Both are rest points. 
Their basins are three-dimensional, and are bounded by a surface. This surface, the separatrix in this 
example, is the inset of a saddle point of index 1.

Two dimensions are rather special. Let’s have a look at the three-
dimensional case, which is more typical.
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Recall that the index of a saddle point is the dimension 
of its outset.

Separatrices need not be insets of a saddle point. 
They are, usually (but not always), insets of a 
nonattractive limit set: point, cycle, or chaos.

342  Global Behavior

10.1.6. 
Here, for example, is a bistable system with two periodic attractors. Their basins are bounded by 
a cylindrical surface, the separatrix. It is the inset of a periodic saddle.

Remember that limit sets can be aperiodic, that is, 
chaotic. Thus, there may be both chaotic attractors 
and chaotic separatrices in a typical multistable system. 
Details are given in Part Two.
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10.1.7. 
This is one of 
the most 
famous chaotic 
attractors.
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10.2.

Actual and Virtual 
Separatrices

344  Global Behavior

10.2.1. 
As we have seen in 
the preceding section, 
point repellors may 
separate basins in 
one-dimensional 
state spaces.

10.2.2. 
But if we connect the 
ends of the curve, 
we have a unistable 
system! There is only 
one basin. The 
separatrix (a single 
point repellor) 
bounds it, but does 
not separate 
anything. It is a virtual 
separatrix.

In Section 1.5, we defined the separatrix of a dynamical system as the 
complement of the basins of attraction. That is, an initial state belongs 
to the separatrix if its future (omega) limit set is not an attractor. 
According to this agreement, the separatrix consists of the insets of 
the non-attractive (or exceptional) limit sets. (See Section 1.5.) But 
do they, in fact, actually separate basins? If so, they are called actual 
separatrices. But, as we shall see, it may happen that they do not 
separate basins. In this case, they are called virtual separatrices.

Here are some examples, beginning with 1D.
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10.2.3. 
The saddle point at the top of the swing represents the watershed between falling to the right and 
falling to the left. Its inset consists of those improbable initial states that tend to balance at the top 
of the swing. As shown here, the initial states close to this inset, to either side, belong to the same 
(unshaded) basin. Thus, this inset curve is a virtual separatrix.

Likewise, in 2D, the separatrix consists of curves that are either 
insets of saddle points or periodic repellors. Examples of both sorts 
have been shown in the preceding section. But now look at these.

Recall that in the bistable magnetic pendulum, there is a saddle 
point near the bottom, as shown in Figure 10.1.3. But like the 
simple pendulum of Section 2.1, there is also a saddle point at the 
top of the swing.
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This inset failed to actually separate basins because 
the state space is a cylinder. Another way an inset 
may fail to divide basins occurs on the Möbius 
band.
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10.2.4. 
Consider first this 
bistable system. Two 
basins of periodic 
attractors are 
separated by a periodic 
repellor. The periodic 
repellor is an actual 
separatrix. There is 
also a point repellor in 
the center. It is a virtual 
separatrix.

10.2.5. 
Now we have a 
monostable dynamical 
system. There is only 
one periodic attractor, 
which goes around 
twice. The periodic 
repellor remains, and 
still goes around only 
once before closing. 
It no longer separates 
two basins. It is a 
virtual separatrix. And 
now, some examples in 
3D.

Now remove the point repellor at the center, cut 
through the remaining strip, give one end a half-
twist, and carefully paste the ends together again.
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10.2.6. 
Recall this portrait 
from Figure 7.3.9. 
The inset of a 
periodic saddle in 
three-dimensional 
Euclidean space is 
twisted an even 
number of times. 
It still bounds two 
basins, and is an 
actual separatrix.

10.2.7. 
On the other hand, 
as shown in Figure 
7.3.10, it may twist 
an odd number of 
times. Then it 
bounds only one 
basin, and is a 
virtual separatrix.

Finally, recall that insets may be thick, or chaotic. Our 
favorite example, Poincaré’s solenoid, was constructed 
step by step in Section 8.1.
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10.2.8. 
The fractal inset of this periodic saddle of homoclinic type is twisted once, as 
shown in Figure 8.1.7. It is a virtual separatrix.
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11	Generic Properties

We always try to convey the features of typical, garden-variety, dynamical 
systems. The exceptional cases are more complicated and numerous, and they 
interrupt the discussion. Moreover, we feel that they should not arise very 
often in applications, because they are exceptional. This prejudice, shared by 
all dynamicists, has become a main theme in dynamical systems theory.

The properties characterizing these typical systems are called generic properties. 
Although this name was established early in the program, it turned out that 
it might have been better to call them weakly generic properties. For it has 
become commonplace to observe exceptional behavior (violating a so-called 
generic property) very frequently. An explanation for this paradox will be 
given in Part Four, “Bifurcation Behavior.” Meanwhile, with this warning, we 
will continue to call these properties generic!

A considerable portion of the history of mathematical dynamics has been 
dominated by the search for generic properties. These define a class of phase 
portraits that are far simpler than arbitrary ones. The goal of the search is 
to narrow down the complexity of the portraits enough to allow a complete 
classification. This was achieved for dynamical systems in the plane by 
Peixoto around 1959. This gave the whole program a tremendous boost, 
but the higher dimensional generic systems are still hopelessly complex. This 
chapter presents the fundamentals of this program, initiated by Andronov and 
Leontovich in 1934.

The prototypical results, due to Peixoto, apply to orientable (untwisted) 
surfaces. An early global result for other state spaces was found by Lawrence 
Markus around 1960. Definitive results were obtained by Ivan Kupka and 
Stephen Smale in 1964. Now we will describe the essence of this main theme 
in the theory.

We begin with the definition of the most important global properties of 
dynamical systems, or vectorfields: G1, G2, and G3. Then, in a final section, 
we describe the official meaning of generic property and state the Kupka-Smale 
Theorem: Properties G1, G2 and G3 are generic.
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11.1.

Property G1 for 
Critical Points

Generic Properties    351

11.1.1. 
This is Figure 
6.4.8, showing 
the five 
elementary 
critical points in 
2D. There are 
seven 
hyperbolic 
critical points, 
namely, these 
five together 
with the radial 
attractor and 
the radial 
repellor.

Here, radial means that the CE’s are real and equal. 
The radial type is intermediate between the spiral and nodal types.

To begin, let’s recall the distinction between hyperbolic and 
nonhyperbolic critical points.

In Chapter 6 we created an atlas of limit points. Using their CE’s, we 
carefully distinguished the hyperbolic and nonhyperbolic cases. We brushed 
aside the nonhyperbolic cases, claiming they are nondegenerate, exceptional, 
or nongeneric. The global formulation of this assertion is the part of the Kupka-
Smale Theorem asserting the genericity of property G1, for critical points. In 
this section, we describe this property of critical points (that is, limit points).
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352  Global Behavior

11.1.2. 
This is a 
nonhyperbolic 
critical point 
called a center. 
The CE’s are 
shown in the 
inset window.

11.1.3. 
This is another 
type of 
nonhyperbolicity.

11.1.4. 
This is the worst 
case of 
nonhyperbolicity. 
Many more 
different portraits 
are possible with 
both CE’s zero 
than in the two 
cases above.

Cop
yr

igh
t 2

00
5 

Ralp
h 

Abr
ah

am



Now we are ready for property G1.

Generic Properties    353

11.1.5. 
A dynamical system has property G1 if all of its critical points are elementary. In this example, each 
and every critical point is elementary.

In the literature of dynamical systems theory, this 
definition usually has hyperbolic in place of elementary. 
But this version probably results in a more satisfactory 
theory, from the point of view of the experimentalist, 
or in the context of applications.

