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CONDITION ESTIMATES*
WILLIAM W. HAGERTY

Abstract. A new technique for estimating the /; condition number of a matrix is developed and
compared to an earlier scheme.
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1. Introduction. Given an n Xn matrix A and a vector be R", the condition
number measures the sensitivity of x=A""b to changes in A or b. If x+ &x satisfies

A(x+6x) =b+6b,
then it is well known [6, p. 285] that

lloxl| _
Tl =

where ||| denotes both a vector norm and the corresponding matrix norm defined by

1) lAll= max {[Az|: |1z = 1}.
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The parameter « = ||A|||A™"|| is called the condition number. Similarly, if x + 6x satisfies

(A+8A)x+6x)=b
we have [6, p. 285]:

lox__ 1Al
+axl~ " Al
In practice, the most common norms are the /4, [, and /,, norms given by

n n 1/2
||X||1 = ‘Zl |xi| ’ "X“z = (Zl xlz) ’ ||x"°° = max {lel’ |x2]’ T |xn|}-
i= i=

It is well known [5, p. 21-22] that the corresponding matrix norms (1) can be expressed
as follows:

lAl =max ¥ lagl, lAl=p(A TA), ||A]lo=max Py lasl,
i= j=

where a; is the element in row i and column j or A, T denotes transpose, and p is
the spectral radius. Both ||A| and |JA!||, can be estimated by the power method [7,
Chapter 9] while ||Al|; and ||A]|» can be evaluated explicitly. We focus on the problem
of determining |A ™', and |A Ylw. Of course, this problem is trivial when A~ is
known. But since A" is rarely needed in scientific computations and the cost of
inverting a matrix is often 3 or more times the cost of factoring a matrix, it is important
to estimate ||A ~"||; from A’s factors, not from the inverse. Also note that any scheme

for computing the /; norm of A™' can be used to evaluate the /. norm since
-1 -T
1A oo = lA™ "l
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Cline, Moler, Stewart and Wilkinson [1] give a strategy for estimating || A™"|| that
involves solving two systems:
ATx=b, Ay=x

where b is chosen during the substitution process to ‘‘enhance’ the growth of x. Their
estimate is

A~y ll /Nl

This scheme is incorporated in LINPACK [2], a collection of programs for solving
linear systems. To study reliability, O’Leary [4] computed the average ratio

_estimated JA ||,
actual [|[A ||,

for 100 matrices of dimensions ranging from 5 to 50 where the a; were taken from
a uniform distribution on [—1, 1]. Obviously, r =1 and r = 1 if and only if the estimate
is perfect. Column 2 of Table 1 is extracted from [4, Table 1]. O’Leary points out
that for negligible cost, the strategy [1] can be improved slightly.

TABLE 1
n Average r Average s
5 .69 .61
10 .60 .55
20 .52 42
40 43 40

On the surface, the reliability seems good. If the condition number is “big”, then
its estimate is big, on the average. However, these results are disappointing in the
following respect: Setting

let us solve Ay =x and consider the estimate ||A || ~ ly|l;. That is, |4 ||, is approxi-
mated by the absolute sum of elements from column 1 of A™'. Column 3 of Table 1
lists the average ratio

_Z?=1 lair'|

S =" —1
A~

where aj' is the (i, j) entry of A™'. Observe that this simple strategy is almost as
good as the sophisticated approach! The next section presents a new scheme for
estimating |JA '||;.

2. A new idea. Before developing our algorithm, let us note that for certain
matrices with special structure, |[A"||; can be computed very quickly. For example,
if every element of A™" is nonnegative, we can evaluate [|A ||, by solving ATx=1
where 1 is the vector whose components are all 1. Since the elements of A" are
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nonnegative, the components of x are the column sums of A~', and ||A7"|; is the
biggest component of x. Our goal, however, is to develop an algorithm that is suitable
for matrices whose elements are generated randomly.

Given an n X n matrix B, define f:R" > R by

n

foo=||Bxl, = ¥

i=1

i bix;| .
ji=1
Thus we have
| Bll; = max {f(x): [|x]|, =1}.
Abstractly, ||B||; is the maximum of the convex function f over the convex set
S={xeR":|x,=1}.

It is well known that a convex function defined on a convex, compact set attains its
maximum at an extreme point. The 2n extreme points of S are simply

{xe’:j=1,---,n}

where e’ is the unit vector whose components are all 0 except for the jth component
which is 1. Since f is convex, it satisfies the inequality

) f@)=fx)+of (x)(y —x)

for all x, ye R" where 9f(x) denotes a subgradient of f at x. If
Z b,-,-x,- #0
i=1
for each i, then df(x) is the usual gradient vector. Defining for i=1 to n,

1 if Z b,-,~x,~ = 0,
3) &= =

—1 otherwise,
the chain rule gives us

“4) of (x)=¢"B.

