PME3481 – Controle e Aplicações Notas de aula 2024

São Paulo 18 de junho de 2024

Sumário

 Capítulo 1. Elementos do sistema controlado Governador centrífugo de Watt (1788) Objetivos gerais de projeto de um sistema de controle Atuação em malha aberta Álgebra de diagrama de blocos Sensibilidade e a resposta em malha fechada 	3 3 4 4 4 5
 Capítulo 2. Espaço de estados e função de transferência 1. Forma de espaço de estados 1.1. Modelo de roda de bicicleta: disco de bordo esbelto 1.2. Modelo de Whipple linearizado para movimento em linha reta 2. Estado de um sistema dinâmico 2.1. Modelo de Whipple linearizado para movimento em linha reta 3. Estados de equilíbrio de um modelo não-linear 4. Sistemas dinâmicos lineares 4.1. Resposta dinâmica de modelos lineares gerais 4.2. Mudança de variáveis 	6 6 7 7 8 8 9 9
 Capítulo 3. Controlabilidade e Observabilidade 1. Controlabilidade 2. Teste algébrico de controlabilidade para um SLIT 3. Observabilidade 4. Teste algébrico de observabilidade para um SLIT 	11 11 12 13 13
 Capítulo 4. Alocação de polos por realimentação de estados 1. Caso SISO/SIMO: solução de Bass-Gura 1.1. Matrizes companheiras de um polinômio característico 1.2. Forma canônica controlável de sistemas SISO/SIMO 1.3. Demonstração da solução de Bass-Gura para sistemas SISO/SIMO 	15 15 16 16 17
 Capítulo 5. Síntese de reguladores lineares quadráticos (LQR) 1. Estabilidade segundo Lyapunov 1.1. Estabilidade de um SLIT 2. Regulador linear quadrático (LQR) 2.1. Índice de desempenho quadrático 2.2. Síntese de um regulador linear quadrático (LQR) 2.3. LQR para horizonte de tempo finito 	18 18 19 19 19 20
 Capítulo 6. Observadores de estados 1. Observador de Luenberger 2. Princípio da separação 3. Observador de ordem reduzida 	21 21 22 22
Capítulo 7. Acompanhamento de referências 1. Seguidor via controle linear-quadrático 1.1. Solução explícita em malha fechada – seguidor LQ	25 25 27

 Modelos assumidos para variáveis exógenas Ação integral em realimentação 	28 30
 Capítulo 8. Introdução ao Controle Clássico 1. Diagrama de blocos de um sistema SISO em malha fechada 2. Realimentação unitária equivalente – sistemas SISO 3. Erro de acompanhamento de referência em regime permanente (SISO) 	31 31 31 31
 Capítulo 9. Métodos de sintonia para controladores PID 1. Métodos de Ziegler-Nichols 2. Sintonia via critérios de desempenho globais – ITAE e variantes 	33 33 33
 Capítulo 10. Método do Lugar das Raízes 1. Funções de transferência em malha aberta e malha fechada 2. Polos e zeros em malha aberta e malha fechada 3. Lugar das raízes 4. Função de transferência em malha aberta 5. Avaliação geométrica de funções de transferência 6. Lugar das raízes – propriedades 7. Efeito da adição de polos e zeros 	34 34 35 35 36 36 38
 Capítulo 11. Síntese de compensadores PI, PD e PID via lugar das raízes 1. Síntese de um compensador PI 2. Síntese de um compensador PID 3. Síntese de um compensador PD 	39 39 40 40
 Capítulo 12. Síntese de compensadores de avanço e atraso de fase via lugar das ra 1. Compensador de avanço de fase 1.1. Síntese de um compensador de avanço de fase 2. Compensador de atraso de fase 2.1. Síntese de um compensador de atraso 	ízes 42 42 42 43 43
 Capítulo 13. Resposta em frequência e margens de estabilidade de um sistema SIS 1. Resposta em frequência e margens de estabilidade 2. Critério de Nyquist 3. Carta de Nichols 	O 45 45 46 46
 Capítulo 14. Especificações de projeto para compensadores de sistemas SISO 1. Especificações de polos dominantes para projeto via lugar das raízes 2. Especificações de margem de estabilidade para projeto via diagrama de Bode 2.1. Compensador de avanço de fase 2.2. Compensador em atraso de fase 	47 47 48 48 48 48

Elementos do sistema controlado

O sistema de controle ilustrado acima é concebido como um conjunto de quatro grandes blocos: controlador, planta (sistema físico que se deseja controlar munido de atuadores), sistema de medição e observador de estados (ou estimador).

1. Governador centrífugo de Watt (1788)

Considerado o primeiro dispositivo de controle usado na indústria, permitia manter constante a rotação de uma máquina a vapor.

Em caso de aumento da rotação da máquina, por efeito inercial, o ângulo θ cresce, movendo o bloco B para cima. Caso contrário o bloco B desce.

Assim, basta ligar o bloco B a um mecanismo que controla a abertura ou fechamento da válvula de entrada de vapor.

$$\begin{bmatrix} \dot{\theta} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \omega \\ \frac{1}{2} \left(\Omega^2 + \frac{k}{m} \right) \sin(2\theta) - \left(\frac{g}{d} + \frac{k}{m} \right) \sin\theta - \frac{b}{md^2} \omega \end{bmatrix}$$

2. Objetivos gerais de projeto de um sistema de controle

Deseja-se que a dinâmica de um sistema controlado tenha as seguintes características (não necessariamente presentes na planta original):

- **Resposta estável** se a planta for originalmente instável, o sistema de controle projetado deve ser capaz de estabilizá-la.
- Seguimento de referências o sistema controlado deve ser capaz de acompanhar sinais de referência, reduzindo os tempos de acomodação (resposta transitória) decorrentes de qualquer variação nesta referência.
- **Rejeição de perturbações** entradas não-controláveis (indesejáveis e, tipicamente, nãomodeladas) devem ter seu efeito minimizado na resposta do sistema.
- Robustez baixa sensibilidade a erros de medição e à variação de parâmetros dos componentes.

3. Atuação em malha aberta

Sistemas de atuação em malha aberta são mais simples e têm menor custo, podendo ser convenientes em cenários nos quais há dificuldades para sensoriamento.

Nestes casos, no entanto, há baixa robustez e precisão. Note que o sistema só pode agir contra distúrbios para os quais foi projetado.

4. Álgebra de diagrama de blocos

$$\mathbf{Y}(s) = \mathbf{G}(s)\mathbf{E}(s)$$

$$\mathbf{E}(s) = \mathbf{R}(s) - \mathbf{Z}(s) = \mathbf{R}(s) - \mathbf{H}(s)\mathbf{Y}(s) = \mathbf{R}(s) - \mathbf{H}(s)\mathbf{G}(s)\mathbf{E}(s)$$

$$\begin{bmatrix} \mathbf{I} + \underbrace{\mathbf{H}(s)\mathbf{G}(s)}_{\mathbf{L}(s)} \end{bmatrix} \mathbf{E}(s) = \mathbf{R}(s) \implies \mathbf{E}(s) = \mathbf{S}(s)\mathbf{R}(s) \implies \mathbf{Y}(s) = \mathbf{T}(s)\mathbf{R}(s)$$

 $S(s) = [I + L(s)]^{-1}$: função de transferência de sensibilidade

T(s) = G(s)S(s): função de transferência de malha fechada

5. Sensibilidade e a resposta em malha fechada

$$Y(s) = G_{p}(s)U(s) + W(s) = G_{p}(s)G_{c}(s)E(s) + W(s)$$

$$E(s) = R(s) - (Y(s) + V(s)) \implies [I + G_{p}(s)G_{c}(s)]E(s) = R(s) - V(s) - W(s)$$

$$\underbrace{I(s) = G(s)}_{I(s)} = G(s)$$

$$F(s) = \underbrace{G(s)S(s)}_{T(s)} [R(s) - V(s)] + [I - \underbrace{G(s)S(s)}_{T(s)}]W(s)$$

$$\underbrace{Y(s) = T(s)[R(s) - V(s)] + S(s)W(s)}_{T(s)}$$

uma vez que $T(s) + S(s) = (G(s) + I)S(s) = (G(s) + I)(I + G(s))^{-1} = I$.

Espaço de estados e função de transferência

1. Forma de espaço de estados

As equações de movimento de um sistema dinâmico podem ser tipicamente descritas na forma:

$$\dot{\mathbf{q}} = \mathbf{G}(t, \mathbf{q}, \mathbf{v}; \theta) \\ \mathbf{M}(t, \mathbf{q}; \theta) \dot{\mathbf{v}} = \mathbf{F}(t, \mathbf{q}, \mathbf{v}, \mathbf{u}, \mathbf{w}; \theta)$$

onde identificamos:

- *t*: variável de tempo;
- $\mathbf{q} \in \mathbb{R}^{\mu}$: vetor de *coordenadas generalizadas;*
- υ ∈ ℝ^ν: vetor de *quasi-velocidades* (caso υ = q̇, dizemos que υ é um vetor de velocidades generalizadas);
- $\mathbf{u} \in \mathbb{R}^r$: vetor de *entradas de controle*;
- **w** ∈ ℝ^{*l*}: vetor de *entradas de distúrbio*;
- $\theta \in \mathbb{R}^{p}$: vetor de *parâmetros* do modelo;
- $\mathbf{G} \in \mathbb{R}^{\mu}$: relação cinemática (*transformação de variáveis*) entre $\dot{\mathbf{q}} \in \mathbf{v}$;
- $M \in \mathbb{R}^{\nu \times \nu}$: matriz de *inércia generalizada*;
- $\mathbf{F} \in \mathbb{R}^{\nu}$: vetor de forças generalizadas.

1.1. Modelo de roda de bicicleta: disco de bordo esbelto. Equações de movimento:

$$\begin{vmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \\ \dot{\psi} \\ \dot{\phi} \end{vmatrix} = \left[\begin{matrix} -r(\omega_2 - \omega_3 \tan \phi) \cos \psi \\ -r(\omega_2 - \omega_3 \tan \phi) \sin \psi \\ \omega_3 \sec \phi \\ \omega_1 \\ \omega_2 - \omega_3 \tan \phi \end{matrix} \right]$$

$$mr^{2} \begin{bmatrix} i+1 & 0 & 0\\ 0 & j+1 & 0\\ 0 & 0 & i \end{bmatrix} \begin{bmatrix} \dot{\omega}_{1}\\ \dot{\omega}_{2}\\ \dot{\omega}_{3} \end{bmatrix} = mr^{2} \begin{bmatrix} \frac{g}{r}\sin\phi + (j+1)\omega_{2}\omega_{3} - i\omega_{3}^{2}\tan\phi \\ -\omega_{1}\omega_{3}\\ i\omega_{1}\omega_{3}\tan\phi - j\omega_{1}\omega_{2} \end{bmatrix}$$

$$M(;\theta) \qquad \dot{v} \qquad F(\mathbf{q},\mathbf{v};\theta)$$

com
$$\mathbf{q} = (x, y, \psi, \phi, \theta) \in \mathbb{R}^5$$
, $\mathbf{v} = (\omega_1, \omega_2, \omega_3) \in \mathbb{R}^3$ e $\mathbf{\theta} = (r, g, i, j, m) \in \mathbb{R}^5$.

Fonte: Orsino (2020)

1.2. Modelo de Whipple linearizado para movimento em linha reta. Modelo linearizado em torno de uma solução em regime permanente na qual a bicicleta descreve uma translação em linha reta com velocidade *v* constante (Meijaard *et al.,* 2007):

$$\boldsymbol{M}\ddot{\boldsymbol{\mathsf{q}}} = -v\boldsymbol{C}_{1}\dot{\boldsymbol{\mathsf{q}}} - (g\boldsymbol{K}_{0} + v^{2}\boldsymbol{K}_{2})\boldsymbol{\mathsf{q}} + \boldsymbol{\tau}$$

com $\mathbf{q} = (\phi, \delta) \in \mathbb{R}^2$, $\mathbf{v} = \dot{\mathbf{q}} \in \mathbb{R}^2$, $\mathbf{u} = \tau_{\delta} \in \mathbb{R}$, $\mathbf{w} = \tau_{\phi} \in \mathbb{R}$, $\theta = v \in \mathbb{R}$, $\tau = (\tau_{\phi}, \tau_{\delta})$ e:

$$M = \begin{bmatrix} 80.82 & 2.319 \\ 2.319 & 0.2978 \end{bmatrix}$$
$$K_0 = \begin{bmatrix} -80.95 & -2.600 \\ -2.600 & -0.8033 \end{bmatrix}$$
$$K_2 = \begin{bmatrix} 0 & 76.60 \\ 0 & 2.654 \end{bmatrix}$$
$$C_1 = \begin{bmatrix} 0 & 33.87 \\ -0.8504 & 1.685 \end{bmatrix}$$

Fonte: adaptado de Meijaard et al. (2007)

2. Estado de um sistema dinâmico

Menor conjunto de variáveis cujo conhecimento em um dado instante de tempo t_0 , juntamente ao conhecimento da *entrada* $\mathbf{u}(t)$ para $t \ge t_0$, *determina completamente a resposta* do sistema para $t \ge t_0$.