For the eight elementary critical points that 
occur in 3D, see Figures 6.5.5. and 6.5.6.
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11.2.

Property G2 for 
Closed Orbits

In Chapter 7, we created an atlas of limit cycles. Using 
their CM’s, we carefully distinguished the hyperbolic and 
nonhyperbolic cases. As in the case of limit points, we 
neglected the nonhyperbolic cases. The global justification 
of this neglect is the part of the Kupka-Smale Theorem 
asserting the genericity of property G2, for limit cycles. In 
this section, we describe this property of limit cycles.

To begin, let’s recall the distinction between 
hyperbolic and nonhyperbolic limit cycles. For 2D, 
these were shown in Figure 7.2.7.

354  Global Behavior

11.2.1. 
In 2D, a limit cycle 
has only one 
characteristic 
multiplier (CM), 
which is real. 
These are the only 
hyperbolic limit 
cycles in 2D. The 
absolute value of 
the CM is smaller 
than 1 (periodic 
attractor) or 
greater than 1 
(periodic repellor).
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In the nonhyperbolic case, the CM is equal to plus or 
minus 1, and the limit cycle may be an attractor, a 
repellor, or neither. Here are two examples, with the 
CM equal to plus 1.
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11.2.2. 
This portrait, called 
a center, has more 
or less concentric 
limit cycles. Each 
of them in 
nonhyperbolic.

11.2.3. 
This portrait has a 
single limit cycle. 
It attracts on one 
side, and repels on 
the other. Its CM 
of plus 1 is not 
enough 
information to 
predict its 
attracting/ 
repelling behavior.
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This completes our partial survey of limit cycles in 2D. In 
3D, each limit cycle has two CM’s. They may be conjugate 
complex, or both real. If they are both real, they may be 
distinct or identical. This brings up the distinction between 
hyperbolic and the similar idea, elementary. The actual 
definition of hyperbolic limit cycle in any one dimension 
is: there are no CM’s of absolute value 1. Elementary is 
a little stronger. An elementary limit cycle is one which is 
hyperbolic, plus all its CM’s are distinct.

All the elementary limit cycles in 3D are shown in Figure 
7.5.7.

Here is the definition of G2.

356  Global Behavior

11.2.4. 
A dynamical system satisfies property G2 if each and every one of its limit cycles is 
elementary. In this example on the two-dimensional torus, there are several limit cycles in 
a braid, and each is elementary.
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11.3.

Property G3 for Saddle 
Connections in 2D

Every trajectory of a dynamical system comes from somewhere 
and goes somewhere. That is, it has an alpha limit set and an 
omega limit set. Every trajectory is in the outset of its alpha 
limit set, and at the same time in the inset of its omega limit 
set. Thus, outsets and insets normally intersect each other.

However, most of the time, a trajectory comes from a repellor 
and goes to an attractor. Exceptionally, one comes from a 
repellor and goes to a saddle, or comes from a saddle and also 
goes to a saddle. Such a trajectory is called a saddle connection, 
or a heteroclinic trajectory. It is even possible for a trajectory to 
connect a saddle to itself! This is called a homoclinic trajectory. 
Poincaré realized that these trajectories were particularly 
important in the qualitative behavior of dynamical systems.

Note that a heteroclinic trajectory always belongs to the outset 
of a saddle (the donor), and to the inset of a saddle (the 
receptor) as well. Therefore, the donor outset and the receptor 
inset must intersect, and their intersection contains the entire 
heteroclnic trajectory. Generally, the intersection of a saddle 
outset and a saddle inset contains not just one, but an entire 
family of heteroclinic trajectories. Property G3 concerns the 
quality of the intersection of insets and outsets of limit sets 
of saddle type, especially saddle points and periodic saddles. 
It requires that these intersections all be transverse (that is, 
cleanly crossing).

In state spaces of one dimension, there are no saddles. In two 
dimensions, hyperbolic saddle points have invariant curves as 
inset and outset. There are no periodic saddles. In this section, 
we briefly explain property G3 in dimension two only. The full 
story is told in detail in Chapters 13 and 14.

In two dimensions, a dynamical system satisfies 
property G3 if it has no saddle connections at all.
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11.3.2. 
This system has no saddle connection. The outset of the saddle points on the left consists of two 
trajectories, which go to attractors (not shown). The inset of the saddle point on the right consists 
of two trajectories, which come from repellors (not shown). One of the trajectories leaving the left 
saddle narrowly misses one of the trajectories approaching the saddle on the right. This portrait is 
obtained from the preceding one by a slight perturbation.

11.3.1. 
This is a saddle connection in 2D. The dashed trajectory comprises half of the outset of the 
hyperbolic saddle point on the left, its donor. Simultaneously, it is half of the inset of the 
hyperbolic saddle point on the right, its receptor. As this system contains a saddle connection, 
it does not satisfy G3.
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Property G3 is a global property. It requires, in 
two dimensions, that each saddle outset avoid 
coinciding with any saddle inset.
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11.3.3. 
The magnetic pendulum is a global system satisfying property G3. All four saddle outset 
trajectories successfuly avoid all four saddle inset trajectories. (See Figure 2.1.22.)
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11.4.

Properties G4 and F

Another generic property, G4, will be described in 
Chapter 15. It was originally formulated by Peixoto, in 
its oriented, two-dimensional version: The system has 
no nontrivial recurrence. Here is the main example of 
nontrivial recurrence.

360  Global Behavior

11.4.1. 
Recall this solenoid, from 
Figures 1.4.11, 4.4.21, and 
4.4.22. All trajectories on 
this torus are recurrent 
in the sense that their 
omega (and alpha) limit 
sets are the entire torus. 
Thus, if we choose any 
little disk in the torus, 
each trajectory recurs, or 
passes through that disk 
again and again in its 
future (and past). We call 
such a system a limit 
torus.

In other words, a limit torus is topologically transitive, as 
described in Figure 9.2.11. It shares this property of all 
the known chaotic attractors and limit sets. But, it occurs 
in two-dimensional systems, while chaotic sets do not. 
So in 2D, the toroidal solenoid is the main example of 
nontrivial recurrence, while in 3D the situation is much 
more complicated.
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Finally, there is one more generic property we 
must describe, one which is special to the 2D 
case.

A dynamical system has property F if it has only a 
finite number of limit sets. In the 2D context, limit sets 
must be limit points, limit cycles or limit tori. This is 
a classical result of two-dimensional dynamic systems 
theory, known as the Poincaré-Bendixson theorem. Thus 
a 2D system satisfying G4 (no limit tori) will also satisfy 
property F if it has only a finite number of limit points 
and only a finite number of limit cycles.
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11.4.2. 
Here is a 2D 
system violating 
property F. It has 
a center: an 
infinite number 
of limit cycles, 
arranged as 
concentric cycles 
around a limit 
point. See 
Figures 2.1.18, 
2.2.3, and 2.2.5 
for examples.

These properties G1, G2, G3, G4 and F, 
were all introduced by Andronov, de Baggis, 
and Peixoto in their historical works on 
structural stability in 2D. We now turn to 
that subject.
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In the applications of dynamics in various fields, the 
dynamics - that is, the actual vectorfield - can never 
be specified exactly. In fact, outside of a few cases in 
theoretical physics, one basically makes a rough guess. 
The mathematical theory of dynamical systems might 
be useful anyway, if it can describe features of the phase 
portrait that persist when the vectorfield is allowed to 
move around. This idea, now called structural stability, 
emerged early in the history of dynamics.

    363
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12.1.

