SMA0300 Geometria Analítica

Quarta Lista de Exercícios - Produto escalar, Produto vetorial e Produto Misto

Nos exercício 1 a 12, $\mathbf{E}=(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ é uma base ortonormal de V^3 e as coordenadas de vetores estão expressos nesta base \mathbf{E} .

Nos exercício 13 a 26, $\mathbf{C}=(\vec{i},\vec{j},\vec{k})$ é a base canônica (ortonormal e positivamente orientada segundo a regra da mão direita) de V^3 e as coordenadas de vetores estão expressos nesta base \mathbf{C} .

O produto vetorial é comumente denotado por \wedge ou \times .

Exercício 1. Sabendo que $\vec{u} + \vec{v} + \vec{w} = \vec{0}$, $||\vec{u}|| = 3/2$, $||\vec{v}|| = 1/2$, $||\vec{w}|| = 2$, calcule $\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}$.

Exercício 2. Demonstrar que a soma dos quadrados dos comprimentos das diagonais de um paralelogramo é igual à soma dos quadrados dos comprimentos dos quatro lados; em outras palavras, provar que $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2 \|\vec{u}\|^2 + 2 \|\vec{v}\|^2$.

Exercício 3. (a) Prove que $\|\vec{u} + \vec{v} + \vec{w}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + \|\vec{w}\|^2 + 2(\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w})$, quaisquer que sejam $\vec{u}, \vec{v} \in \vec{w}$.

- (b) Dados os vetores não nulos \vec{u}, \vec{v} e \vec{w} , sejam $\alpha = \arg(\vec{u}, \vec{v}), \beta = \arg(\vec{u}, \vec{w}), \gamma = \arg(\vec{v}, \vec{w})$. Prove que $-3/2 \le \cos \alpha + \cos \beta + \cos \gamma \le 3$.
- (c) Supondo, no item anterior, que $\alpha = \beta = \gamma$, verifique se $(\vec{u}, \vec{v}, \vec{w})$ é base.

Exercício 4. Considere os vetores $\vec{u} = (1, 2, -3)$ e $\vec{v} = (2, 1, -2)$.

- 1. Determine um vetor unitário e paralelo ao vetor $\vec{u} + \vec{v}$.
- 2. Determine o cosseno do ângulo formado por \vec{u} e \vec{v} .

Exercício 5. Os vetores \vec{x} e \vec{y} formam ângulo de $\frac{\pi}{3}$ radianos. Se $||\vec{x}|| = 1$, $||\vec{y}|| = 2$, $\vec{u} = \vec{x} + 2\vec{y}$ e $\vec{v} = 2\vec{x} - \vec{y}$, determine o ângulo entre \vec{u} e \vec{v} .

Exercício 6. Sejam os vetores $\vec{u} = (2, m, -1)$, $\vec{v} = (3, 1, -2)$ e $\vec{w} = (2m - 1, -2, 4)$. Determine m de modo que $\vec{u} \cdot \vec{v} = (\vec{u} + \vec{v}) \cdot (\vec{v} + \vec{w})$.

Exercício 7. Determine o vetor \vec{v} , paralelo ao vetor $\vec{u}=(2,-1,3)$, tal que $\vec{v}\cdot\vec{u}=-42$.

Exercício 8. Dados os vetores $\vec{u}=(1,2,-3)$, $\vec{v}=(2,0,1)$ e $\vec{w}=(3,1,0)$, determine o vetor \vec{x} tal que $\vec{x}\cdot\vec{u}=-16$, $\vec{x}\cdot\vec{v}=0$ e $\vec{x}\cdot\vec{w}=3$.

Exercício 9. Calcule $||2\vec{u} + 4\vec{v}||^2$, sabendo que $||\vec{u}|| = 1$, $||\vec{v}|| = 2$ e a medida em radianos do ângulo entre \vec{u} e \vec{v} é $\frac{2\pi}{3}$.

Exercício 10. Decomponha o vetor $\vec{v} = (-1, -3, 2)$ como soma de dois vetores \vec{p} e \vec{q} , de modo que \vec{p} seja paralelo e \vec{q} seja ortogonal a $\vec{u} = (0, 1, 3)$.

Exercício 11. Determine um vetor \vec{r} com norma $\sqrt{5}$ tal que \vec{r} seja ortogonal a (2, 1, -1) e tal que os vetores \vec{r} , (1, 1, 1), (0, 1, -1) sejam coplanares.

Exercício 12. Um vetor \vec{v} forma com os vetores $\vec{e_1}$ e $\vec{e_2}$ ângulos de $\frac{\pi}{3}$ e $\frac{2\pi}{3}$ radianos, respectivamente. Determine as coordenadas do \vec{v} , em relação à base \vec{E} , sabendo que $||\vec{v}|| = 2$.

Exercício 13. Sejam

$$\vec{u} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), \ \vec{v} = (-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}), \ \vec{w} = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$$

- (i) Prove que $\mathbf{F} = (\vec{u}, \vec{v}, \vec{w})$ é uma base ortonormal positiva.
- (ii) Calcule a área do triângulo determinado pelos vetores $2\vec{u} + \vec{v}$ e $\vec{u} \vec{v}$.

(iii) Determine a projeção ortogonal do vetor $3\vec{u} + 5\vec{v}$ sobre o vetor $2\vec{u}$.

Exercício 14. Sejam os vetores $\vec{u} = (3, 1, -1)$ e $\vec{v} = (a, 0, 2)$. Calcule o valor de $a \in \mathbb{R}$, para que a área do paralelogramo determinado pelos vetores \vec{u} e \vec{v} seja igual a $2\sqrt{6}$.