Certas coordenadas generalizadas podem não estar presentes nas equações dinâmicas. Assim, particiona-se o vetor **q** na forma:

 $\mathbf{q} = \begin{bmatrix} \mathbf{q}^{\star} \\ \mathbf{q}^{\circ} \end{bmatrix} \xrightarrow{\rightarrow}$ coordenadas generalizadas *presentes* nas equações dinâmicas \rightarrow coordenadas generalizadas *ausentes* nas equações dinâmicas

A definição canônica para o *vetor de estados* $\mathbf{x} \in \mathbb{R}^n$, obtida diretamente a partir das equações de movimento do modelo é dada por:

$$\mathbf{x} = \begin{bmatrix} \mathbf{q}^{\star} \\ \mathbf{v} \end{bmatrix}$$

Dada *qualquer transformação invertível* ψ , $\mathbf{z} = \psi(\mathbf{x})$ também é uma definição válida para o vetor de estados.

Dizemos que um modelo está na *forma de espaço de estados* quando suas equações encontram-se expressas como:

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{f}(t, \mathbf{x}, \mathbf{u}, \mathbf{w}; \theta) \\ \mathbf{y} = \mathbf{h}(t, \mathbf{x}, \mathbf{u}; \theta) + \mathbf{v} \end{cases}$$

onde identificamos:

• *t*: variável de tempo;

- $\mathbf{x} \in \mathbb{R}^{n}$: vetor de *estados*;
- $\mathbf{u} \in \mathbb{R}^r$: vetor de *entradas de controle*;
- **w** ∈ ℝ^{*l*}: vetor de *entradas de distúrbio*;
- $\mathbf{y} \in \mathbb{R}^m$: vetor de saídas/observações/medições;
- $\mathbf{v} \in \mathbb{R}^m$: vetor de *ruídos de medição*;
- $\theta \in \mathbb{R}^p$: vetor de *parâmetros*.

A definição do vetor de observações **y** decorre do fato de que *nem sempre é possível* (e *nem sempre é necessário*) medir todas as variáveis que definem o estado de um sistema dinâmico.

O modelo será *linear* se for possível definir um vetor de estados $x \in \mathbb{R}^n$ em que a forma de espaço de estados seja expressa como:

$$\begin{cases} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}(t;\boldsymbol{\theta})\mathbf{x} + \mathbf{B}(t;\boldsymbol{\theta})\mathbf{u} + \mathbf{E}(t;\boldsymbol{\theta})\mathbf{w} \\ \mathbf{y} = \mathbf{C}(t;\boldsymbol{\theta})\mathbf{x} + \mathbf{D}(t;\boldsymbol{\theta})\mathbf{u} + \mathbf{v} \end{cases}$$

onde identificamos:

- $A \in \mathbb{R}^{n \times n}$: matriz de *estados*;
- $B \in \mathbb{R}^{n \times r}$: matriz de *entradas de controle*;
- $E \in \mathbb{R}^{n \times l}$: matriz de *entradas de distúrbio*;
- $C \in \mathbb{R}^{m \times n}$: matriz de *observações*;
- $D \in \mathbb{R}^{m \times r}$.

Caso nenhuma das matrizes dependa explicitamente do tempo, dizemos que se trata de um *sistema linear invariante no tempo (SLIT)*.

2.1. Modelo de Whipple linearizado para movimento em linha reta. Para o modelo de Whipple, adotando $\mathbf{x} = (\phi, \delta, \dot{\phi}, \dot{\delta}) \in \mathbb{R}^4$, $\mathbf{u} = \tau_{\delta} \in \mathbb{R}$, $\mathbf{w} = \tau_{\phi} \in \mathbb{R}$ e $\mathbf{y} = \phi \in \mathbb{R}$, temos:

$$\begin{cases} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{E}\mathbf{w}\\ \mathbf{y} = \mathbf{C}\mathbf{x} \end{cases}$$

com:

$$\boldsymbol{A} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 9.489 & -0.8912v^2 - 0.5715 & -0.1055v & -0.3305v \\ 11.72 & 30.91 - 1.972v^2 & 3.677v & -3.085v \end{bmatrix}$$
$$\boldsymbol{B} = \begin{bmatrix} 0 \\ 0 \\ -0.1241 \\ 4.324 \end{bmatrix} \quad \boldsymbol{E} = \begin{bmatrix} 0 \\ 0 \\ 0.0159 \\ -0.1241 \end{bmatrix} \quad \boldsymbol{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{D} = 0$$

3. Estados de equilíbrio de um modelo não-linear

Considere um modelo matemático *não-linear e invariante no tempo* expresso na *forma de espaço de estados*:

$$\begin{cases} \frac{d\mathbf{x}_{n}}{dt} = \mathbf{f}(\mathbf{x}_{n}, \mathbf{u}_{n}, \mathbf{w}_{n}; \theta) \\ \mathbf{y}_{n} = \mathbf{h}(\mathbf{x}_{n}, \mathbf{u}_{n}; \theta) + \mathbf{v} \end{cases}$$

Um estado de *equilíbrio dinâmico* (também conhecido como *solução em regime permanente*) associado às entrada $\mathbf{u}_n = \bar{\mathbf{u}} \in \mathbf{w}_n = \bar{\mathbf{w}}$ constantes, é um estado $\mathbf{x}_n = \bar{\mathbf{x}}(\bar{\mathbf{u}}, \bar{\mathbf{w}}; \theta)$ também constante tal que:

$$\mathbf{f}(\bar{\mathbf{x}}, \bar{\mathbf{u}}, \bar{\mathbf{w}}; \theta) = \mathbf{0}$$

O *modelo linearizado* será descrito em termos de *variáveis incrementais* (denotadas sem índice: **x**, **u**, **w**, **y**), definidas como:

$$\mathbf{x} = \mathbf{x}_n - \bar{\mathbf{x}}, \qquad \mathbf{u} = \mathbf{u}_n - \bar{\mathbf{u}}, \qquad \mathbf{w} = \mathbf{w}_n - \bar{\mathbf{w}}, \qquad \mathbf{y} = \mathbf{y}_n - \bar{\mathbf{y}}$$

As equações de movimento linearizadas do sistema descrevem a dinâmica de soluções que ocorrem no entorno de $\mathbf{x}_n = \bar{\mathbf{x}}, \mathbf{u}_n = \bar{\mathbf{u}}, \mathbf{w}_n = \bar{\mathbf{w}}$:

$$\begin{cases} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x} + B\mathbf{u} + E\mathbf{w} \\ \mathbf{y} = C\mathbf{x} + D\mathbf{u} + \mathbf{v} \end{cases}$$

em que *A*, *B*, *E*, *C* e *D* são matrizes jacobianas definidas como:

$$A = \frac{\partial f}{\partial x_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} B = \frac{\partial f}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} E = \frac{\partial f}{\partial w_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} C = \frac{\partial h}{\partial x_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{u} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} D = \frac{\partial h}{\partial u_{n}} \bigg|_{\substack{x_{n} = \bar{x} \\ u_{n} = \bar{w} \\ w_{n} = \bar{w}}} \bigg|_{\substack{x_{n} = \bar{x} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \bigg|_{\substack{x_{n} = \bar{x} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \bigg|_{\substack{x_{n} = \bar{x} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \bigg|_{\substack{x_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} } \bigg|_{\substack{x_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \bigg|_{\substack{x_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \bigg|_{\substack{x_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} \\ w_{n} = \bar{w} }$$

4. Sistemas dinâmicos lineares

$$\begin{cases} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x} + B\mathbf{u} + E\mathbf{w} \\ \mathbf{y} = C\mathbf{x} + D\mathbf{u} + \mathbf{v} \end{cases} \implies \begin{cases} s\mathbf{X}(s) - \mathbf{x}(0) = A\mathbf{X}(s) + B\mathbf{U}(s) + E\mathbf{W}(s) \\ \mathbf{Y}(s) = C\mathbf{X}(s) + D\mathbf{U}(s) + \mathbf{U}(s) \end{cases}$$
$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1} [B\mathbf{U}(s) + E\mathbf{W}(s) + \mathbf{x}(0)] \\ \hline \mathbf{Y}(s) = [C(s\mathbf{I} - \mathbf{A})^{-1}B + D]\mathbf{U}(s) + C(s\mathbf{I} - \mathbf{A})^{-1} [E\mathbf{W}(s) + \mathbf{x}(0)] + \mathbf{V}(s) \end{cases}$$

Utilizando a *transformada inversa de Laplace* e definindo a *matriz de transição de estados* $\Phi(t) = \mathcal{L}^{-1}[(sI - A)^{-1}](t) = e^{At}$:

$$\mathbf{x}(t) = \boldsymbol{\Phi}(t)\mathbf{x}(0) + \underbrace{\int_{0}^{t} \boldsymbol{\Phi}(t-\tau) \left[\boldsymbol{B}\mathbf{u}(\tau) + \boldsymbol{E}\mathbf{w}(\tau) \right] d\tau}_{\mathbf{u}(\tau) = \mathbf{u}(\tau) \mathbf{u}(\tau) + \mathbf{u}(\tau) \mathbf{u}(\tau)$$

integral	de	convol	lução
----------	----	--------	-------

4.1. Resposta dinâmica de modelos lineares gerais. Para qualquer modelo matemático linear:

$$\begin{cases} \frac{d\mathbf{x}(t)}{dt} = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) + \mathbf{E}(t)\mathbf{w}(t) \\ \mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t) + \mathbf{v}(t) \end{cases}$$

existe uma *matriz de transição de estados* $\boldsymbol{\Phi}(t, \tau)$ tal que:

$$\mathbf{x}(t) = \boldsymbol{\Phi}(t, t_0) \mathbf{x}(t_0) + \int_{t_0}^t \boldsymbol{\Phi}(t, \tau) \left[\boldsymbol{B}(\tau) \mathbf{u}(\tau) + \boldsymbol{E}(\tau) \mathbf{w}(\tau) \right] \, \mathrm{d}\tau$$

Em particular, se A for invariante no tempo, então:

$$\boldsymbol{\Phi}(t,\tau) = \boldsymbol{\Phi}(t-\tau) = \mathrm{e}^{\boldsymbol{A}(t-\tau)}$$

A origem x = 0 será um ponto de equilíbrio:

- *instável* se $\operatorname{Re}(\lambda) > 0$ *para algum autovalor* λ de A;
- *estável* se $\operatorname{Re}(\lambda) < 0$ *para todo autovalor* λ de A.

4.2. Mudança de variáveis. Considere uma mudança de variáveis de estados definida por uma transformação linear baseada na matriz invertível *T* constante:

$$\mathbf{z} = T\mathbf{x} \quad \Leftrightarrow \quad \mathbf{x} = T^{-1}\mathbf{z}$$

Sustituindo a transformação nas equações do modelo:

$$\begin{cases} T^{-1}\frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} = AT^{-1}\mathbf{z} + B\mathbf{u} + E\mathbf{w} \\ \mathbf{y} = CT^{-1}\mathbf{z} + D\mathbf{u} + \mathbf{v} \end{cases} \Leftrightarrow \begin{cases} \frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} = \overline{A}\mathbf{z} + \overline{B}\mathbf{u} + \overline{E}\mathbf{w} \\ \mathbf{y} = \overline{C}\mathbf{z} + D\mathbf{u} + \mathbf{v} \end{cases}$$

com:

 $\overline{A} = TAT^{-1}, \qquad \overline{B} = TB, \qquad \overline{E} = TE \qquad e \qquad \overline{C} = CT^{-1}$

Note ainda que, para um SLIT:

$$\overline{\boldsymbol{\Phi}}(t) = \mathcal{L}^{-1}\left[(s\boldsymbol{I} - \overline{\boldsymbol{A}})^{-1}\right](t) = \boldsymbol{T}\mathcal{L}^{-1}\left[(s\boldsymbol{I} - \boldsymbol{A})^{-1}\right](t)\boldsymbol{T}^{-1} = \boldsymbol{T}\boldsymbol{\Phi}(t)\boldsymbol{T}^{-1}$$

Cabe notar ainda que *as funções de transferência do sistema são invariantes a uma mudança de variáveis de estado*.

Controlabilidade e Observabilidade

Seja um modelo linear expresso na forma de espaço de estados:

$$\begin{cases} \frac{d\mathbf{x}(t)}{dt} = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) \end{cases}$$

Por ora, será desprezado o efeito de perturbações e ruído de medição e não haverá um canal direto da entrada $\mathbf{u}(t)$ para as medidas $\mathbf{y}(t)$.