Stability Concepts

The idea of structural stability seems to have appeared 
first in the 1930’s, in the writings of Andronov and 
collaborators, in Russia. It was introduced to North 
America by Lefshetz, the great topologist, and has 
played a central role in the development of the subject 
ever since.
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12.1.1. 
The criteria for structural stability rely upon two 
supplementary notions: perturbation and topological 
equivalence. A perturbation of a vectorfield means the 
addition to it of a relatively small vectorfield, frequently 
unspecified. Here we show the effect of a perturbation, at a 
single point in the state space.

12.1.2. 
Here we show the effect of a global perturbation. The perturbation is itself a vectorfield, as 
shown here. The effect of adding this perturbing vectorfield to the original one (on the left) is to 
modify it at every point in the state space.
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12.1.4. 
But the point repellor on the left is not topologically equivalent to the center on the right. A 
homeomorphism cannot map a spiral onto a circle.

To be faithful to the theory in higher dimensions, we will need also the concept of 
epsilon equivalence. This is a topological equivalence of dynamical systems, in which 
the deforming homeomorphism only stretches or slides the state space a small amount 
(measured by epsilon). Likewise, in the spirit of classical mathematics, we will call a 
perturbation a delta perturbation, if it is small (measured by delta).

12.1.3. 
These two point attractors are topologically equivalent. A homeomorphism can deform one 
into the other, preserving the integral curves.

Topological equivalence, or synonymously, topological conjugacy, of two phase portraits, 
means there is a homeomorphism of the state space, or continuous “rubber sheet” 
deformation, which maps one of the portraits to the other, preserving the arrow of time 
on each trajectory.

Here are some topologically equivalent portraits in two dimensions.
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Now we use both of these stability concepts, 
delta perturbation and epsilon equivalence, to 
introduce the idea of structural stability.

A vectorfield has the property of structural stability 
if (choosing epsilon) all delta perturbations of it 
(sufficiently small) have epsilon equivalent phase 
portraits.

Here is a simple example.
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12.1.5. 
Imagine a system with a spiral attractor which attracts very weakly. By adding a medium-sized 
perturbation pointing outward, we might be able to change it into a spiral repellor.

12.1.6. 
But adding a delta perturbation pointing outward (sufficiently feeble) may make our attractor 
weaker, but it still attracts. It is topologically (in fact, epsilon) equivalent to the original system. 
This is an example of a structurally stable system.
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12.1.7. 
Now consider this dynamical system, a center. The addition of a delta perturbation, pointing 
outward (no matter how weak) results in a point repellor, which is not topologically equivalent to 
the center. This is a primary example of a structurally unstable system.

12.1.8. 
In fact, the center may be perturbed into either a point repellor or a point attractor, depending 
on the inclination of the perturbation.
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12.1.9. 
On the other hand, this portrait is structurally stable. The inclination of 
the perturbation may make the periodic attractor smaller or larger, but the 
perturbed portraits are all topologically equivalent.

12.1.10. 
Here is another important example. Consider a system with a saddle connection, as in Figure 
11.3.1. Adding a delta perturbation pointing downward (or upward), we destroy the saddle 
connection. The resulting phase portrait is not topologically equivalent. These two examples 
illustrate all basic types of structural instability in 2D.
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12.2.

Peixoto’s Theorem

370  Global Behavior

12.2.1. 
A state space is called compact if it can be described as a surface (of 
whatever dimension) in a finite region of Euclidean space (of a higher 
dimension) which is a closed set. Here, closed means no holes or loose ends. 
A surface is orientable if it has two sides inside and outside. The surfaces 
shown here are all compact and orientable. All state spaces in this section 
will be assumed to be compact, orientable 2D surfaces.

12.2.2. 
This excludes a sphere with a hole, the Klein bottle, the upper hemisphere, 
and so on. Nevertheless, the theory described here has been extended to 
many of these spaces as well.1

Now we go on to Peixoto’s historic theorem, relating the generic 
properties of the preceding chapter to structural stability in 2D.

A watershed in the history of dynamics, Peixoto’s work brought together 
different topology and classical dynamics, ushering in a new age of 
mathematical dynamics. The attempts to extend his 2D results to 3D and 
beyond characterized the early days of this new approach, in the 1960’s.

Peixoto’s result applies to a very restricted class of state spaces, 
called compact, orientable surfaces. We start with these.
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Now we are ready to state Peixoto’s theorem. We will use property S as a synonym 
for structural stability.

Peixoto’s theorem: among all smooth dynamical systems on a compact, 
orientable surface,
A. properties G1, G2, G3, G4 and F are generic,
B. property S is equivalent to these properties (A), and
C. property S is generic.

Clearly C follows from A and B, but this is the most exciting aspect of the theorem. For 
it says that in applications, this strong kind of stability is to be expected as the typical 
case, while structural instability is pathological.

Here, generic is a technical term, which we translate as typical sometimes. 
However, the atypical cases (especially those in which property G4 is 
violated) are so frequently observed in experiments that we should use 
weakly generic as the technical term, and understand typical as meaning 
slightly more probable than the exceptional cases. The reason for this 
paradox is that the Kronecker (solenoidal) flows on the torus (See Part One) 
occur for a fat fractal or thick Cantor set of leaves in Thom’s big picture.2 
This will be explained in more detail in Part Four.

Part A was generalized promptly to higher dimensions, except for the genericity of F, 
which failed, along with C. Part B also was generalized, by Smale and Palis. More 
about this in later chapters.

Peixoto’s 
proof is 
outlined 
in the next 
section. 
Here, we 
give some 
examples.

12.2.3. 
Here is a 
system 
exhibiting 
G1-G4 plus F, 
and thus S.
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12.2.4. 
A delta perturbation yields an epsilon equivalent portrait.

12.2.5. 
Here is a torus with a solenoidal flow. It violates property G4, so by part B of Peixoto’s theorem, it is 
not structurally stable. By part C, it can be changed to an S system by a delta perturbation. Warning: 
This delta perturbation may be rare, or hard to find, since it belongs to the complement of a thick 
Cantor set, as explained in Part Four.

But Peixoto’s theorem says more: saddle connections are 
structurally unstable, as we saw in Section 11.3.

Peixoto’s theorem says still more: nontrivial recurrence 
(solenoidal flow on a torus) can be perturbed (in Thom’s 
big picture) into a structurally stable system.
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12.2.6. 
This S system will not have any limit points or limit tori, but it must have limit sets. So, there 
are some limit cycles, braided around the torus. They occur in pairs, alternately attracting and 
repelling. The implications for frequency entrainment of coupled oscillators are discussed in 
detail in Chapter 5.  
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12.3.

Peixoto’s Proof

We break the proof into five steps:

1. G1 implies FP (finite number of limit points).
2. G2 implies FC (finite number of limit cycles).
3. G4 implies no limit tori.

Therefore, G1, G2, and G4 imply F.
4. G1, G2, G3, and G4 (and hence F) imply S.
5. S implies G1, G2, G3, and G4.

374  Global Behavior

12.3.1. 
Step 1: Generic 
property G1 implies 
there are only a finite 
number of limit 
points. For in the 
compact state space, 
an infinite number of 
critical points would 
have to contain a 
convergent sequence 
as shown here. And 
the critical point at 
the end of the 
sequence will have to 
violate G1.
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12.3.2. 
Similarly, generic property G2 implies there are only a finite 
number of limit cycles. This is special to two dimensions, 
where an infinite number of limit cycles would be forced 
to “pile up.” That is, either they must converge to a limit 
cycle, as shown here (violating the generic condition G2 - 
hyperbolic limit cycles), or they must accumulate at a limit 
point (violating G1 - hyperbolic limit points).