Note that if one or more components of Bx are zero at some point X, then the function
f(+) has a corner at x, and the set of subgradients has many elements at this point.
That is, if (Bx); =0, then equation (4) gives us a different element of this set for each
value of £ between —1 and 1. Thus equations (3) and (4) specify a particular element
of the subgradient set at the corners of f(-). In the special case B =A"", computing
af (x) by equations (3) and (4) is equivalent to solving two systems:

5) Ay =x, ATz=¢

where
_{ 1 if yi 20,
&= —1 otherwise,
and of (x)=2".
Our algorithm for estimating ||B||; starts at a point x on the boundary of S. We
then find a j for which

(6) |of (x)}] = max |of (x)].
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If Iaf(x)jl =0f(x)x, then stop. (Below we show that this x is a ‘“local maximum” of f
over the polytope S). Conversely, suppose that |df(x)|>df(x)x. By the convexity
inequality (2) and the fact that f(e/) = f(—e’), we conclude that f(¢)>f(x). Replacing x
by €/, this process repeats. Since f is strictly increasing, vertices of S are visited only
once, and the iterations terminate in a finite number of steps. A Fortran code for our
algorithm is included in [3].

To prove that the final point x generated by this algorithm is a local maximum,
we assume that every component of Bx is nonzero. In the case that some component
of Bx is zero, we should modify (6) by letting the index j correspond to the maximum
absolute component over the entire set of subgradient vectors. The algorithm still
makes sense without this modification, but x may not be a local maximum of f. When
the components of Bx are nonzero, f(+) is linear near x. Hence x is a local maximum
of f over S if and only if

fx)(y—x)=0

for every ye S. If y is a vertex of S, then of (x)y = £3f(x); for some i since all but one
component of y is zero. If |3f(x)]| =af(x)x for each i, it follows that 9f(x)(y —x)=0
whenever y is a vertex of S. Since S is the convex hull of its vertices, df (x)(y—x) =0
for every ye S, and x is a local maximum of f over S.

To test this scheme, we computed the ratio

_estimated |A 7'||;
actual ||A ™",

for 200 matrices of the same dimension where the a; are taken from a uniform
distribution on [~1, 1]. Our initial guess is x=n""1. Column 3 of Table 2 gives the

TABLE 2
Average Average Probability

n t steps t,=.99

5 .96 2.1 .82
10 .97 2.1 .83
20 .98 2.1 .88
40 .97 2.1 .85
80 .98 2.1 .86

average termination step, counting the initial guess x =n"'1 as step 1. Column 4 is
the proportion of the cases where ¢, =.99. With few exceptions, ¢, =.99 if and only
if the algorithm actually found the vertex €’ for which ||A 'e/|; =||A ~"|l;. It appears
that the reliability is independent of n. Since the average termination step is 2.1, the
scheme starts from x=r"'1 and almost always moves straight to a locally maximizing
vertex of S. Of course, each step involves solving the two systems (5). In column 4
of Table 2, we see that the local maximum computed by the algorithm is a global
maximum with high probability.

To estimate ||A ||, more precisely, our scheme is applied repeatedly to suitable
subspaces. During the first cycle described above, we visit vertices {v', - - -, v"'} and

stop at a local maximum. Let {v"*", - -+, v"} be the remaining vertices; that is,

e v ={el, e v L v
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Then starting at the point

1 LA
v,

X=
n—M i=m+1

we apply the same scheme to the polytope S» with vertices
{(£vi:ii=m+1,---, n}

This leads us to a local maximum on S,. Our estimate for JA ™|}, is the bigger local
maximum. Letting 7, be the ratio between the estimated ||A || and the actual ||A ~";,
our results for the two cycle process are summarized in Table 3.

TABLE 3
Average Average Probability
n t steps L,=.99
5 .993 4.2 .94
10 991 4.2 .94
20 993 4.2 .95
40 .987 4.2 .90
80 .995 4.3 .95

Finally, the three cycle process yields Table 4.

TABLE 4
Average Average Probability

n t3 steps t3=.99

5 .997 6.2 .98
10 995 6.4 .97
20 .997 6.5 .96
40 .996 6.4 .97
80 .997 6.6 97

The worst condition estimate that we detected for the 200 random matrices is
shown in Table 5. If the hyperplanes {xe R": ¥./_, b;x; = 0} do not intersect some face
of S and v is any vertex of S, then one step of our algorithm starting from v takes us
to a global maximum of f over §. This situation corresponds to f being linear on a
face of S. On the other hand, when the hyperplanes intersect all the faces of S, then
f has corners on each face, and it is possible to hide the global maximum behind a
corner.

TABLE 5
n t t, ty
5 32 .67 .70
10 .39 .67 .76
20 46 .62 74
40 43 44 78

80 46 71 71
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