Existe uma *matriz de transição de estados* $\boldsymbol{\Phi}(t, \tau)$ tal que:

$$\mathbf{x}(t) = \boldsymbol{\Phi}(t, t_0) \mathbf{x}(t_0) + \int_{t_0}^t \boldsymbol{\Phi}(t, \tau) \boldsymbol{B}(\tau) \mathbf{u}(\tau) \, \mathrm{d}\tau$$

Em particular, se A for invariante no tempo, então:

$$\boldsymbol{\Phi}(t,\tau) = \boldsymbol{\Phi}(t-\tau) = e^{\boldsymbol{A}(t-\tau)}$$
$$e^{\boldsymbol{A}t} = \boldsymbol{I} + \boldsymbol{A}t + \frac{1}{2}\boldsymbol{A}^2t^2 + \ldots + \frac{1}{k!}\boldsymbol{A}^kt^k + \ldots$$

1. Controlabilidade

Um sistema dinâmico é **controlável** se, e somente se, partindo de *qualquer condição inicial* $\mathbf{x}_0 = \mathbf{x}(t_0)$ for possível *atingir qualquer outro estado* $\mathbf{x}_1 = \mathbf{x}(t_1)$ em um *intervalo de tempo finito* $[t_0, t_1]$, por meio da especificação, neste intervalo, do *vetor de entradas de controle* $\mathbf{u}(t)$.

Sabendo que:

$$\int_{t_0}^{t_1} \boldsymbol{\varPhi}(t_1, t) \boldsymbol{B}(t) \mathbf{u}(t) \, \mathrm{d}t = \mathbf{x}(t_1) - \boldsymbol{\varPhi}(t_1, t_0) \mathbf{x}(t_0)$$

pode-se buscar para $\mathbf{u}(t)$ uma solução da forma:

$$\mathbf{u}(t) = \mathbf{B}^{\top}(t)\mathbf{\Phi}^{\top}(t_1, t)\mathbf{P}^{-1}(t_1, t_0) \left[\mathbf{x}(t_1) - \mathbf{\Phi}(t_1, t_0)\mathbf{x}(t_0)\right], \quad t_0 \le t \le t_1$$

Substituindo na equação anterior:

$$\left\{\int_{t_0}^{t_1} \boldsymbol{\Phi}(t_1, t) \boldsymbol{B}(t) \boldsymbol{B}^{\mathsf{T}}(t) \boldsymbol{\Phi}^{\mathsf{T}}(t_1, t) \, \mathrm{d}t\right\} \boldsymbol{P}^{-1}(t_1, t_0) \left[\mathbf{x}(t_1) - \boldsymbol{\Phi}(t_1, t_0) \mathbf{x}(t_0)\right] \\ = \mathbf{x}(t_1) - \boldsymbol{\Phi}(t_1, t_0) \mathbf{x}(t_0)$$

Teorema: um sistema linear será *controlável* se, e somente se, para algum instante de tempo $t_1 > t_0$ o *gramiano de controlabilidade*:

$$\boldsymbol{P}(t_1, t_0) = \int_{t_0}^{t_1} \boldsymbol{\Phi}(t_1, t) \boldsymbol{B}(t) \boldsymbol{B}^{\mathsf{T}}(t) \boldsymbol{\Phi}^{\mathsf{T}}(t_1, t) \, \mathrm{d}t$$

for uma matriz invertível (não-singular).

Supondo que $P(t_1, t_0)$ seja singular, existe um vetor $\xi \neq 0$ tal que:

$$\boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{P}(t_1, t_0) \boldsymbol{\xi} = 0 \quad \Leftrightarrow \quad \int_{t_0}^{t_1} \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{\Phi}(t_1, t) \boldsymbol{B}(t) \boldsymbol{B}^{\mathsf{T}}(t) \boldsymbol{\Phi}^{\mathsf{T}}(t_1, t) \boldsymbol{\xi} \, \mathrm{d}t = 0$$
$$\Leftrightarrow \quad \int_{t_0}^{t_1} \left[\boldsymbol{B}^{\mathsf{T}}(t) \boldsymbol{\Phi}^{\mathsf{T}}(t_1, t) \boldsymbol{\xi} \right]^{\mathsf{T}} \left[\boldsymbol{B}^{\mathsf{T}}(t) \boldsymbol{\Phi}^{\mathsf{T}}(t_1, t) \boldsymbol{\xi} \right] \, \mathrm{d}t = 0$$
$$\Leftrightarrow \quad \mathbf{z}(t) = \boldsymbol{B}^{\mathsf{T}}(t) \boldsymbol{\Phi}^{\mathsf{T}}(t_1, t) \boldsymbol{\xi} \equiv 0, \quad \forall t \in [t_0, t_1]$$

uma vez que $\mathbf{z}^{\mathsf{T}}\mathbf{z} = \|\mathbf{z}\|^2 \operatorname{e} \int_{t_0}^{t_1} \|\mathbf{z}\|^2 \, \mathrm{d}t = 0 \iff \mathbf{z}(t) \equiv 0, \ \forall t \in [t_0, t_1].$

Assim, supondo que se deseje sair de $\mathbf{x}(t_0) = \mathbf{0}$ e chegar a um estado $\mathbf{x}(t_1) = c\xi$ para algum $c \neq 0$:

$$\int_{t_0}^{t_1} \boldsymbol{\Phi}(t_1, t) \boldsymbol{B}(t) \mathbf{u}(t) \, \mathrm{d}t = c \boldsymbol{\xi}$$

Pré-multiplicando a equação por ξ^{T} :

$$\int_{t_0}^{t_1} \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{\Phi}(t_1, t) \boldsymbol{B}(t) \mathbf{u}(t) \, \mathrm{d}t = c \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{\xi}$$
$$\int_{t_0}^{t_1} \mathbf{z}^{\mathsf{T}}(t) \mathbf{u}(t) \, \mathrm{d}t = c \|\boldsymbol{\xi}\|^2 \quad \Rightarrow \quad 0 = c \|\boldsymbol{\xi}\|^2 \quad \Rightarrow \quad c = 0$$

Neste caso (se $P(t_1, t_0)$ for singular), partindo da origem é *impossível atingir*, em um intervalo de tempo finito, usando as entradas de controle disponíveis, *qualquer* estado da forma $c\xi$, $c \neq 0$; ou seja, o sistema é *não-controlável*.

2. Teste algébrico de controlabilidade para um SLIT

Um sistema linear invariante no tempo com $A \in \mathbb{R}^{n \times n}$ e $B \in \mathbb{R}^{n \times r}$ é controlável se, e somente se, a matriz de controlabilidade $Q \in \mathbb{R}^{n \times nr}$:

$$\boldsymbol{Q} = \begin{bmatrix} \boldsymbol{B} \mid \boldsymbol{A}\boldsymbol{B} \mid \dots \mid \boldsymbol{A}^{n-1}\boldsymbol{B} \end{bmatrix}$$

tiver *posto n* (*completo*). Em outras palavras, as colunas de Q devem ser um conjunto gerador do \mathbb{R}^n e, portanto, $\xi^{\top}Q = 0 \iff \xi = 0$.

O *posto* de uma matriz é a *dimensão do espaço vetorial gerado* por suas *colunas*. O posto de uma matriz é o mesmo posto de sua transposta.

Em particular para um sistema SISO/SIMO, a entrada *u* é um escalar e, portanto, $B = \mathbf{b} \in \mathbb{R}^{n \times 1} = \mathbb{R}^n$ e $Q \in \mathbb{R}^{n \times n}$:

 $\boldsymbol{Q} = \begin{bmatrix} \boldsymbol{b} \mid \boldsymbol{A}\boldsymbol{b} \mid \dots \mid \boldsymbol{A}^{n-1}\boldsymbol{b} \end{bmatrix}$

Assim, um sistema SISO/SIMO será controlável se, e somente se, Q for uma matriz invertível (nãosingular).

Voltando ao *teorema da controlabilidade*, se $P(t_1, t_0)$ é não-singular, então $\xi^T P(t_1, t_0) \xi = 0 \iff \xi = 0$. Vimos que:

$$\boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{P}(t_1, t_0) \boldsymbol{\xi} = \int_{t_0}^{t_1} \mathbf{z}^{\mathsf{T}}(t) \mathbf{z}(t) \, \mathrm{d}t \quad \mathrm{com} \quad \mathbf{z}^{\mathsf{T}}(t) = \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{\Phi}(t_1, t) \boldsymbol{B}$$

Em outras palavras, para que o sistema seja controlável basta provar que $\mathbf{z}(t) \equiv \mathbf{0} \iff \boldsymbol{\xi} = \mathbf{0}$.

Notando que, para um SLIT, $\boldsymbol{\Phi}(t_1, t) = \boldsymbol{\Phi}(t_1 - t) = e^{\boldsymbol{A}(t_1 - t)}$:

$$\mathbf{z}^{\mathsf{T}}(t) = \boldsymbol{\xi}^{\mathsf{T}} \mathbf{e}^{\boldsymbol{A}(t_1 - t)} \boldsymbol{B}$$

= $\boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{B} + \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{B}(t_1 - t) + \ldots + \frac{1}{k!} \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{A}^{k-1} \boldsymbol{B}(t_1 - t)^{k-1} + \ldots$

Toda matriz quadrada A satisfaz ao próprio polinômio característico (teorema de Cayley-Hamilton):

$$p(s) = \det(sI - A) = s^{n} + a_{1}s^{n-1} + \dots + a_{n}s^{0} = 0$$

 $p(A) = A^{n} + a_{1}A^{n-1} + \dots + a_{n}I = 0$

Decorre assim que A^k , $k \ge n$, é gerada por $\{I, A, \dots, A^{n-1}\}$.

Assim, cada uma das colunas de uma matriz da forma $A^k B$, $k \ge 0$, pode ser construída como combinação linear das colunas de Q.

Portanto, se *Q* tem *posto completo*, o sistema é *controlável*, uma vez que:

 $\mathbf{z}(t) \equiv \mathbf{0} \quad \Leftrightarrow \quad \boldsymbol{\xi}^\top \boldsymbol{Q} = \mathbf{0} \quad \Leftrightarrow \quad \boldsymbol{\xi} = \mathbf{0}$

3. Observabilidade

Um sistema dinâmico *não-forçado* é **observável** se, e somente se, for possível determinar *qualquer condição inicial* $\mathbf{x}_0 = \mathbf{x}(t_0)$ a partir do registro em um *intervalo de tempo finito* $[t_0, t_1]$ do *vetor de saídas* $\mathbf{y}(t)$.

Notando que:

$$\mathbf{y}(t) = \mathbf{C}(t)\boldsymbol{\Phi}(t, t_0)\mathbf{x}(t_0), \quad t_0 \le t \le t_1$$

propõe-se o cálculo da integral:

$$\int_{t_0}^{t_1} \boldsymbol{\Phi}^{\mathsf{T}}(t,t_0) \boldsymbol{C}^{\mathsf{T}}(t) \mathbf{y}(t) \, \mathrm{d}t = \left\{ \underbrace{\int_{t_0}^{t_1} \boldsymbol{\Phi}^{\mathsf{T}}(t,t_0) \boldsymbol{C}^{\mathsf{T}}(t) \boldsymbol{C}(t) \boldsymbol{\Phi}(t,t_0) \, \mathrm{d}t}_{\mathbf{y}(t,t_0)} \right\} \mathbf{x}(t_0)$$

$$\boldsymbol{M}(t_1,t_0)$$

e, caso exista $t_1 > t_0$ tal que $M(t_1, t_0)$ seja invertível:

$$\mathbf{x}(t_0) = \boldsymbol{M}^{-1}(t_1, t_0) \int_{t_0}^{t_1} \boldsymbol{\Phi}^{\top}(t, t_0) \boldsymbol{C}^{\top}(t) \mathbf{y}(t) \, \mathrm{d}t$$

Teorema: um sistema linear será *observável* se, e somente se, para algum instante de tempo $t_1 > t_0$ o *gramiano de observabilidade*:

$$M(t_1, t_0) = \int_{t_0}^{t_1} \boldsymbol{\Phi}^{\mathsf{T}}(t, t_0) \boldsymbol{C}^{\mathsf{T}}(t) \boldsymbol{C}(t) \boldsymbol{\Phi}(t, t_0) \, \mathrm{d}t$$

for uma matriz invertível (não-singular).

Se
$$M(t_1, t_0)$$
 é singular, então $\mathbf{\eta}^\top M(t_1, t_0)\mathbf{\eta} = 0$ para algum $\mathbf{\eta} \neq 0$:

$$\int_{t_0}^{t_1} \mathbf{\eta}^\top \mathbf{\Phi}^\top(t, t_0) \mathbf{C}^\top(t) \mathbf{C}(t) \mathbf{\Phi}(t, t_0) \mathbf{\eta} \, \mathrm{d}t = \int_{t_0}^{t_1} \mathbf{y}^\top(t) \mathbf{y}(t) \, \mathrm{d}t = 0$$

$$\Leftrightarrow \quad \mathbf{y}(t) = \mathbf{C}(t) \mathbf{\Phi}(t, t_0) \mathbf{\eta} \equiv 0, \quad \forall t \in [t_0, t_1]$$

Neste caso, estados iniciais da forma $\mathbf{x}(t_0) = c\eta$, $c \neq 0$, produzem saídas $\mathbf{y}(t) \equiv \mathbf{0}$ para todo $t \in [t_0, t_1]$, sendo indistinguíveis de uma condição inicial na origem $\mathbf{x}(t_0) = \mathbf{0}$. O sistema é, portanto, não-observável.