12.3.3. 
Step 2: If the system 
is generic (G1, G2, G3, 
and G4), then it has 
only a finite number 
of limit points, a finite 
number of limit cycles, 
and no other limit sets. 
This is called property 
F. Further, they are 
all hyperbolic, and 
there are no saddle 
connections. Here is a 
typical portrait of this 
type.

The proof of this step used topology and calculus, 
and is not terribly difficult.

The proof of Step 2 requires the infamous Closing 
Lemma. This is used to eliminate the possibility of a 
toroidal limit set. First proved in the present context 
by Peixoto, it has been wonderfully generalized by 
Pugh and Robinson.3
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12.3.4. 
Step 3: These generic properties (G1, G2, G3, G4, and perforce F) ensure structural stability. An 
arbitrary small perturbation of the portrait shown in the preceding panel produces an equivalent 
portrait.

12.3.5. 
Step 4: Structural stability ensures the generic properties (G1, G2, G3, G4, and necessarily, F). 
The preceding section gives examples showing how structural stability ensures the first three 
properties. Here is an example showing how G4 is ensured. The center portrait has a toroidal limit 
set with no limit cycles or limit points. The only limit set is the entire state space, a torus. Small 
perturbation can produce the two portraits shown below, which are not topologically equivalent. 
The difficult Closing Lemma is used in this step also. Warning: Again, the perturbations producing 
these structurally stable (braided) flows from the solenoidal flow can be rare, or hard to find, 
because of belonging to the complement of a thick Cantor set.

The proof of this step requires the actual construction 
of a topological deformation from the original portrait 
to the perturbed one, but is not too difficult.
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Limit points and cycles of saddle type may be 
distributed throughout the state space. Each has insets 
and outsets, which wander around near each other. 
Intersections are not unlikely. These, called saddle 
connections, consist of trajectories of the dynamical 
system that lead from one saddle (called the donor) to 
another (the receptor). This connecting curve is called 
a heteroclinic trajectory if the donor and receptor saddles 
are different, or a homoclinic trajectory if they are the 
same. This chapter is devoted to saddle connections 
by heteroclinic trajectories which satisfy the generic 
property G3, or transversality. The homoclinic case (a 
trajectory connects a saddle to itself) is described in the 
next chapter.

In state spaces of one dimension, there are no saddles. 
In two dimensions, there are generic saddle points 
with one-dimensional insets and outsets. In the three-
dimensional cases, there are generic saddle points 
and cycles, of which the insets and outsets may be 
surfaces. In this chapter, we will describe all of the 
transverse heteroclinic saddle connections in two and 
three dimensions: limit point to limit point, limit point 
to limit cycle, and cycle to cycle.
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13.1.

Point to Point

First, consider phase portraits in the plane, with two 
hyperbolic limit points of saddle type. The insets of 
each are curves, likewise their outsets. These curves are 
trajectories of the dynamical system.
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13.1.1. 
These three phase portraits each have two hyperbolic limit points of saddle type. The end ones 
have no saddle connection, while the one in the center has a single heteroclinic trajectory. The 
sequence has occurred previously in Part One, under the name saddle switching. It represents 
the actual coincidence of the outset from the left saddle and the inset to the one on the right. 
The transverse intersection of two curves in the plane must be in isolated points. Therefore, this 
intersection is not transverse. It is a nongeneric saddle connection. There are not transverse 
saddle connections in the two-dimensional case.
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13.1.2. 
A saddle point of index 1 cannot have a transverse connection to a saddle point of index 2, in three 
dimensions. Three closely related portraits are shown here, in analogy to saddle switching in the 
two-dimensional case. The one in the center has a nontransverse heteroclinic trajectory connecting 
the two saddle points.

13.1.3. 
The next donor, a saddle point of index 2, cannot have a transverse connection to a saddle point of 
index 2 (same receptor as above), in three dimensions. Here again, three similar portraits are shown. 
The one in the center is an example of a nontransverse heteroclinic trajectory.

And now, on to two hyperbolic saddle points in 3D.

In the three-dimensional case, there are several possibilities. There are two types 
of topologically distinct hyperbolic saddle points: index 1 (inset two-dimensional) 
and index 2 (inset one-dimensional, outset two-dimensional). Each can be a 
donor or receptor of a saddle connection. But transverse saddle connections, in 
3D, only occur between two-dimensional outsets and two-dimensional insets. 
Such an intersection consists of a single curve, a trajectory.
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13.1.4. 
Transverse connection from a saddle point of index 1 to a saddle point of index 1 (like the 
case of index 1 to index 2, and index 2 to index 2, described above) cannot occur in three 
dimensions.

13.1.5. 
In this fourth case, a heteroclinic trajectory leads 
from a saddle point of index 2 to one of 
index 1. The outset of the donor and the inset 
of the receptor are both two-dimensional. Thus, 
a transverse intersection of them in a one-
dimensional curve (necessarily a trajectory of the 
dynamical system) is possible. A nontransverse 
intersection along a heteroclinic trajectory is also 
possible - for example, the two surfaces could 
be tangent to each other, along their intersection. 
Here, the transverse case is illustrated. This is 
the only generic (transverse) connection between 
saddle points in three dimensions.Cop
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13.1.6. 
The preceding 
illustration shows the 
transversely connected 
saddle points, assuming 
both are the radial 
(nonspiral) type. Here, 
the donor has been 
replaced by a spiral 
type. This is 
topologically equivalent 
to the preceding 
portrait.

13.1.7. 
In this example, both 
the donor and the 
receptor are of the 
spiral type. Again, this 
is topologically 
equivalent to the 
preceding portraits.
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13.2.

Outsets of the Lorenz Mask

Recall the Lorenz mask, from Part Two. This was 
the first chaotic attractor to be firmly established in 
experimental dynamics. It is actually made of tangled 
outsets. Here, developed in stages, is the complex of 
point-to-point tangles found in the Lorenz system.1 
There is a radial saddle point of index 1 (the receptor) 
situated between two spiral saddle points of index 2 
(the donors). The outset surfaces of the two donors 
are heteroclinically incident to the inset surface of the 
receptor.

Heteroclinic Tangles     383

13.2.1.
Here are two saddle 
points, A and Y. 
They are hyperbolic, 
in three 
dimensions. One, A, 
has index 2, with 
spiral dynamics on 
its planar outset 
(shaded), Out(A). 
The other, Y, has 
index 1, with nodal 
dynamics on its 

planar inset 
(dotted), In(Y). The two outsets are attractive, as shown by the neighboring trajectories. As Out(A) 
and In(Y) are both two-dimensional, they could intersect transversely in three space. If they did, the 
transversal intersection would have to be a trajectory, called a heteroclinic trajectory.

Next, we will build up this complex, step by step.
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13.2.2. 
Adding another saddle point, B, essentially identical to A, we make a yoke like this. Both A and 
B are heteroclinic to Y. They are transversely heteroclinic, as the two planar outsets (shaded) 
intersect the planar inset (dotted) transversely. There are two heteroclinic trajectories in this 
yoke. Note that the arriving outsets are incident upon the departing outset, at Y. We call this a 
neat yoke. Next, we will see where these outsets end up.
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13.2.3. 
As the arriving outsets, Out (A) and Out (B), both have spiral dynamics, the departing outset that 
bounds them, Out (Y), swirls around and reinserts, as shown here. It cannot go off to infinity, as 
the Lorenz system has a repellor at infinity.
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13.2.4. 
The result of reinserting is this: as each branch of Out (Y) swirls around one of the shaded 
outsets, it approaches near the other shaded outset. It gets attracted, as outsets are attractive. 
Thus, the omega limit set of Out(Y) is within the closure of the union of the three yoked outsets.
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13.2.5. 
And here, for comparison, is a computer drawing by Robert Shaw of the Lorenz attractor. Inspection 
of the equations reveals the three distinguished saddle points, right where we want them. But 
the planar inset of the saddle point in the lower center is qualitatively invisible. It is a kind of a 
separatrix. Now we will add it to the picture, with its full extension.
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13.2.6. 
Referring to Figure 13.2.4, we run the flow backwards in time, to extend the planar (dotted) inset 
outward from Y. It follows the heteroclinic trajectories (dashed) back to the yoked saddles, A 
and B, scrolling as it goes.
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13.2.7. 
Extending the dotted inset farther backwards in time, it scrolls up tightly around the one-
dimensional insets of A and B, In (A) and In (B). 
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13.2.8. 
Extending the dotted inset farther backwards still, the four ends of the scrolls are pulled out 
along the curves, In (A) and In (B), toward their source at infinity.