Exercício 15. Sabendo que a medida em radianos do ângulo entre \vec{u} e \vec{v} é $\pi/6$, e que $\|\vec{u}\| = 1$, $\|\vec{v}\| = 7$, calcule $\|\vec{u} \times \vec{v}\|$ e $\|\frac{1}{3}\vec{u} \times \frac{3}{4}\vec{v}\|$.

Exercício 16. Ache um vetor unitário ortogonal a $\vec{u} = (1, -3, 1)$ e a $\vec{v} = (-3, 3, 3)$.

Exercício 17. Sabe-se que \vec{u} é ortogonal a (1,1,0) e a (-1,0,1), tem norma $\sqrt{3}$ e, sendo θ a medida do ângulo entre \vec{u} e (0,1,0) tem-se $\cos\theta > 0$. Ache \vec{u} .

Exercício 18. Calcule o volume do tetraedro ABCD onde $\vec{AB}=(1,1,0)$, $\vec{AC}=(0,1,1)$ e $\vec{AD}=(-4,0,0)$.

Exercício 19. Calcule a área do triângulo \overrightarrow{ABC} onde $\overrightarrow{AC} = (-1, 1, 0)$ e $\overrightarrow{AB} = (0, 1, 3)$.

Exercício 20. Dados os vetores $\vec{u}=(0,1,-1)$, $\vec{v}=(2,-2,-2)$ e $\vec{w}=(1,-1,2)$, determinar as coordenadas do vetor \vec{t} que seja paralelo ao vetor \vec{w} e que satisfaça $\vec{t} \wedge \vec{u} = \vec{v}$.

Exercício 21. Dados os vetores $\vec{u} = 2\vec{i} - 3\vec{j} + 2\vec{k}$ e $\vec{v} = 4\vec{i} - \vec{j} + 2\vec{k}$.

- a) Calcule $\vec{u} \wedge \vec{v}$
- b) Calcule o seno do ângulo entre os vetores \vec{u} e \vec{v} .

Exercício 22. Sejam $\vec{u}, \vec{v}, \vec{w}$ vetores de V^3 , tais que $\|\vec{u}\| = \|\vec{v}\| = 3$, $\|\vec{w}\| = 6$ e $\vec{u} + \vec{v} + \vec{w} = \vec{0}$. Calcule $\vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w} + \vec{v} \wedge \vec{w}$.

Exercício 23. Suponha que os vetores $\vec{u}, \vec{v}, \vec{w}, \vec{t}$ de V^3 verificam as relações $\vec{u} \wedge \vec{v} = \vec{w} \wedge \vec{t}$ e $\vec{u} \wedge \vec{w} = \vec{v} \wedge \vec{t}$. Prove que os vetores $\vec{u} - \vec{t}$ e $\vec{v} - \vec{w}$ são L.D.

Exercício 24. Se os vetores \vec{u} , \vec{v} são L.I. em V^3 e o vetor \vec{w} satisfaz $\vec{w} \wedge \vec{u} = \vec{w} \wedge \vec{v} = \vec{0}$, mostre que $\vec{w} = \vec{0}$.

Exercício 25. Resolva o seguinte sistema na incógnita \vec{x}

$$\begin{cases} \vec{x} \cdot (2\vec{i} + 3\vec{j} + 4\vec{k}) &= 9 \\ \vec{x} \wedge (-\vec{i} + \vec{j} - \vec{k}) &= -2\vec{i} + 2\vec{k} \end{cases}$$

Exercício 26. Prove que, qualquer que seja o vetor \vec{v} , vale a seguinte igualdade:

$$\|\vec{v} \wedge \vec{i}\|^2 + \|\vec{v} \wedge \vec{j}\|^2 + \|\vec{v} \wedge \vec{k}\|^2 = 2\|\vec{v}\|^2.$$

GABARITO

- Exercício 1: $\frac{13}{4}$
- Exercício 4: 1) $-\frac{\sqrt{43}}{43}(3,3,-5)$ 2) $\frac{\sqrt{14}}{3}$
- Exercício 5: $cos(ang(\overrightarrow{u}, \overrightarrow{v})) = \frac{13}{2\sqrt{21}}$
- Exercício 6: m=4 ou m=-4
- Exercício 7: $\overrightarrow{v} = (-6, 3, -9)$
- Exercício 8: $\vec{x} = (-22, 69, 44)$
- Exercício 9: 52.
- Exercício 10: $\overrightarrow{p}=(0,\frac{3}{10},\frac{9}{10})$ e $\overrightarrow{q}=(-1,\frac{-33}{10},\frac{11}{10})$

- Exercício 11: $\overrightarrow{r} = \pm (1,0,2)$
- Exercício 12: $\overrightarrow{v} = 1, -1)_E$
- Exercício 13: ii) 3/2, iii) $3\overrightarrow{u}$
- Exercício 14: $a=-6\pm2\sqrt{5}$
- Exercício 15: 7/2 e 7/8.
- Exercício 16: $-\frac{\sqrt{6}}{6}(2,1,1)$
- Exercício 17: $\overrightarrow{u} = (-1, 1 1)$
- Exercício 18: 2/3
- Exercício 19: $\frac{\sqrt{19}}{2}$.
- • Exercício 20: $\overrightarrow{t} = (-2, 2-4)$
- Exercício 21: a) (-4,4,10) b) $\sqrt{\frac{44}{119}}$
- Exercício 22: $\overrightarrow{0}$
- Exercício 25: $\overrightarrow{x} = (1, 1, 1)$