4. Teste algébrico de observabilidade para um SLIT

Um sistema linear invariante no tempo com $A \in \mathbb{R}^{n \times n}$ e $C \in \mathbb{R}^{m \times n}$ é observável se, e somente se, a matriz de observabilidade $N \in \mathbb{R}^{n \times nm}$:

 $\boldsymbol{N} = \left[\boldsymbol{C}^{\top} \mid \boldsymbol{A}^{\top} \boldsymbol{C}^{\top} \mid \dots \mid (\boldsymbol{A}^{\top})^{n-1} \boldsymbol{C}^{\top} \right]$

tiver *posto n (completo)*. Em outras palavras, as colunas de *N* devem ser um conjunto gerador do \mathbb{R}^n e, portanto, $\eta^\top N = 0 \iff \eta = 0$.

Voltando ao *teorema da observabilidade*, se $M(t_1, t_0)$ é não-singular, então $\eta^T M(t_1, t_0)\eta = 0 \iff \eta = 0$. Vimos que:

$$\boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{M}(t_1, t_0) \boldsymbol{\eta} = \int_{t_0}^{t_1} \mathbf{y}^{\mathsf{T}}(t) \mathbf{y}(t) \, \mathrm{d}t \quad \mathrm{com} \quad \mathbf{y}(t) = \boldsymbol{C}(t) \boldsymbol{\varPhi}(t, t_0) \boldsymbol{\eta}$$

Em outras palavras, para que o sistema seja observável basta provar que $\mathbf{y}(t) \equiv \mathbf{0} \Leftrightarrow \mathbf{\eta} = \mathbf{0}$. Notando que, para um SLIT, $\mathbf{\Phi}^{\top}(t, t_0) = \mathbf{\Phi}(t - t_0) = e^{\mathbf{A}(t - t_0)}$:

$$\mathbf{y}^{\mathsf{T}}(t) = \mathbf{\eta}^{\mathsf{T}} \mathbf{e}^{\mathbf{A}^{\mathsf{T}}(t-t_0)} \mathbf{C}^{\mathsf{T}}$$
$$= \mathbf{\eta}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} + \mathbf{\eta}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}}(t-t_0) + \ldots + \frac{1}{k!} \mathbf{\eta}^{\mathsf{T}} (\mathbf{A}^{\mathsf{T}})^{k-1} \mathbf{C}^{\mathsf{T}}(t-t_0)^{k-1} + \ldots$$

Do *teorema de Cayley-Hamilton* decorre que A^k , $k \ge n$, é gerada por $\{I, A, ..., A^{n-1}\}$. Note ainda que $(A^{\top})^k = (A^k)^{\top}$, $k \ge 0$.

Assim, cada uma das colunas de uma matriz da forma $(\mathbf{A}^{\top})^k \mathbf{C}^{\top}$, $k \ge 0$, pode ser construída como combinação linear das colunas de N.

Portanto, se *N* tem *posto completo*, o sistema é *observável*, uma vez que:

$$\mathbf{y}(t) \equiv 0 \quad \Leftrightarrow \quad \mathbf{\eta}^\top \mathbf{N} = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{\eta} = \mathbf{0}$$

Alocação de polos por realimentação de estados

Para um *sistema linear controlável* existirá uma matriz $K \in \mathbb{R}^{r \times n}$ tal que, adotando uma lei de controle baseada em *realimentação de estados* da forma:

$$\mathbf{u} = -\mathbf{K}\mathbf{x}$$

é possível escolher a *localização de todos os n polos* do sistema em malha fechada, que será regido pela equação:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x} = \overline{\mathbf{A}}\mathbf{x}$$

Dados os *n autovalores* desejados para a *matriz de estados* A do *sistema em malha fechada*, haverá $r \times n$ elementos da matriz K a determinar.

Em outras palavras, há uma solução única para o caso SISO/SIMO (r = 1) e múltiplas soluções possíveis para os casos MISO/MIMO (r > 1).

Os polinômios característicos das matrizes de estado em malha aberta A e em malha fechada $\overline{A} = A - BK$ são, respectivamente:

$$p(s) = \det(sI - A) = \prod_{j=1}^{n} (s - p_j) = s^n + a_1 s^{n-1} + \dots + a_n s^0 = 0$$

$$\bar{p}(s) = \det(sI - \overline{A}) = \prod_{j=1}^{n} (s - \bar{p}_j) = s^n + \bar{a}_1 s^{n-1} + \dots + \bar{a}_n s^0 = 0$$

onde p_j , j = 1, ..., n, são os polos em malha aberta e \bar{p}_j , j = 1, ..., n, são os polos que o projetista escolheu para o sistema em malha fechada. Para a estabilidade do sistema em malha fechada é necessário que:

$$\operatorname{Re}(\bar{p}_i) < 0, \quad \forall i = 1, \dots, n$$

Via de regra, no entanto, quanto *mais distantes os polos em malha fechada estiverem dos polos em malha aberta*, maiores serão os módulos dos elementos da matriz de ganhos K e, consequentemente, *maiores serão os módulos dos esforços de controle* $\mathbf{u} = -K\mathbf{x}$.

1. Caso SISO/SIMO: solução de Bass-Gura

Para um sistema SISO/SIMO, $B = \mathbf{b} \in \mathbb{R}^{n \times 1}$, $K = \mathbf{k}^{\top} \in \mathbb{R}^{1 \times n}$ e:

$$\overline{A} = A - \mathbf{b}\mathbf{k}^{\top}$$

Definindo os vetores **a** e **ā**, formados pelos coeficientes dos polinômios caracterísiticos p(s) (MA) e $\bar{p}(s)$ (MF), respectivamente, e a matrix Toeplitz triangular W, baseada nos coeficientes de p(s):

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}, \qquad \bar{\mathbf{a}} = \begin{bmatrix} \bar{a}_1 \\ \bar{a}_2 \\ \vdots \\ \bar{a}_n \end{bmatrix} \quad \mathbf{e} \quad \mathbf{W} = \begin{bmatrix} 1 & a_1 & a_2 & \dots & a_{n-2} & a_{n-1} \\ 0 & 1 & a_1 & \dots & a_{n-3} & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

a matriz **k** que resolve o problema de *alocação de polos* é dada por:

$$\mathbf{k} = \left[(\boldsymbol{Q}\boldsymbol{W})^{-1} \right]^{\top} (\bar{\mathbf{a}} - \mathbf{a})$$

onde $Q = [\mathbf{b} \mid A\mathbf{b} \mid \dots \mid A^{n-1}\mathbf{b}] \in \mathbb{R}^{n \times n}$ é a matriz de controlabilidade.

1.1. Matrizes companheiras de um polinômio característico. Dado o polinômio característico $p(s) = s^n + a_1 s^{n-1} + \ldots + a_n s^0 = 0$, definem-se as matrizes companheiras $A_{\oplus} e A_{\odot}$:

$$\boldsymbol{A}_{\textcircled{0}} = \begin{bmatrix} -a_{1} & -a_{2} & \dots & -a_{n-1} & -a_{n} \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix}$$
$$\boldsymbol{A}_{\textcircled{0}} = \begin{bmatrix} 0 & 0 & \dots & 0 & -a_{n} \\ 1 & 0 & \dots & 0 & -a_{n-1} \\ 0 & 1 & \dots & 0 & -a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{1} \end{bmatrix}$$

As matrizes companheiras do polinômio característico p(s) satisfazem às identidades envolvendo as matrizes $A, Q \in W$:

$$WA_{\bigcirc} = A_{\oslash}W$$
 e $QA_{\oslash} = AQ$

A segunda identidade decorre do *teorema de Cayley-Hamilton* p(A) = 0:

$$QA_{@} = \begin{bmatrix} \mathbf{b} & A\mathbf{b} & \dots & A^{n-1}\mathbf{b} \end{bmatrix} \begin{bmatrix} 0 & 0 & \dots & 0 & -a_n \\ 1 & 0 & \dots & 0 & -a_{n-1} \\ 0 & 1 & \dots & 0 & -a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_1 \end{bmatrix}$$
$$= \begin{bmatrix} A\mathbf{b} & A^2\mathbf{b} & \dots & (-a_n\mathbf{I} - a_{n-1}\mathbf{A} - \dots - a_1\mathbf{A}^{n-1})\mathbf{b} \end{bmatrix}$$
$$= \begin{bmatrix} A\mathbf{b} & A^2\mathbf{b} & \dots & A^n\mathbf{b} \end{bmatrix} = AQ$$

Assim, $A_{\odot} = W^{-1}A_{\odot}W$ e $A_{\odot} = Q^{-1}AQ$, de onde se identifica a matriz de transformação $T = (QW)^{-1}$ tal que:

$$A_{\odot} = W^{-1}A_{\odot}W = W^{-1}Q^{-1}AQW = TAT^{-1}$$

1.2. Forma canônica controlável de sistemas SISO/SIMO. Definindo $\mathbf{b}_{\odot} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^{\top} \mathbf{e}$ notando que $\mathbf{b}_{\odot} = T\mathbf{b} = (\mathbf{Q}\mathbf{W})^{-1}\mathbf{b}$:

$$\boldsymbol{T}^{-1}\mathbf{b}_{\odot} = \begin{bmatrix} \mathbf{b} & A\mathbf{b} & \dots & A^{n-1}\mathbf{b} \end{bmatrix} \begin{bmatrix} 1 & a_1 & a_2 & \dots & a_{n-2} & a_{n-1} \\ 0 & 1 & a_1 & \dots & a_{n-3} & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{b}$$

pode-se adotar a mudança de variáveis $\mathbf{z} = T\mathbf{x} = (QW)^{-1}\mathbf{x}$ tal que:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{b}u \quad \Leftrightarrow \quad \frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} = \mathbf{A}_{\odot}\mathbf{z} + \mathbf{b}_{\odot}u$$

A expressão das equações dinâmicas de um sistema linear SISO/SIMO em termos das variáveis de estado z que transforma a matriz de estados na primeira forma companheira do polinômio característico de malha aberta p(s) é denominada forma canônica controlável.

1.3. Demonstração da solução de Bass-Gura para sistemas SISO/SIMO. Adote-se a lei de controle $u = -\delta^{\top} \mathbf{z} \operatorname{com} \delta^{\top} = \begin{bmatrix} \delta_1 & \delta_2 & \dots & \delta_n \end{bmatrix}$:

$$\frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} = \mathbf{A}_{\odot}\mathbf{z} + \mathbf{b}_{\odot}u = (\mathbf{A}_{\odot} - \mathbf{b}_{\odot}\boldsymbol{\delta}^{\mathsf{T}})\mathbf{z} = \overline{\mathbf{A}}_{\odot}\mathbf{z} \quad \mathrm{com} \quad \overline{\mathbf{A}}_{\odot} = \mathbf{A}_{\odot} - \mathbf{b}_{\odot}\boldsymbol{\delta}^{\mathsf{T}}$$
$$\overline{\mathbf{A}}_{\odot} = \begin{bmatrix} -(a_1 + \delta_1) & -(a_2 + \delta_2) & \dots & -(a_{n-1} + \delta_{n-1}) & -(a_n + \delta_n) \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix}$$

Notando que a matriz \overline{A}_{\odot} é companheira do *polinômio característico de malha fechada* $\overline{p}(s)$ de tal forma que $a_i + \delta_i = \overline{a}_i$, i = 1, 2, ..., n, então:

$$u = -\delta^{\top} \mathbf{z} = -\delta^{\top} \mathbf{T} \mathbf{x} = -(\mathbf{T}^{\top} \delta)^{\top} \mathbf{x} = -\mathbf{k}^{\top} \mathbf{x}$$

com $\mathbf{k} = \mathbf{T}^{\top} \mathbf{\delta}$, $\mathbf{T} = (\mathbf{Q}\mathbf{W})^{-1} \mathbf{e} \mathbf{\delta} = \mathbf{\bar{a}} - \mathbf{a}$, o que demonstra a solução:

$$\mathbf{k} = \left[(\boldsymbol{Q}\boldsymbol{W})^{-1} \right]^{\top} (\bar{\mathbf{a}} - \mathbf{a})$$

Síntese de reguladores lineares quadráticos (LQR)

1. Estabilidade segundo Lyapunov

Seja um modelo autônomo, linear ou não-linear, expresso pela EDO:

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}(t)), \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

Admitindo que $\bar{\mathbf{x}}$ seja um ponto de equilíbrio do sistema, ou seja, $\mathbf{f}(\bar{\mathbf{x}}) = \mathbf{0}$ então:

- $\bar{\mathbf{x}}$ é um *ponto de equilíbrio estável* segundo Lyapunov se, para todo $\varepsilon > 0$ existir um $\delta > 0$ tal que, se $\|\mathbf{x}_0 \bar{\mathbf{x}}\| < \delta$, então, para todo $t > t_0$, $\|\mathbf{x}(t) \bar{\mathbf{x}}\| < \varepsilon$.
- $\bar{\mathbf{x}}$ é um *ponto de equilíbrio assintoticamente estável* se for estável segundo Lyapunov e existir um $\delta > 0$ tal que, se $\|\mathbf{x}_0 \bar{\mathbf{x}}\| < \delta$, então $\lim_{t \to \infty} \|\mathbf{x}(t) \bar{\mathbf{x}}\| = 0$.
- $\bar{\mathbf{x}}$ é um *ponto de equilíbrio exponencialmente estável* se for assintoticamente estável e existirem constantes positivas α , β e δ tais que, se $\|\mathbf{x}_0 \bar{\mathbf{x}}\| < \delta$, para todo $t > t_0$, $\|\mathbf{x}(t) \bar{\mathbf{x}}\| < \alpha \|\mathbf{x}_0 \bar{\mathbf{x}}\| e^{-\beta t}$.