The chaotic Lorenz attractor is composed of a yoke of 
tangles, folded into itself. Perhaps all of the familiar chaotic 
attractors have such an outset structure. But even in 
nonchaotic systems, the tangles are very important features.

We resume now our excursion into tangles.
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13.3.

Point to Cycle
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13.3.1. 
A heteroclinic trajectory from a saddle point of index 1 to a saddle cycle can never be transverse 
in three dimensions. Here is a nongeneric portrait, in the center, flanked by two nearby generic 
ones.

13.3.2. 
Similarly, a heteroclinic trajectory from a saddle cycle to a saddle point of index 2 is nongeneric.

There is only one kind of hyperbolic saddle cycle in 3D: index 1 (two-dimensional inset 
and outset). The two-dimensional outset of a hyperbolic limit point of index 2 can have 
a transverse intersection with the two-dimensional inset of such a limit cycle.
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13.3.3. 
The two preceding panels illustrate nongeneric connections between a saddle cycle and a saddle 
point of the radial type. Here is an analog, with the radical point replaced by a spiral.
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13.3.4. 
In this example, the outset of a saddle point of index 2 actually coincides with the inset of a 
saddle cycle. These nongeneric examples illustrate a degeneracy of order 1: only one condition 
of genericity has been violated.Cop
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13.3.5. 
Nevertheless, 
heteroclinic 
connection from a 
saddle point of 
index 2 to a saddle 
cycle can occur 
generically in three 
dimensions. Here is 
the first step in the 
visualization of this 
configuration.

13.3.6. 
To generate more 
of the picture, the 
inset of the limit 
cycle (upper cone 
above) must be 
extended further 
into the past, to see 
how the trajectories 
spiraling into the 
limit cycle must 
have come from 
near the inset 
trajectories of the 
limit point.
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13.3.7. 
Before, the saddle point of radial type was shown. Here, it has been replaced by a spiraling one. 
These two distinctive types of heteroclinic behavior are topologically equivalent, however.
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13.3.8. 
The heteroclinic portraits just described can be transformed into two other generic portraits by 
reversing the direction of time. Thus, the prior connection, on the left, suggests a new sort, on the 
right, in which the heteroclinic trajectory goes from a saddle cycle to a saddle point of index 2.

13.3.9. 
These two forms, radial and spiral, of the generic saddle connection result. As above, they are 
topologically equivalent.

All of the forms of this section could be reversed, by 
changing the direction of time, to provide examples of 
heteroclinic tangles from a limit cycle to a limit point: 
cycle to point.
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13.4.

Cycle to Cycle

Thus far, three generic and topologically distinct saddle 
connections have been described:

— saddle point index 2 to saddle point index 1,
— saddle point index 2 to saddle cycle,
— saddle cycle to saddle point index 1.

In three dimensions, there is just one more.
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13.4.1. 
The outset of a saddle 
cycle (two-dimensional) 
can intersect the inset 
of another saddle cycle 
(also two-dimensional) 
transversely, in a (one-
dimensional) curve of 
intersection, necessarily 
a spiraling trajectory. 
This fourth type of 
generic heteroclinic 
behavior is decidedly 
complicated.
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13.4.2. 
To dissect the complicated structure of such a connection between limit cycles, Poincaré 
introduced the transverse section, and the first return map. Within the cross-section (the 
Poincaré section) the two limit cycles are represented by points, and their insets and outsets 
by curves. The intersection of the outset of the donor cycle (above) and the inset of the 
receptor cycle (below) is a heteroclinic trajectory, represented in the Poincaré section by the 
point designated H.
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13.4.3. 
This picture, understood by Poincaré and fully analyzed by Birkhoff and Smith,3 involves a doubly 
infinite sequence of intersections of the curves representing the inset and outset. For the marked 
point, H, representing the heteroclinic trajectory, is mapped by the Poincaré first return map into 
another point, H+, which is also in both curves. This point, H+, is actually on the same heteroclinic 
trajectory as H, at a later time. Further, the image of H+ is another point, H++, through which 
both curves must cross.

The completion of this drawing, showing the full tangle of curves within 
the Poincaré section, was carried out brilliantly by Birkhoff. His topological 
analysis of this picture reveals that between the points of intersection, H 
and H+, there must be, assuming G3, an odd number of others.

This contstruction of Birkhoff is carried out in the next section.

Cop
yr

igh
t 2

00
5 

Ralp
h 

Abr
ah

am



13.5.

Birkhoff’s Signature

The successive intersections of the inset and outset, curves 
within the Poincaré section, shown above, are all points 
belonging to a single heteroclinic trajectory. However, there 
may be (in fact, must be) other intersections, belonging to 
other heteroclinic trajectories. Our task now is to chart all 
of these, and the course of the inset and the outset curves 
between intersection points.

400  Global Behavior

13.5.1. 
Here is a close-up view of 
two successive 
intersections, H and H+, 
belonging to a single 
heteroclinic trajectory. They 
are shown here on a piece 
of the inset curve of the 
saddle point on the right, 
representing the receptor 
saddle cycle. Through H+ 
passes a short piece of 
the outset curve of the 
saddle point on the left, 
representing the donor 
saddle cycle. How can we 
fill in the entire donor 
outset curve, connecting 
these short segments?

Notice the arrows on the outset segments, 
indicating the out-directions on the outset curve, 
away from the donor.
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13.5.2. 
The simplest solution 
might be just to 
connect up the loose 
ends, as shown here. 
Unfortunately, this 
does not work. The 
out-directions must 
connect properly, 
without conflict.

13.5.3. 
This drawing shows three possible connections for the outset curves, joining the short segments 
without conflict of the out-directions. The complete outset segment, joining two successive points 
corresponding to the same heteroclinic trajectory, H and H+, cuts through the inset segment joining 
the same two points in an odd number of points, all heteroclinic, but belonging to different 
heteroclinic trajectories. The two complete segments, joining H and H+, comprise the figure Birkhoff 
called the signature of the saddle connection.
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Some more complicated examples are given in the 
next chapter.

402  Global Behavior

13.5.4. 
This shows the simplest 
possible Birkhoff signature. The 
odd number of interpolated 
heteroclinic points is only 1. 
This point, 1, represents 
another heteroclinic trajectory, 
sharing the same donor and 
receptor, and possessing its 
own signature (not shown).

13.5.5. 
Reinserting this Birkhoff 
signature into the starting 
picture of this section, together 
with two of its forward images 
under the first return map, we 
have a roughly complete idea 
of the donor outset. There are 
many possibilities for the future 
of the outset, but here we 
have used only the simplest 
signature, as shown in the 
preceding panel. In this case, 
there is an infinite sequence of 
points of intersection, H, H+, 
H++, … , all belonging to a 
single heteroclinic trajectory.