Para um sistema dinâmico autônomo:

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}(t)), \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

que tenha um *ponto de equilíbrio em* $\mathbf{x} = \mathbf{0}$, admita que existe uma função $V : \mathbb{R}^n \to \mathbb{R}$ (ou seja, a valores reais) tal que:

•
$$V(0) = 0$$

•
$$V(\mathbf{x}) > 0$$
 para todo $\mathbf{x} \neq \mathbf{0}$

•
$$\frac{\mathrm{d}V(\mathbf{x}(t))}{\mathrm{d}t} = \nabla V(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \le 0$$
 para todo $\mathbf{x} \ne \mathbf{0}$;

então $\mathbf{x} = \mathbf{0}$ é um ponto de equilíbrio estável segundo Lyapunov.

Ainda, se for possível garantir que $\nabla V(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) < 0$ para todo $\mathbf{x} \neq \mathbf{0}$, então $\mathbf{x} = \mathbf{0}$ é um *ponto de equilíbrio assintoticamente estável*.

1.1. Estabilidade de um SLIT. Considere um *sistema linear invariante no tempo* (SLIT) da forma:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x}$$

Para provar que a origem $\mathbf{x} = \mathbf{0}$ é *um ponto de equilíbrio assintoticamente estável*, basta encontrar um par de matrizes \mathbf{P} e \mathbf{Q} definidas positivas (ou seja, $\mathbf{x}^{\top}\mathbf{P}\mathbf{x} > 0$ e $\mathbf{x}^{\top}\mathbf{Q}\mathbf{x} > 0$, $\forall \mathbf{x} \neq \mathbf{0}$) que satisfaçam à *equação de Lyapunov*:

 $A^{\top}P + PA = -Q$

Neste caso, basta adotar:

$$V(\mathbf{x}) = \mathbf{x}^\top \mathbf{P} \mathbf{x}$$

Por definição, $V(\mathbf{0}) = 0$ e $V(\mathbf{x}) > 0$ para todo $\mathbf{x} \neq \mathbf{0}$. Ainda:

$$\frac{\mathrm{d}V(\mathbf{x})}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\mathbf{x}^{\mathsf{T}} \boldsymbol{P} \mathbf{x} \right] = \mathbf{x}^{\mathsf{T}} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{P} \mathbf{x} + \mathbf{x}^{\mathsf{T}} \boldsymbol{P} \boldsymbol{A} \mathbf{x} = -\mathbf{x}^{\mathsf{T}} \boldsymbol{Q} \mathbf{x} < 0$$

2. Regulador linear quadrático (LQR)

Considere sistema linear munido de uma lei de controle por realimentação de estados da forma:

 $\mathbf{u} = -\mathbf{K}\mathbf{x}$

Se o sistema for *controlável*, é possível escolher uma matrix *K* que seja capaz de *alocar os polos em malha fechada* em qualquer posição definida pelo projetista.

Via de regra, quanto *mais distantes os polos em malha fechada estiverem dos polos em malha aberta*, maiores serão os módulos dos elementos da matriz de ganhos *K* e, consequentemente, *maiores serão os módulos dos esforços de controle*. Uma má alocação dos polos em MF pode levar a:

- um consumo excessivo de energia;
- um superdimensionamento dos atuadores necessários para controlar o sistema;
- ocorrência frequente de *saturação* dos atuadores durante a operação regular do sistema.

Ainda, na presença de *mais de uma entrada de controle*, há *múltiplas soluções* para os elementos de *K* que levam a uma *mesma alocação de polos*. Qual das soluções escolher visando evitar os problemas citados?

E se, em vez de obter K por meio da alocação dos polos para o sistema em malha fechada, *o regulador linear por realimentação de estados* $\mathbf{u} = -Kx$ pudesse ser obtido por meio da solução de um problema de otimização que garantisse:

- que a origem x = 0 seja um *ponto de equilíbrio assintoticamente estável* para o sistema em *malha fechada;*
- que esforços elevados de controle sejam penalizados;
- que um *desempenho ruim* (i.e., distância média para a origem elevada e/ou tempo elevado para que o estado do sistema em malha fechada convirja para a origem) seja *penalizado*.

2.1. Índice de desempenho quadrático. O regulador linear quadrático (LQR) é um o regulador linear por realimentação de estados $\mathbf{u} = -\mathbf{K}\mathbf{x}$ obtido por meio do problema de minimização do índice de desempenho quadrático J:

$$J = \int_0^\infty \left[\mathbf{x}^\top Q \mathbf{x} + \mathbf{u}^\top R \mathbf{u} \right] \mathrm{d}t = \int_0^\infty \mathbf{x}^\top \left(Q + \mathbf{K}^\top R \mathbf{K} \right) \mathbf{x} \, \mathrm{d}t$$

com Q sendo uma *matriz simétrica e semi-definida positiva* e R sendo uma *matriz simétrica e definida positiva*, ou seja:

$$\mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \ge 0, \forall \mathbf{x} \neq \mathbf{0}$$
 e $\mathbf{u}^{\top} \mathbf{R} \mathbf{u} > 0, \forall \mathbf{u} \neq \mathbf{0}$

Se a ocorrência simultânea de Kx = 0 e $Qx = 0 \implies x = 0$, a matriz $(Q + K^T RK)$ será *simétrica e definida positiva*, uma vez que:

$$\mathbf{x}^{\top} \left(\boldsymbol{Q} + \boldsymbol{K}^{\top} \boldsymbol{R} \boldsymbol{K} \right) \mathbf{x} = \mathbf{x}^{\top} \boldsymbol{Q} \mathbf{x} + (-\boldsymbol{K} \mathbf{x})^{\top} \boldsymbol{R} (-\boldsymbol{K} \mathbf{x}) > 0$$

Note que:

- $||Q|| \gg ||R||$ prioriza *penalizar um desempenho ruim* do controlador;
- $||\mathbf{R}|| \gg ||\mathbf{Q}||$ prioriza *penalizar esforços elevados* de controle.

2.2. Síntese de um regulador linear quadrático (LQR). Sendo a matriz ($Q + K^{T}RK$) simétrica e definida positiva, para garantir que, em malha fechada a origem x = 0 seja um ponto de equilíbrio assintoticamente estável, basta encontrar uma matriz P definida positiva que satisfaça à equação de Lyapunov:

$$\overline{A}^{\top}P + P\overline{A} = -(Q + K^{\top}RK) \quad \text{com} \quad \overline{A} = A - BK$$

Neste caso, para provar a *estabilidade assintótica, em malha fechada, da origem* pelo *método direto de Lyapunov*, basta tomar:

$$V(\mathbf{x}) = \mathbf{x}^\top \mathbf{P} \mathbf{x}$$

Por definição, $V(\mathbf{0}) = 0$ e $V(\mathbf{x}) > 0$ para todo $\mathbf{x} \neq \mathbf{0}$. Ainda:

$$\frac{\mathrm{d}V(\mathbf{x})}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\mathbf{x}^{\mathsf{T}} \boldsymbol{P} \mathbf{x} \right] = \mathbf{x}^{\mathsf{T}} \overline{\boldsymbol{A}}^{\mathsf{T}} \boldsymbol{P} \mathbf{x} + \mathbf{x}^{\mathsf{T}} \boldsymbol{P} \overline{\boldsymbol{A}} \mathbf{x} = -\mathbf{x}^{\mathsf{T}} \left(\boldsymbol{Q} + \boldsymbol{K}^{\mathsf{T}} \boldsymbol{R} \boldsymbol{K} \right) \mathbf{x} < 0$$

o que conclui a verificação do conjunto de condições necessárias para a estabilidade assintótica desejada.

Nestas condições, o índice de desempenho quadrático se torna:

$$J = \int_0^\infty \mathbf{x}^\top \left(\mathbf{Q} + \mathbf{K}^\top \mathbf{R} \mathbf{K} \right) \mathbf{x} \, \mathrm{d}t = -\int_0^\infty \frac{\mathrm{d}V(\mathbf{x})}{\mathrm{d}t} \, \mathrm{d}t = V(\mathbf{x}(0)) - \lim_{t \to \infty} V(\mathbf{x}(t))$$

O objetivo do regulador é que $\mathbf{x}(t) \rightarrow \mathbf{0}$ conforme $t \rightarrow \infty$. Assim, $\lim_{t \rightarrow \infty} V(\mathbf{x}(t)) = 0$ e:

$$J = V(\mathbf{x}(0)) = \mathbf{x}_0^\top \boldsymbol{P} \mathbf{x}_0$$

Seja *P* a matriz *simétrica e definida positiva* que *minimiza J*.

Para que o valor de *J* seja estacionário, ou seja, $\delta J = 0$, o que é condição necessária neste ponto de mínimo:

$$\delta J = \mathbf{x}_0^{\top} (\boldsymbol{P} + \delta \boldsymbol{P}) \mathbf{x}_0 - \mathbf{x}_0^{\top} \boldsymbol{P} \mathbf{x}_0 = \mathbf{x}_0^{\top} \delta \boldsymbol{P} \mathbf{x}_0 = 0, \forall \mathbf{x}_0 \quad \Leftrightarrow \quad \delta \boldsymbol{P} = \mathbf{0}$$

Em outras palavras, a matriz *P* que *minimiza o índice de desempenho quadrático J* também deve ter seu valor estacionário.

O *valor estacionário da matriz* P estará garantida se a *equação de Lyapunov* permanecer verdadeira mantido o valor de P e tomando uma variação infinitesimal δK para a matriz de ganho:

$$[A - B(K + \delta K)]^{\top} P + P [A - B(K + \delta K)] = -Q - (K + \delta K)^{\top} R(K + \delta K)$$

$$\Rightarrow -\delta K^{\top} B^{\top} P - PB \delta K = -\delta K^{\top} RK - K^{\top} R \delta K$$

Esta última equação será verdadeira se for válida a identidade:

$$B^{\top}P = RK \quad \Leftrightarrow \quad K = R^{-1}B^{\top}P$$

Substituindo esta última identidade na *equação de Lyapunov*, e considerando a simetria das matrizes *P* e *R*, obtém-se:

$$\left[\boldsymbol{A} - \boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{P}\right]^{\mathsf{T}}\boldsymbol{P} + \boldsymbol{P}\left[\boldsymbol{A} - \boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{P}\right] = -\boldsymbol{Q} - (\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{P})^{\mathsf{T}}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{P}$$

 $\boldsymbol{A}^{\top}\boldsymbol{P} + \boldsymbol{P}\boldsymbol{A} - \boldsymbol{P}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\top}\boldsymbol{P} + \boldsymbol{Q} = \boldsymbol{0}$

que é a *equação algébrica de Riccati* (ARE) para a determinação de *P*.

2.3. LQR para horizonte de tempo finito. Alternativamente, o *regulador linear quadrático* (LQR) pode ser obtido por meio do problema de *minimização de um índice de desempenho quadrático J para um horizonte de tempo finito*:

$$J = \int_0^{t_1} \left[\mathbf{x}(t)^\top Q \mathbf{x}(t) + \mathbf{u}(t)^\top R \mathbf{u}(t) \right] \mathrm{d}t + \mathbf{x}(t_1)^\top Q_1 \mathbf{x}(t_1)$$

com Q e Q_1 sendo matrizes simétricas e semi-definidas positivas e R sendo uma matriz simétrica e definida positiva.