Meanwhile, the inset curve of the receptor is 
still only half-drawn. Where is its past?
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13.5.6. 
Extending the receptor’s 
inset backwards in time, 
we obtain the 
predecessor of H, H-, 
its predecessor, H—, and 
so on. This completes a 
doubly infinite sequence, 
corresponding to one full 
heteroclinic trajectory. 
Likewise, the 
interspersed heteroclinic 
trajectory contributes a 
complementary doubly 
infinite sequence as 
shown here, in the 
Poincaré section.
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13.5.7. 
The doubly infinite sequences each correspond to a heteroclinic trajectory of intersection of 
the donor’s outset and the receptor’s inset, in the original three-dimensional context. Here, the 
generic connection of saddle cycles in three dimensions is shown, with all its complex structure. 
A section has been removed here, for improved visibility.

If this object were set down upon a rotating 
phonograph turntable, it would look rather like a 
bolt being screwed down.
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13.5.8. 
In the three-dimensional 
case, there are several 
possibilities, summarized 
in this table. The two 
types of topologically 
distinct hyperbolic saddle 
points (of index 1 and 
2) and the unique 
hyperbolic saddle cycle 
are each possibly donors, 
or receptors, of a saddle 
connection. The nine 
possibilities are pictured 
here, with the donors 
down the left, and the 
receptors along the top. 
Note the order and 
orientation of the donors 
is not the same as those 
of the receptors.

In summary, there are no generic saddle connections in two-
dimensional dynamical systems. In three dimensions, there 
are four topologically distinct types. In higher dimensions, the 
situation is even more complicated.

The generic property G3 for dynamical systems is this: 
all inset and outset intersections are transverse. The 
genericity of this property, like the properties G1 and 
G2, is established by the theorem of Kupka and Smale.

The behavior of the trajectory passing by a cycle-to-cycle 
heteroclinic tangle is a spiraling asymptotic approach along the 
inset of the donor, followed by a period of entrapment, spiraling 
along the screw thread of the heteroclinic tangle, and finally an 
asymptotic escape, along the outset of the receptor. Thus, the 
heteroclinic tangle provides a model for transient oscillation.
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In addition to the four kinds of transverse saddle 
connections described in the preceding chapter, there 
is one more that can occur in three dimensions. This 
is the connection from a saddle cycle to itself, called 
a homoclinic connection. Homoclinic connections are 
much more important than heteroclinic ones, as 
they occur as exceptional limit sets within separatrices. 
Further, as shown by Birkhoff and Smith,1 they are 
full of limit cycles. The study of this complicated case, 
initiated by Poincaré, is still in progress. An advance 
was made by Smale2 in 1963. Many topologically 
different forms are possible. This chapter describes the 
main ideas of the three-dimensional context, including 
some constructions not previously published.
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14.1.

Homoclinic Cycles

By definition, a homoclinic trajectory must belong to 
the inset and outset of the same limit set. In the generic 
context of properties G1, G2, and G3, this limit set may 
not be a point. The simplest generic case is a limit cycle 
of saddle type, in three dimensions. In this section, we 
dissect this case.
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14.1.1. 
Here the outset of the limit cycle, at the top, is pulled down like a sleeve turned inside out. The 
inset, below, is likewise pulled up. Then, they are pushed through each other, to produce the 
beginning of an extensive intersection.Cop
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14.1.2. 
To visualize the intersection, we cut through it with a Poincaré section. The procedure is the same 
as the heteroclinic case, described in the preceding chapter (see 13.4.2.).

14.1.3. 
As in the preceding chapter (see 
13.5.1.), the outset surface of 
the receptor limit cycle (in this 
case, they are the same cycle) 
intersect the Poincaré section in 
two curves, the outset and inset 
curves. These curves intersect 
once at the point cut by the 
limit cycle (shown as a curved 
arrow here), and again at a 
point cut by the homoclinic 
trajectory, such as the 
homoclinic point H, shown here.

The key to the analysis is the first return map, which 
maps the Poincaré section into itself, corresponding 
to one revolution around the limit cycle.

What happens to the homoclinic point after another 
revolution around the limit cycle?
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14.1.4. 
As in the heteroclinic case (again, see 13.5.1.), this point is mapped to another, H+, closer to the limit 
point. This image point is on the inset curve, as this curve is mapped into itself by the first return 
map. Further, this curve consists of all the incoming points. However, the image point must also be 
on the outset curve, which is also mapped into itself by the first return map, and which consists of all 
outgoing points. The homoclinic points, H and H+, are both outgoing and incoming, by assumption. 
Thus through the image point, H+, there must also pass a piece of the outset curve, shown here with 
its out-direction indicated by an arrow.

14.1.5. 
As in the heteroclinic case (see 13.5.2.), direct connection leads 
to a conflict of out-directions. Thus … 

How may these outset segments be connected, 
so as to obtain the entire outset?
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14.1.6. 
… as in the heteroclinic 
case (see 13.5.3.), the outset 
segment from H to H+ must 
cross the inset segment 
(between the same two 
points) an odd number of 
times. This is the simplest 
legal construction, illustrating 
the Birkhoff signature in the 
homoclinic case.

14.1.7.
Reiterating the first return 
map again and again, the 
outset segments push up 
against the inset curve, near 
the limit point.

14.1.8. 
Repeating the construction 
for negative times (iterating 
the prior return map), the 
inset segments pile up 
against the outset curve, 
again near the limit point. 
Thus, we obtain a full picture 
of the entire homoclinic 
tangle, as shown in this 
drawing of a tangle studied 
by Hayashi,3 the greatest 
master of experimental 
tangle art.
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14.1.9. 
Here is the tangle within the Poincaré section, replaced within the original 3D context (compare 
with 13.5.7.). The behavior of a nearby trajectory is a spiraling asymptotic approach, along the 
non-tangled half of the inset surface, followed by a period of chaotic motion, entrapped within the 
tangle, and finally a spiraling asymptotic escape, along the non-tangled half of the outset surface. 
Thus, the homoclinic tangle provides a model for transient chaos.

This tangle, based on the simplest Birkhoff signature, 
reveals additional intersections of inset and outset 
loops. This deeper structure is not determined by 
the Birkhoff signature. Thus, to fully describe the 
structure of the tangle, additional signatures must be 
specified.

In the next section, we introduce a sequence 
of signatures, published here for the first time, 
for the full description of a homoclinic tangle 
in 3D.
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14.2.

Signature Sequence

During the preparation of a preliminary edition of this 
work in 1980, we tried to deform the Hayashi tangle 
(shown in the preceding panel, 14.1.8.) into the Smale 
horseshoe (described in the next section; see also Figure 
8.1.10.). Although the two homoclinic tangles have the 
same Birkhoff signature, we were unable to deform the 
Hayashi tangle into the horseshoe.

In trying to understand the difference between these two 
exemplary tangles, we developed an infinite sequence of 
signatures. The first of these is the Birkhoff signature, 
which is the same for the two examples. The second, 
however, is different. Thus, they could not be deformed, 
one into the other. This led to our signature conjecture: 
if two tangles have the same signature sequence they are 
topologically equivalent.

In this section, we construct the signature 
sequence, step by step, for the Hayashi tangle. In 
the next section, we will apply it to the Smale 
horseshoe tangle.
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14.2.1. 
Here, again, is the Hayashi 
tangle. It is not a 
mathematician’s pipe dream, 
but was laboriously drawn 
by Hayashi, from extensive 
simulations of the Duffing 
system (for the forced 
pendulum, see Part One) with 
an electronic analog 
computer. How can we give 
a full characterization of this 
tangle? Let’s single out a 
homoclinic point, such as H, 
and its image H+.
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14.2.2. 
Extracting the inset and outset curve 
segments bounded by these two points, 
we obtain the Birkhoff signature. Again it 
is the simplest possible one (see Figure 
13.5.3 for three alternatives). To some 
extent, it characterizes the chief feature 
of the tangle.

14.2.3. 
For example, here is another tangle. 
At first glance, it appears significantly 
different from the preceding one.

14.2.4. 
Extracting a Birkhoff signature, we see 
that it is indeed different. And this does 
seem to capture the chief feature of this 
new tangle.
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14.2.5. 
Now let’s return to the 
old tangle. Notice how 
inset loops may cross 
through several outset 
loops. We want to 
capture a signature of 
this larger-scale behavior 
of the figure, 
corresponding to its 
minor features. We will 
proceed in steps.

14.2.6. 
Step 1. Single out a homoclinic point 
and its image, and draw the Birkhoff 
signature they determine. Draw it 
again, straightened out, as shown in 
the inset.

14.2.7. 
Step 2. Extend the signature another 
iteration, by applying the first return 
map. Here we see both the Birkhoff 
signature and it entire image. 
Straighten out this figure also, as 
shown in the inset.
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14.2.8. 
Step 3. Repeat the preceding step again, and in 
general, as many times as you can, as long as 
the elongating outset loops never come back to 
cross a part of the original signature, or its forward 
iterations.

14.2.9. 
Step 4. Repeat the single iteration step once 
more. This time, one of the elongating upper loops 
will make a new intersection with a segment of 
the inset curve belonging to the original Birkhoff 
signature, or one of its forward iterations. In this 
example, four new crossings have all appeared at 
once.
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The Birkhoff signature is the first of our sequence. 
The figure in the inset above is the second. Let’s try 
out these two on another example.

418  Global Behavior

14.2.10. 
This is yet another 
tangle. It looks like 
Hayashi’s, but is 
not. The Birkhoff 
signature (shown in 
the inset) is the 
same. Will our 
second signature 
reveal the 
difference?

14.2.11. 
The first iteration 
of the fundamental 
(Birkhoff) signature 
comes close to the 
fundamental, but 
does not cross it. 
The second image 
crosses the 
fundamental. The 
figure in the inset is 
the second 
signature of this 
tangle.
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14.2.12. 
Here, for comparison, 
is the second 
signature of the two 
tangles. The new 
tangle has two humps, 
while the Hayashi 
tangle has three, 
under the arching 
inset loop. They are 
topologically 
inequivalent tangles.

These two signatures are the first of an infinite 
sequence. See if you can draw the third 
signature in the examples above.
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14.3.

Horseshoes

In this section, we will tackle another tangle, called Smale’s 
horseshoe. This third example originated as a geometric 
construction, but was subsequently observed in the forced 
Van der Pol system,4

 and many others. Along the way, we 
will give an idea of the third signature of a tangle.
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14.3.1. 
Here is yet another homoclinic tangle, the famous horseshoe of Smale. Note that the first 
signature is the familiar simplest one. But in the second signature, shown in the inset, the hump 
has been twisted back, creating two new intersections. To further characterize this tangle, we 
must draw the third signature.
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14.3.2. 
Here are the first 
four signatures of 
our signature 
sequence, for 
Smale’s horseshoe. 
The third signature 
is not identical to 
the third signature 
of the preceding 
example (try it and 
see).

14.3.3. 
The horseshoe has been untangled by Smale5 in a most ingenious way. Choosing a curved 
rectangular patch in the Poincaré section with some care, and applying the first return map yields 
another rectangular patch crossing the original patch at each end. Now, deform the whole picture 
by lassoing the two patches around the waist and pulling gently. 
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14.3.4. 
Continue to pull 
the upper patch 
upwards by the 
waist, while 
pushing down on 
the ends. The 
idea is to 
straighten out 
the lower patch.

14.3.5. 
There is the fully 
untangled tangle, 
the horseshoe of 
Smale. It is 
topologically 
equivalent to the 
messy original 
tangle, yet it 
admits a full 
analysis, as 
shown by Smale. 
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14.3.6. 
The analysis is based 
upon a clever scheme 
for labeling all the 
points of intersection 
of the insets and 
outsets within the 
Poincaré section.

Smale’s analysis of this 
particular tangle, based 
on combing it out and 
applying symbolic 
dynamics, might be 
applied to other 
homoclinic tangles, 
through careful use of 
the signature sequence.

The theory of homoclinic tangles is very important, and yet little known. Even 
in three dimensions, the lowest in which they occur generically, there are 
outstanding problems. In higher dimensions, little is known. Poincaré expressed 
the fear that they might defy analysis forever, but the theory of horseshoes, 
and the work of Zeeman, Newhouse, and others6 on more general shoes, gives 
hope. 

14.3.7. 
Looking at a portion 
of the outset through 
a microscope, we see 
an infinite set of 
horizontal lines. Their 
intersection with a 
vertical line (such as 
the left edge of the 
box here) is much like 
Cantor’s middle thirds 
set (see Figure 9.4.7.).Cop
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14.4.

Hypercycles

An even more complicated situation occurs generically 
in dimension three or more. The insets and outsets 
of these may have transverse intersections, tangles, and 
heteroclinic trajectories in a daisy chain, called a hypercycle, 
or heteroclinic cycle.
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14.4.1. 
Here is the simplest example of a cycle. In a three-dimensional state space, two closed orbits of 
saddle type (index 1) have heteroclinic trajectories, each to the other. 
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14.4.2. 
This situation may be described by this diagram, called a directed graph, or quiver. This has a 
vertex for each of the limit cycles, and was introduced by Peixoto7 to describe generic systems in 
two-dimensional state spaces.

14.4.3. 
More complicated cycles may involve larger sets of critical points, closed orbits, and even more 
complicated limit sets, in a daisy chain of saddle connections. 
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14.4.4. 
Here is a hypercycle involving three limit cycles of saddle type. Each is heteroclinic to 
each of the others. In all of these situations, it can be proved, by topological analysis, 
that each of the limit sets involved is actually homoclinic. That is, membership in a 
heteroclinic cycle implies homoclinicity.

Cycles of heteroclinically related critical points 
are endemic in real dynamical systems, and are 
vitally involved in chaotic motions. 
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In the history of dynamics, as in philosophy, the concept 
of recurrence frequently recurs. A periodic trajectory 
has the recurrence property: every one of its states 
will recur again and again. This is called trivial 
recurrence. The recurrence property also applies to 
more complicated (aperiodic) trajectories. This is called 
nontrivial recurrence. This concept already surfaced in 
the generic property G4, described in Section 11.3, and 
in the chaotic attractors of Part Two. In this chapter, 
more versions of this important phenomenon will be 
described. 

    427

15	Nontrivial Recurrence
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15.1.

Nearly Periodic Orbits
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15.1.1. 
A homoclinic limit cycle provides good examples of nearly periodic points. Here is a Poincaré 
section of a homoclinic tangle. Look carefully at the trajectory of the point a0.