Neste caso, o ganho K da *lei de controle linear por realimentação de estados* $\mathbf{u} = -Kx$ é dado pela expressão:

 $\boldsymbol{K}(t) = \boldsymbol{R}^{-1}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{P}(t)$

com P(t) correspondendo à solução da equação diferencial de Riccati:

$$A^{\mathsf{T}}P + PA - PBR^{-1}B^{\mathsf{T}}P + Q = -\frac{\mathrm{d}P}{\mathrm{d}t}$$
 com $P(t_1) = Q_1$

Observadores de estados

1. Observador de Luenberger

Planta – modelo linear:

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = A\mathbf{x}(t) + B\mathbf{u}(t)$$
$$\mathbf{y}(t) = C\mathbf{x}(t)$$

Observador:

$$\begin{cases} \frac{d\hat{\mathbf{x}}(t)}{dt} = \mathbf{A}\hat{\mathbf{x}}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{L}(\mathbf{y}(t) - \hat{\mathbf{y}}(t))\\ \hat{\mathbf{y}}(t) = \mathbf{C}\hat{\mathbf{x}}(t) \end{cases}$$

onde identificamos:

- $A \in \mathbb{R}^{n \times n}$: matriz de *estados*;
- $B \in \mathbb{R}^{n \times r}$: matriz de *entradas de controle*;
- $C \in \mathbb{R}^{m \times n}$: matriz de *observações*;
- $L \in \mathbb{R}^{n \times m}$: matriz de *ganhos do observador*;

Defina-se ainda o erro de estimação:

$$\mathbf{\varepsilon}(t) = \mathbf{x}(t) - \mathbf{\hat{x}}(t)$$

Observe que: $\mathbf{y}(t) - \hat{\mathbf{y}}(t) = \mathbf{C}(\mathbf{x}(t) - \hat{\mathbf{x}}(t)) = \mathbf{C}\varepsilon(t)$. A dinâmica do *erro de estimação* é dada por:

$$\frac{\mathrm{d}\boldsymbol{\varepsilon}(t)}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} - \frac{\mathrm{d}\hat{\mathbf{x}}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) - \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{u}(t) - \mathbf{L}\mathbf{C}\boldsymbol{\varepsilon}(t)$$

$$\frac{\mathrm{d}\boldsymbol{\varepsilon}(t)}{\mathrm{d}t} = \widehat{\boldsymbol{A}}\boldsymbol{\varepsilon}(t) \quad \mathrm{com} \quad \widehat{\boldsymbol{A}} = \boldsymbol{A} - \boldsymbol{L}\boldsymbol{C}$$

Note que: (i) da dualidade entre *controlabilidade* e *observabilidade*, sabemos que o par (A, C) é observável se, e somente se, o par (A^{T}, C^{T}) é controlável; (ii) os autovalores de $\hat{A} = A - LC$ e $\hat{A}^{T} = A^{T} - C^{T}L^{T}$ são idênticos.

A matriz de ganhos L do observador de estados pode ser tomada como a transposta da matriz de ganhos K de um controlador para um sistema cuja matriz de estados é A^{T} e cuja matriz de entradas de controle é C^{T} .

2. Princípio da separação

As *leis de controle para reguladores* discutidas até então pressupõem, em sua dedução, que o estado $\mathbf{x}(t)$ do sistema seja inteiramente acessível, sendo possível propor uma *realimentação de estados* da forma:

$$\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t)$$

No entanto, na impossibilidade de se medir integralmente o estado do sistema, pode-se propor uma lei de controle em que o estado $\mathbf{x}(t)$ é *substituído por sua estimativa* $\hat{\mathbf{x}}(t)$ fornecida pelo *observador de estados*:

$$\mathbf{u}(t) = -\mathbf{K}\hat{\mathbf{x}}(t) = -\mathbf{K}(\mathbf{x}(t) - \boldsymbol{\varepsilon}(t))$$

Assim, a dinâmica do sistema em malha fechada para a ser descrita como:

d	$\mathbf{x}(t)$		\overline{A}	BK	$\mathbf{x}(t)$		$\int \overline{A} = A - BK$
$\overline{\mathrm{d}t}$	$\mathbf{\epsilon}(t)$	$\begin{bmatrix} \mathbf{a} & \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{a} & \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{a}(t) \end{bmatrix} \text{com}$	com	$\widehat{A} = A - LC$			

O polinômio característico p(s) do sistema pode ser escrito como o produto do polinômio característico $\bar{p}(s)$ da planta em malha fechada admitindo realimentação de estados pelo polinômio característico $\hat{p}(s)$ da dinâmica do erro de estimação:

$$p(s) = \det \left[\begin{array}{c|c} sI - \overline{A} & -BK \\ \hline 0 & sI - \widehat{A} \end{array} \right] = \underbrace{\det(sI - \overline{A})}_{\overline{p}(s)} \underbrace{\det(sI - \widehat{A})}_{\widehat{p}(s)}$$

Os 2*n polos do sistema completo* controlado por uma lei de controle da forma $\mathbf{u}(t) = -K\hat{\mathbf{x}}(t)$ correspondem aos:

- n polos do controlador projetado via realimentação de estados;
- *n polos do observador*.

Assim, controlador e observador podem ser projetados de forma independente.

3. Observador de ordem reduzida

Admita que a *matriz de observações* $C \in \mathbb{R}^{m \times n}$ *tenha posto completo* (ou seja, suas *m* linhas sejam *linearmente independentes*).

Seja $V \in \mathbb{R}^{(n-m)\times n}$ uma matriz cujas *linhas constituem uma base*¹ para ker(C) = { $x \in \mathbb{R}^n | Cx = 0$ }. Neste caso, $CV^{\top} = 0$ e:

$$T = \left[\frac{C}{V}\right] \in \mathbb{R}^{n \times n}$$

é uma matriz invertível:

 $T^{-1} = \begin{bmatrix} M \mid N \end{bmatrix} \in \mathbb{R}^{n \times n}$ com $M \in \mathbb{R}^{n \times m}$ e $N \in \mathbb{R}^{n \times (n-m)}$

¹É comum casos em que *C* seja formada por algumas linhas da matriz identidade I_n . Nestes casos, basta definir *V* como a matriz formada pelas linhas de I_n ausentes em *C*.

Observe que, das identidades $TT^{-1} = I_n e T^{-1}T = I_n$ decorre que:

$$CM = I_m$$
 $CN = 0$ $MC + NV = I_n$
 $VM = 0$ $VN = I_{(n-m)}$

Utilizando a matriz *T*, defina-se uma *transformação de variáveis*:

$$\left[\frac{\mathbf{x}_{*}(t)}{\mathbf{x}_{\#}(t)}\right] = \mathbf{T}\mathbf{x}(t) = \left[\frac{\mathbf{C}\mathbf{x}(t)}{\mathbf{V}\mathbf{x}(t)}\right] = \left[\frac{\mathbf{y}(t)}{\mathbf{V}\mathbf{x}(t)}\right]$$

A partir desta transformação é possível descrever o estado $\mathbf{x}(t)$ como:

$$\mathbf{x}(t) = \mathbf{T}^{-1} \begin{bmatrix} \mathbf{x}_*(t) \\ \mathbf{x}_{\#}(t) \end{bmatrix} = \mathbf{M} \mathbf{x}_*(t) + \mathbf{N} \mathbf{x}_{\#}(t) = \mathbf{M} \mathbf{y}(t) + \mathbf{N} \mathbf{x}_{\#}(t)$$

Uma vez que $\mathbf{y} \in \mathbb{R}^m$ é medido, o problema de estimar $\mathbf{x} \in \mathbb{R}^n$ pode ser reduzido ao problema de estimar $\mathbf{x}_{\#} \in \mathbb{R}^{(n-m)}$:

 $\hat{\mathbf{x}}(t) = \mathbf{M}\mathbf{y}(t) + \mathbf{N}\hat{\mathbf{x}}_{\#}(t)$

Adotando a transformação de variáveis baseada na matriz de observações, a *expressão em forma de espaço de estados do modelo da planta* se torna:

$$\begin{pmatrix} \frac{d\mathbf{x}_{*}(t)}{dt} = A_{11}\mathbf{x}_{*}(t) + A_{12}\mathbf{x}_{\#}(t) + B_{1}\mathbf{u}(t) \\ \frac{d\mathbf{x}_{\#}(t)}{dt} = A_{21}\mathbf{x}_{*}(t) + A_{22}\mathbf{x}_{\#}(t) + B_{2}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{x}_{*}(t) \end{cases}$$

com:

$$\begin{bmatrix} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{bmatrix} = TAT^{-1} = \begin{bmatrix} CAM & CAN \\ \hline VAM & VAN \end{bmatrix}$$
$$\begin{bmatrix} B_1 \\ \hline B_2 \end{bmatrix} = TB = \begin{bmatrix} CB \\ \hline VB \end{bmatrix}$$

A seguinte estrutura é proposta para o *observador de ordem reduzida* para a estimação de $x_{\#}(t)$:

$$\begin{cases} \hat{\mathbf{x}}_{\#}(t) = \mathbf{J}\mathbf{y}(t) + \mathbf{z}(t) \\ \frac{\mathrm{d}\mathbf{z}(t)}{\mathrm{d}t} = \mathbf{F}\mathbf{z}(t) + \mathbf{G}\mathbf{y}(t) + \mathbf{H}\mathbf{u}(t) \end{cases}$$

Define-se o erro de estimação como:

$$\mathbf{\varepsilon}_{\#}(t) = \mathbf{x}_{\#}(t) - \hat{\mathbf{x}}_{\#}(t)$$

Dessa forma, a derivada do erro de estimação é dada por:

$$\frac{\mathrm{d}\boldsymbol{\varepsilon}_{\#}(t)}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{x}_{\#}(t)}{\mathrm{d}t} - \boldsymbol{J}\frac{\mathrm{d}\mathbf{y}(t)}{\mathrm{d}t} - \frac{\mathrm{d}\mathbf{z}(t)}{\mathrm{d}t}$$
$$\frac{\mathrm{d}\boldsymbol{\varepsilon}_{\#}(t)}{\mathrm{d}t} = (\boldsymbol{A}_{21} - \boldsymbol{J}\boldsymbol{A}_{11} - \boldsymbol{G})\mathbf{y}(t) + (\boldsymbol{A}_{22} - \boldsymbol{J}\boldsymbol{A}_{12})\mathbf{x}_{\#}(t)$$
$$+ (\boldsymbol{B}_{2} - \boldsymbol{J}\boldsymbol{B}_{1} - \boldsymbol{H})\mathbf{u}(t) - \boldsymbol{F}\mathbf{z}(t)$$

Substituindo na última expressão:

$$\mathbf{z}(t) = \hat{\mathbf{x}}_{\#}(t) - \mathbf{J}\mathbf{y}(t)$$
$$\mathbf{x}_{\#}(t) = \hat{\mathbf{x}}_{\#}(t) + \boldsymbol{\varepsilon}_{\#}(t)$$

obtém-se:

$$\frac{d\mathbf{\epsilon}_{\#}(t)}{dt} = (\mathbf{A}_{21} - \mathbf{J}\mathbf{A}_{11} - \mathbf{G} + \mathbf{F}\mathbf{J})\mathbf{y}(t) + (\mathbf{A}_{22} - \mathbf{J}\mathbf{A}_{12})\mathbf{\epsilon}_{\#}(t) + (\mathbf{A}_{22} - \mathbf{J}\mathbf{A}_{12} - \mathbf{F})\mathbf{\hat{x}}_{\#}(t) + (\mathbf{B}_{2} - \mathbf{J}\mathbf{B}_{1} - \mathbf{H})\mathbf{u}(t)$$

A dinâmica do erro de estimação se torna independente das variáveis y, $\hat{x}_{\#}$ e u se tormarmos:

$$F = A_{22} - JA_{12}$$

 $G = A_{21} - JA_{11} + FJ$
 $H = B_2 - JB_1$

Nestas condições, a dinâmica do erro de estimação se torna:

$$\frac{\mathrm{d}\boldsymbol{\varepsilon}_{\#}(t)}{\mathrm{d}t} = \boldsymbol{F}\boldsymbol{\varepsilon}_{\#}(t) \quad \text{com} \quad \boldsymbol{F} = \boldsymbol{A}_{22} - \boldsymbol{J}\boldsymbol{A}_{12} = (\boldsymbol{V} - \boldsymbol{J}\boldsymbol{C})\boldsymbol{A}\boldsymbol{N}$$

Pode-se demonstrar que, se o par (A, C) for *observável*, o par (A_{22}, A_{12}) também será *observável*.

Recorrendo à dualidade, a matriz de ganhos $J \in \mathbb{R}^{(n-m) \times m}$ do observador de estados de ordem reduzida pode ser tomada como a *transposta da matriz de ganhos* $K \in \mathbb{R}^{m \times (n-m)}$ de um *controlador* para um sistema com:

- matriz de estados A^T₂₂ ∈ ℝ^{(n-m)×(n-m)};
 matriz de entradas de controle A^T₁₂ ∈ ℝ^{(n-m)×m}.

Ainda, o *estimador* $\hat{\mathbf{x}}(t)$ *do estado do sistema* se torna:

$$\hat{\mathbf{x}}(t) = S\mathbf{y}(t) + N\mathbf{z}(t) \quad \text{com} \quad S = M + NJ$$

Acompanhamento de referências

1. Seguidor via controle linear-quadrático

Um controlador que faça o estado x do sistema *acompanhar um sinal de referência prescrito* $\mathbf{x}_{r}(t)$, $t \in [0, t_{1}]$, pode ser obtido via *minimização de um índice de desempenho quadrático J para um horizonte de tempo finito*:

$$J(\mathbf{x}, \mathbf{u}) = \int_0^{t_1} \left[\left(\mathbf{x} - \mathbf{x}_r \right)^\top Q(\mathbf{x} - \mathbf{x}_r) + \mathbf{u}^\top R \mathbf{u} \right] dt + \left(\mathbf{x} - \mathbf{x}_r \right)^\top Q_1(\mathbf{x} - \mathbf{x}_r) \bigg|_{t=t_1}$$

com Q e Q_1 sendo matrizes simétricas e semi-definidas positivas e R sendo uma matriz simétrica e definida positiva.

Uma vez que o sistema deve satisfazer à equação dinâmica:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x} + B\mathbf{u}$$

tal condição deve ser tratada como uma *restrição* do problema de otimização. Utilizando o método dos *multiplicadores de Lagrange*, pode-se transformar o problema de *otimização restrita* da função $J(\mathbf{x}, \mathbf{u})$ em um problema de *otimização irrestrita* de uma função $\overline{J}(\mathbf{x}, \mathbf{u}, \boldsymbol{\lambda})$.

Defina-se a função objetivo estendida $\overline{J}(\mathbf{x}, \mathbf{u}, \boldsymbol{\lambda})$:

$$\overline{J}(\mathbf{x}, \mathbf{u}, \boldsymbol{\lambda}) = \int_0^{t_1} \left[(\mathbf{x} - \mathbf{x}_r)^\top Q(\mathbf{x} - \mathbf{x}_r) + \mathbf{u}^\top R \mathbf{u} + 2\boldsymbol{\lambda}^\top \left(A \mathbf{x} + B \mathbf{u} - \frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t} \right) \right] \mathrm{d} t + \left(\mathbf{x}(t_1) - \mathbf{x}_r(t_1) \right)^\top Q_1 \left(\mathbf{x}(t_1) - \mathbf{x}_r(t_1) \right)$$

Para a minimização de $\overline{J}(\mathbf{x}, \mathbf{u}, \lambda)$, verifica-se primeiramente sob quais condições $\delta \overline{J} = 0$.

$$\delta \overline{J} = 2 \int_0^{t_1} \left[\delta \mathbf{x}^\top Q (\mathbf{x} - \mathbf{x}_{\mathsf{r}}) + \delta \mathbf{u}^\top R \mathbf{u} + \delta \mathbf{\lambda}^\top \left(A \mathbf{x} + B \mathbf{u} - \frac{d \mathbf{x}}{dt} \right) \right]$$
$$+ \mathbf{\lambda}^\top \left(A \delta \mathbf{x} + B \delta \mathbf{u} - \frac{d \delta \mathbf{x}}{dt} \right) dt + 2 \delta \mathbf{x} (t_1)^\top Q_1 (\mathbf{x} (t_1) - \mathbf{x}_{\mathsf{r}} (t_1))$$

Integrando por partes, verifica-se que:

$$\int_0^{t_1} \mathbf{\lambda}^\top \frac{\mathrm{d}\delta \mathbf{x}}{\mathrm{d}t} \,\mathrm{d}t = \mathbf{\lambda}^\top \delta \mathbf{x} \Big|_0^{t_1} - \int_0^{t_1} \frac{\mathrm{d}\mathbf{\lambda}^\top}{\mathrm{d}t} \delta \mathbf{x} \,\mathrm{d}t$$

Notando ainda que o estado inicial $\mathbf{x}(0)$ deve ser tratado como um dado do problema e, assim, $\delta \mathbf{x}(0) = \mathbf{0}$, a condição $\delta \overline{J} = 0$ se torna:

$$0 = \int_0^{t_1} \left\{ \delta \mathbf{x}^\top \left[\mathbf{Q} (\mathbf{x} - \mathbf{x}_{\mathsf{r}}) + \mathbf{A}^\top \mathbf{\lambda} + \frac{\mathrm{d} \mathbf{\lambda}}{\mathrm{d} t} \right] + \delta \mathbf{u}^\top \left[\mathbf{R} \mathbf{u} + \mathbf{B}^\top \mathbf{\lambda} \right] \\ + \delta \mathbf{\lambda}^\top \left[\mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u} - \frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t} \right] \right\} \mathrm{d} t + \delta \mathbf{x} (t_1)^\top \left[\mathbf{Q}_1 \left(\mathbf{x} (t_1) - \mathbf{x}_{\mathsf{r}} (t_1) \right) - \mathbf{\lambda} (t_1) \right]$$

Sendo as variações δx , δu , $\delta \lambda$ e $\delta x(t_1)$ independentes, decorre que:

$$Q(\mathbf{x} - \mathbf{x}_{\mathsf{r}}) + \mathbf{A}^{\mathsf{T}} \boldsymbol{\lambda} + \frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t} = \mathbf{0} \quad \Rightarrow \quad \frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t} = -\mathbf{Q}\mathbf{x} - \mathbf{A}^{\mathsf{T}} \boldsymbol{\lambda} + \mathbf{Q}\mathbf{x}_{\mathsf{r}} \qquad (1)$$

$$R\mathbf{u} + B^{\mathsf{T}} \boldsymbol{\lambda} = \mathbf{0} \quad \Rightarrow \quad \mathbf{u} = -R^{-1} B^{\mathsf{T}} \boldsymbol{\lambda}$$
⁽²⁾

$$A\mathbf{x} + B\mathbf{u} - \frac{d\mathbf{x}}{dt} = \mathbf{0} \quad \Rightarrow \quad \frac{d\mathbf{x}}{dt} = A\mathbf{x} - BR^{-1}B^{\top}\lambda$$
 (3)

$$Q_1(\mathbf{x}(t_1) - \mathbf{x}_{\mathsf{r}}(t_1)) - \boldsymbol{\lambda}(t_1) = \mathbf{0} \quad \Rightarrow \quad \boldsymbol{\lambda}(t_1) = Q_1 \mathbf{x}(t_1) - Q_1 \mathbf{x}_{\mathsf{r}}(t_1) \tag{4}$$

Buscando para λ uma solução *afim* em termos do estado x do sistema:

$$\boldsymbol{\lambda}(t) = \boldsymbol{P}(t)\mathbf{x}(t) - \boldsymbol{\eta}(t)$$
⁽⁵⁾

Da equação $(a, \mathbf{u}(t) = -\mathbf{R}^{-1}(t)\mathbf{B}(t)^{\mathsf{T}}\boldsymbol{\lambda}(t)$ e, portanto, a *lei de controle* proposta adquire a forma:

$$\mathbf{u}(t) = -\mathbf{K}(t)\mathbf{x}(t) + \tilde{\mathbf{u}}(t) \quad \text{com} \quad \mathbf{K} = \mathbf{R}^{-1}\mathbf{B}^{\top}\mathbf{P} \quad \text{e} \quad \tilde{\mathbf{u}} = \mathbf{R}^{-1}\mathbf{B}^{\top}\mathbf{\eta}$$

Tomando a derivada temporal de 5 e utilizando 3, obtém-se:

$$\frac{d\lambda}{dt} = \frac{dP}{dt}\mathbf{x} + P\frac{d\mathbf{x}}{dt} - \frac{d\eta}{dt}$$
$$= \left[\frac{dP}{dt} + PA - PBR^{-1}B^{\mathsf{T}}P\right]\mathbf{x} - \frac{d\eta}{dt} + PBR^{-1}B^{\mathsf{T}}\eta$$

Por outro lado, substitindo ^⑤ em ^①, obtém-se:

$$\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t} = \left[-\boldsymbol{Q} - \boldsymbol{A}^{\top}\boldsymbol{P}\right]\mathbf{x} + \boldsymbol{A}^{\top}\boldsymbol{\eta} + \boldsymbol{Q}\mathbf{x}$$

As duas expressões para $\frac{d\lambda}{dt}$ serão equivalentes se, e somente se, $\forall x$:

$$\left[\frac{\mathrm{d}\boldsymbol{P}}{\mathrm{d}t} + \boldsymbol{P}\boldsymbol{A} + \boldsymbol{A}^{\mathsf{T}}\boldsymbol{P} - \boldsymbol{P}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{P} + \boldsymbol{Q}\right]\boldsymbol{x} \\ - \left[\frac{\mathrm{d}\boldsymbol{\eta}}{\mathrm{d}t} + (\boldsymbol{A}^{\mathsf{T}} - \boldsymbol{P}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathsf{T}})\boldsymbol{\eta} + \boldsymbol{Q}\boldsymbol{x}_{\mathsf{r}}\right] = \boldsymbol{0}$$

Além disso, da equação 4 também deve ser verdadeiro, qualquer seja o valor de $\mathbf{x}(t_1)$:

$$\boldsymbol{\lambda}(t_1) = \boldsymbol{P}(t_1)\mathbf{x}(t_1) - \boldsymbol{\eta}(t_1) = \boldsymbol{Q}_1\mathbf{x}(t_1) - \boldsymbol{Q}_1\mathbf{x}_r(t_1)$$

Assim, é suficiente que P(t) e $\eta(t)$ satisfaçam às seguintes EDOs:

$$\frac{\mathrm{d}\boldsymbol{P}}{\mathrm{d}t} = -\boldsymbol{P}\boldsymbol{A} - \boldsymbol{A}^{\mathsf{T}}\boldsymbol{P} + \boldsymbol{P}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{P} - \boldsymbol{Q} \quad \text{com} \quad \boldsymbol{P}(t_1) = \boldsymbol{Q}_1$$
$$\frac{\mathrm{d}\boldsymbol{\eta}}{\mathrm{d}t} = -(\boldsymbol{A}^{\mathsf{T}} - \boldsymbol{P}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathsf{T}})\boldsymbol{\eta} - \boldsymbol{Q}\boldsymbol{x}_{\mathsf{r}} \quad \text{com} \quad \boldsymbol{\eta}(t_1) = \boldsymbol{Q}_1\boldsymbol{x}_{\mathsf{r}}(t_1)$$

Conclui-se que, no projeto de um *seguidor via controle linear-quadrático*, a matriz P(t) deve satisfazer à *mesma equação diferencial de Riccati* obtida na síntese de um *regulador linear-quadrático* (*LQR*). Consequentemente:

A matriz de ganho $K = R^{-1}B^{\top}P$ do projeto de um *seguidor* deve ser a *mesma* adotada no projeto do respectivo *regulador*.

A dinâmica do seguidor em malha fechada é descrita pela equação ③:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = (\mathbf{A} - \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{P})\mathbf{x} + \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathsf{T}}\boldsymbol{\eta} \quad \text{com} \quad \mathbf{x}(0) = \mathbf{x}_0$$

Em particular, definindo a matriz de estados em malha fechada:

$$\overline{A} = (A - BK) = (A - BR^{-1}B^{\top}P)$$

a equação 3 simplifica-se para a forma:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \overline{\mathbf{A}}\mathbf{x} + \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathsf{T}}\boldsymbol{\eta} \quad \text{com} \quad \mathbf{x}(0) = \mathbf{x}_0$$

A equação diferencial para a determinação de $\eta(t)$ também pode ser simplificada a partir da definição de \overline{A} :

$$(\boldsymbol{A}^{\top} - \boldsymbol{P}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\top}) = (\boldsymbol{A} - \boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\top}\boldsymbol{P})^{\top} = \overline{\boldsymbol{A}}^{\top}$$

Assim:

$$\frac{\mathrm{d}\boldsymbol{\eta}}{\mathrm{d}t} = -\overline{\boldsymbol{A}}^{\top}\boldsymbol{\eta} - \boldsymbol{Q}\boldsymbol{x}_{\mathsf{r}} \quad \mathrm{com} \quad \boldsymbol{\eta}(t_1) = \boldsymbol{Q}_1\boldsymbol{x}_{\mathsf{r}}(t_1)$$

**Nota* – a solução do problema poderia alternativamente ser formulada colocando as equações ① e ③ na seguinte forma matricial:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \mathbf{x} \\ \mathbf{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & -\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathsf{T}} \\ -\mathbf{Q} & -\mathbf{A}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{\lambda} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{Q} \end{bmatrix} \mathbf{x}_{\mathsf{r}}$$

matriz Hamiltoniana H

com condição inicial $\mathbf{x}(0) = \mathbf{x}_0$ e condição final $\lambda(t_1) = \mathbf{Q}_1(\mathbf{x}(t_1) - \mathbf{x}_r(t_1))$, eq. ④.