Recall that generic property G4 limits the types of almost-periodic 
motions. Discovered by Peixoto in two dimensions, its genericity was 
established by Pugh in higher dimensions.1 Suppose that we take 
a sequence of points in the state space, converging (approaching 
asymptotically closer and closer) to a point, and that each of 
the points belongs to a closed orbit (limit cycle, or periodic 
trajectory). Topological consequences of the generic condition G3 
(transversality) force the periods of these periodic trajectories to 
get longer and longer. Thus, the oscillations they represent have 
frequencies that get lower and lower. The limit point of the original 
sequence lies on a trajectory that need not be periodic. But it is 
nearly periodic, in that observations cannot distinguish it from a low-
frequency oscillation. We will denote the set of all nearly periodic 
points of the dynamical system by NP.
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Expansion of the tangle shows how the periodic orbits 
fit into this picture, from the cover of Hayashi’s 
collected works.2
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15.1.2. 
Inside this tangle, there must be a periodic orbit.3 Let’s follow the small red rectangle, marked c0. 
Its sides are segments of insets and outsets. After one revolution around the ring, its first return 
to the Poincaré section is again a small rectangle c1. Note that it is stretched in one direction 
and compressed in the other. Now follow its next five revolutions, noting that inset segments 
are stretched to longer inset segments, and outset segments are compressed to shorter outset 
segments. Note that c5 intersects c0.
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15.1.3. 
Now take the little piece of c0 intersected by c5 and follow it around five times. It will again pass 
through the initial rectangle. Continuing in this way, we obtain a sequence of nested boxes, which 
converge to a periodic point of period five, as predicted by the theorem of Birkhoff and Smith.4

We may use the expansion of the tangle as a magnifier, to 
zoom into the microstructure of the tangle.
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15.1.4. 
Now let’s select two points a0 and b0, and follow their fates. The line segment a0b0 becomes, 
after five revolutions, the segment a0b0.

15.1.5. 
All the intersections of the inset within this stretched segment ab, must also be found in the 
shorter segment ab, but they are five generations smaller.
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We may continue to zoom into this microscopic 
structure of the tangle.
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15.1.6. 
A few repetitions of the magnification method suffice to locate the periodic point as accurately 
as needed. It is within the small tangle.
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By starting with other small rectangles and making 
judicious use of the zoom method, additional 
periodic points may be found.
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15.1.7. Closer to the homoclinic point a0 there must be another periodic point with a higher period, 
such as c0 shown here. And even closer, another with an even higher period, such as d0. These may 
be located as accurately as needed by the zoom method described above.

Thus the original homoclinic point is the limit of a 
sequence of periodic points in the Poincaré section. In 
the three-dimensional state space, a sequence of closed 
orbits (periodic trajectories) asymptotically approach 
the homoclinic trajectory. Thus, every point on the 
homoclinic trajectory is nearly periodic, yet not periodic.
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15.1.8. 
Here, highly magnified, is a sequence of periodic points approaching closer and closer to a 
homoclinic point, which is nearly periodic, yet not actually periodic.
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15.2.

Why Peixoto’s Theorem 
Failed in 3D

As described in Section 12.2, Peixoto’s theory of 
structurally stable systems is restricted to the two-
dimensional case. In the case of state spaces of three 
dimensions or more, it is still true that structurally stable 
systems must have the four generic properties: G1, G2, 
G3, and G4. But these conditions no longer ensure 
structural stability. In fact, structurally stable systems are 
rare (that is, hard to find) in higher dimensions. A 
complete characterization of structural stability in three-
dimensional systems (having a global section) has been 
accomplished recently.5 This section describes the failure, 
and the remnants of Peixoto’s theory that apply in higher 
dimensions.
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15.2.1. 
It is Step 1 in Peixoto’s proof which is specifically two-dimensional. That step established that 
there are only a finite number of closed orbits (limit cycles) in the two-dimensional case. Here is 
an example of a generic portrait in three-dimensions. The homoclinic tangle forces the occurrence 
of an infinite number of limit cycles, as described in the preceding section. This example makes 
Step 2 wrong as well, as Step 2 is a simple consequence of Step 1.
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15.2.3. 
Step 4 fails in higher 
dimensions. Structural 
stability does ensure the 
four generic conditions. 
This is a relatively easy 
result, due to Markus and 
Robinson.7 But structural 
stability does not ensure 
property F, the finiteness 
of the limit sets. The 
generic homoclinic tangles 
can be structurally stable, 
as Smale has shown for 
the example shown here.8

The progress of dynamical systems theory stalled briefly at 
this point, until it occurred to Smale to regard a homoclinic 
tangle as a generalized limit cycle and propose generic 
properties for it as a unit. He called this a basic set. The main 
example is the horseshoe, dissected in the preceding chapter. 
This was a prototype for the chaotic attractors, described in 
Part Two. One of the fundamental properties of a basic set is 
nonwanderingness, described in the next section.

15.2.2. 
Step 3 remains true in 
higher dimensions. It 
assumes property F: the 
limit sets consist of a 
finite number of limit 
points and limit cycles 
only, as well as the four 
generic conditions. These 
are sufficient to ensure 
structural stability. This is 
a difficult result, due to 
Palis and Smale.6 Here 
is an example of such 
a portrait, in three 
dimensions.
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15.3.

Nonwandering Points

One of the most restrictive versions of the recurrence 
property is near-periodicity, defined above, in Section 15.1. 
And one of the least restrictive versions is the property of 
nonwandering, defined in this section.
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15.3.1. 
Suppose, having picked out a point in the state space and a little disk centered on it, that 
we follow the future meandering of the entire disk. If wide enough, it may meet up with itself 
along its meander.
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15.3.2. 
If so, start with a smaller disk, and repeat the contruction. If now the meandering disk leaves 
its original position, wanders away, and never returns to overlap its original position, then the 
original point at the center of the disk is called a wandering point.

15.3.3. 
For example, a limit point (equilibrium) is nonwandering. 
The little disk is tied down at the center.

On the other hand, it may happen that, no matter how 
small you draw the original disk, it always comes back to 
overlap itself. Or, it may never cease overlapping itself, no 
matter how long you wait. In these cases, the original point 
is a nonwandering point. The set of all nonwandering points 
of a given dynamical system will be denoted by NW.
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15.3.4. 
Similarly, a closed orbit (limit cycle) is nonwandering. The center of the little disk keeps passing 
through the initial point, again and again. In fact, the set of nearly-periodic points, NP, is 
contained in the set of nonwandering points, NW, for topological reasons.

15.3.5. 
Here is an 
outstanding example 
of a nonwandering 
point which is not 
nearly periodic. In 
this solenoidal flow 
on the torus, called a 
Kronecker irrational 
flow, every point is 
nonwandering, yet no 
point is periodic, or 
even nearly periodic.
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15.3.6. 
This is an example of a nonwandering point which is not itself recurrent in any sense. The flow 
has a limit cycle of saddle (index 1) type, which is homoclinic, and satisfies G3 (transversal 
intersection). The heteroclinic trajectories within this tangle are nonwandering.

15.3.7. 
The theorem of Birkhoff and Smith, later generalized to higher dimensions by Smale, shows that 
these trajectories are nearly periodic. That is, they are approximated by limit cycles of very low 
frequencies. The heteroclinic trajectories belonging to a heteroclinic cycle of tangles are also 
nearly periodic.
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Generic property G4, discussed previously in Section 11.4, 
can now be simply stated: NP = NW. That is, a dynamical 
system has property G4 if its every nonwandering point can 
be approximated by periodic points (points belonging to 
limit cycles). This property is generic, as proved by Peixoto 
(in 2D) and Pugh (in higher dimensions).
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15.3.8. 
The proof of the genericity of this property is intuitively simple, yet it is one of the most difficult 
in the whole literature of mathematical dynamics to carry out in detail. The kep step, called the 
Closing Lemma, makes small changes in the vectorfield, so that a closed orbit is found in the 
disk that meets itself.

Warning: As described briefly in Chapter 12, this 
property is generic only in a very weak sense. The 
reason is that the violation of G4 by persistent 
solenoidal flows (equivalent to irrational Kronecker 
flows on invariant tori) occurs with positive 
expectation. Thus, in the sense of probability, G4 
violation is also generic. We may call this the G4 
paradox. It will be explained further in Part Four.
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