1.1. Solução explícita em malha fechada – seguidor LQ. Pode-se obter uma solução explícita para $\eta(t)$ por meio da equação:

$$\boldsymbol{\eta}(t) = \overline{\boldsymbol{\Psi}}(t,0)\boldsymbol{\eta}(0) - \int_0^t \overline{\boldsymbol{\Psi}}(t,\tau)\boldsymbol{Q}\mathbf{x}_{\mathsf{r}}(\tau)\,\mathrm{d}\tau$$

com $\overline{\Psi}(t, \tau)$ satisfazendo à equação diferencial:

$$\frac{\partial}{\partial t}\overline{\Psi}(t,\tau) = -\overline{A}^{\top}(t)\overline{\Psi}(t,\tau) \quad \text{com} \quad \overline{\Psi}(\tau,\tau) = I, \ \forall \tau \in [0,t_1]$$

O valor de $\eta(0)$ consistente com a *condição final* $\eta(t_1) = Q_1 \mathbf{x}_r(t_1)$ é:

$$\boldsymbol{\eta}(0) = \overline{\boldsymbol{\Psi}}(0, t_1) \left[\boldsymbol{\eta}(t_1) + \int_0^{t_1} \overline{\boldsymbol{\Psi}}(t_1, \tau) \boldsymbol{Q} \mathbf{x}_{\mathsf{r}}(\tau) \, \mathrm{d}\tau \right]$$
$$= \overline{\boldsymbol{\Psi}}(0, t_1) \boldsymbol{Q}_1 \mathbf{x}_{\mathsf{r}}(t_1) + \int_0^{t_1} \overline{\boldsymbol{\Psi}}(0, \tau) \boldsymbol{Q} \mathbf{x}_{\mathsf{r}}(\tau) \, \mathrm{d}\tau$$

Note que foi utilizada a seguinte propriedade da matriz de transição:

$$\overline{\boldsymbol{\Psi}}(t_2,t_1)\overline{\boldsymbol{\Psi}}(t_1,t_0) = \overline{\boldsymbol{\Psi}}(t_2,t_0) \quad \Rightarrow \quad \overline{\boldsymbol{\Psi}}(t_0,t_1) = \overline{\boldsymbol{\Psi}}^{-1}(t_1,t_0)$$

Substituindo a expressão para $\eta(0)$ na expressão para $\eta(t)$:

$$\eta(t) = \overline{\Psi}(t, t_1) Q_1 \mathbf{x}_{\mathsf{r}}(t_1) + \int_0^{t_1} \overline{\Psi}(t, \tau) Q \mathbf{x}_{\mathsf{r}}(\tau) \, \mathrm{d}\tau - \int_0^t \overline{\Psi}(t, \tau) Q \mathbf{x}_{\mathsf{r}}(\tau) \, \mathrm{d}\tau$$
$$\eta(t) = \overline{\Psi}(t, t_1) Q_1 \mathbf{x}_{\mathsf{r}}(t_1) + \int_t^{t_1} \overline{\Psi}(t, \tau) Q \mathbf{x}_{\mathsf{r}}(\tau) \, \mathrm{d}\tau$$

A última etapa da dedução de uma expressão explícita para $\eta(t)$ consiste em expressar a matriz de transição $\overline{\Psi}(t,\tau)$, associada a $-\overline{A}^{\top}(t)$, com a *matriz de transição* $\overline{\Phi}(t,\tau)$ *do sistema em malha fechada*,

associada à matriz $\overline{A}(t)$ e que, por sua vez, satisfaz à seguinte equação diferencial:

$$\frac{\partial}{\partial t}\overline{\boldsymbol{\Phi}}(t,\tau) = \overline{\boldsymbol{A}}(t)\overline{\boldsymbol{\Phi}}(t,\tau) \quad \text{com} \quad \overline{\boldsymbol{\Phi}}(\tau,\tau) = \boldsymbol{I}, \ \forall \tau \in [0,t_1]$$

Tomando a derivada parcial em *t* da identidade $\overline{\Phi}(t, \tau)\overline{\Phi}(\tau, t) = I$:

$$\frac{\partial}{\partial t}\overline{\varPhi}(t,\tau)\overline{\varPhi}(\tau,t) + \overline{\varPhi}(t,\tau)\frac{\partial}{\partial t}\overline{\varPhi}(\tau,t) = \mathbf{0}$$

Dessa forma:

$$\frac{\partial}{\partial t}\overline{\boldsymbol{\Phi}}(\tau,t) = -\overline{\boldsymbol{\Phi}}(\tau,t)\frac{\partial}{\partial t}\overline{\boldsymbol{\Phi}}(t,\tau)\overline{\boldsymbol{\Phi}}(\tau,t) = -\overline{\boldsymbol{\Phi}}(\tau,t)\overline{\boldsymbol{A}}(t)\overline{\boldsymbol{\Phi}}(t,\tau)\overline{\boldsymbol{\Phi}}(\tau,t)$$
$$\Rightarrow \quad \frac{\partial}{\partial t}\overline{\boldsymbol{\Phi}}(\tau,t) = -\overline{\boldsymbol{\Phi}}(\tau,t)\overline{\boldsymbol{A}}(t) \quad \Leftrightarrow \quad \frac{\partial}{\partial t}\overline{\boldsymbol{\Phi}}^{\mathsf{T}}(\tau,t) = -\overline{\boldsymbol{A}}^{\mathsf{T}}(t)\overline{\boldsymbol{\Phi}}^{\mathsf{T}}(\tau,t)$$

Ainda, como $\overline{\boldsymbol{\Phi}}^{\top}(\tau, \tau) = \boldsymbol{I}, \quad \forall \tau \in [0, t_1]$, conclui-se que:

$$\overline{\boldsymbol{\nu}}(t,\tau) = \overline{\boldsymbol{\Phi}}^{\top}(\tau,t)$$

Finalmente, para a *dinâmica do seguidor em malha fechada* (supondo *realimentação de estados*), obtémse:

$$\eta(t) = \overline{\Phi}^{\mathsf{T}}(t_1, t) Q_1 \mathbf{x}_{\mathsf{r}}(t_1) + \int_t^{t_1} \overline{\Phi}^{\mathsf{T}}(\lambda, t) Q \mathbf{x}_{\mathsf{r}}(\lambda) \, \mathrm{d}\lambda$$
$$\mathbf{x}(t) = \overline{\Phi}(t, 0) \mathbf{x}(0) + \int_0^t \Phi(t, \tau) B(\tau) R^{-1} B^{\mathsf{T}}(\tau) \eta(\tau) \, \mathrm{d}\tau$$

Pode-se definir o erro do seguidor como:

$$\mathbf{e}(t) = \mathbf{x}_{\mathsf{r}}(t) - \mathbf{x}(t)$$

Considerando ainda que: $K = R^{-1}B^{\top}P$, a lei de controle do seguidor pode ser escrita como:

$$\mathbf{u}(t) = \underbrace{\mathbf{K}(t)\mathbf{e}(t)}_{\mathbf{V}} + \underbrace{\mathbf{R}^{-1}\mathbf{B}(t)^{\top}(\mathbf{\eta}(t) - \mathbf{P}(t)\mathbf{x}_{\mathsf{r}}(t))}_{\mathbf{V}}$$

realimentação

pré-alimentação

2. Modelos assumidos para variáveis exógenas

Considere um sistema linear invariante no tempo:

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{E}\mathbf{w}(t)$$

Assuma que tanto o sinal de referência $\mathbf{x}_{r}(t)$ quanto a perturbação $\mathbf{w}(t)$ sejam modelados como soluções de equações diferenciais conhecidas:

$$\frac{\mathrm{d}\mathbf{x}_{\mathsf{r}}(t)}{\mathrm{d}t} = \mathbf{A}_{\mathsf{r}}\mathbf{x}_{\mathsf{r}}(t)$$
$$\frac{\mathrm{d}\mathbf{w}(t)}{\mathrm{d}t} = \mathbf{A}_{\mathsf{w}}\mathbf{w}(t)$$

Definindo o erro de acompanhamento (erro do seguidor) como:

$$\mathbf{e}(t) = \mathbf{x}_{\mathsf{r}}(t) - \mathbf{x}(t)$$

verifica-se que $\mathbf{e}(t)$ satisfaz à seguinte EDO:

$$\frac{\mathrm{d}\mathbf{e}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{e}(t) - (\mathbf{A} - \mathbf{A}_{\mathsf{r}})\mathbf{x}_{\mathsf{r}}(t) - \mathbf{B}\mathbf{u}(t) - \mathbf{E}\mathbf{w}(t)$$

Para simplificar a equação diferencial, defina-se a matriz F e o *vetor de variáveis exógenas* $\mathbf{x}_{0}(t)$:

$$F = [A - A_r | E]$$
 e $\mathbf{x}_0(t) = \left[\frac{\mathbf{x}_r(t)}{\mathbf{w}(t)}\right]$

Assim:

$$\frac{\mathrm{d}\mathbf{e}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{e}(t) - \mathbf{B}\mathbf{u}(t) - \mathbf{F}\mathbf{x}_{0}(t)$$

Proponha-se uma lei de controle da forma:

 $\mathbf{u}(t) = \mathbf{K}\mathbf{e}(t) - \mathbf{G}\mathbf{x}_{\mathsf{o}}(t)$

o que faz com que a dinâmica do erro de acompanhamento em malha fechada seja dada por:

$$\frac{\mathrm{d}\mathbf{e}(t)}{\mathrm{d}t} = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{e}(t) - (\mathbf{F} - \mathbf{B}\mathbf{G})\mathbf{x}_{0}(t) = \overline{\mathbf{A}}\mathbf{e}(t) - (\mathbf{F} - \mathbf{B}\mathbf{G})\mathbf{x}_{0}(t)$$

Note que, em *regime permanente*, ou seja, com $\frac{d\mathbf{e}(t)}{dt} = 0$, o valor do erro de acompanhamento é:

$$\overline{A}\mathbf{e} = (F - BG)\mathbf{x}_{o} \implies \mathbf{e} = \overline{A}^{-1}(F - BG)\mathbf{x}_{o}$$

Seria ideal se fosse possível tornar nulo o valor do erro em regime permanente *qualquer seja* o valor em regime permanente das variáveis exógenas, ou seja, escolher G tal que $\overline{A}^{-1}(F - BG) = 0$. No entanto, em geral, isto não é possível. Busquemos então uma matriz M que torne, em *regime permanente*:

$$Me = 0$$

Isto será verdadeiro para todo x_0 se:

$$M\overline{A}^{-1}(F-BG) = \mathbf{0} \implies M\overline{A}^{-1}BG = M\overline{A}^{-1}F$$

Para obter uma solução fechada para G é necessário que a matriz $M\overline{A}^{-1}B$ seja invertível. Isto requer, em primeiro lugar, que ela seja quadrada, ou seja, $M \in \mathbb{R}^{r \times n}$. Em outras palavras, *dispondo de r atuadores é possível seguir com erro nulo em regime permanente somente r sinais de referência*. Conclui-se, portanto, que:

$$G = NF$$
 com $N = \left[M\overline{A}^{-1}B\right]^{-1}M\overline{A}^{-1}$

Assim, a lei de controle do seguidor se torna:

$$\mathbf{u}(t) = \mathbf{K}\mathbf{e}(t) - \mathbf{N}\mathbf{F}\mathbf{x}_{0}(t) = \mathbf{K}\mathbf{e}(t) - \mathbf{N}(\mathbf{A} - \mathbf{A}_{r})\mathbf{x}_{r}(t) - \mathbf{N}\mathbf{E}\mathbf{w}(t)$$

e a dinâmica do erro de acompanhamento se torna:

$$\frac{\mathrm{d}\mathbf{e}(t)}{\mathrm{d}t} = \overline{\mathbf{A}}\mathbf{e}(t) - (\mathbf{I} - \mathbf{B}\mathbf{N})\mathbf{F}\mathbf{x}_{o}(t)$$
$$\frac{\mathrm{d}\mathbf{e}(t)}{\mathrm{d}t} = \overline{\mathbf{A}}\mathbf{e}(t) - (\mathbf{I} - \mathbf{B}\mathbf{N})\left[(\mathbf{A} - \mathbf{A}_{r})\mathbf{x}_{r}(t) + \mathbf{E}\mathbf{w}(t)\right]$$

3. Ação integral em realimentação

Admita que se queira propor uma lei de controle com ganho integral em realimentação da forma:

$$\mathbf{u}(t) = \mathbf{K}\mathbf{e}(t) + \mathbf{K}_{\mathsf{i}}\mathbf{e}_{\mathsf{i}}(t) - \mathbf{G}\mathbf{x}_{\mathsf{o}}(t)$$

com $\mathbf{e}_{i}(t)$ sendo definida como a integral de uma combinação linear de componentes de $\mathbf{e}(t)$:

$$\frac{\mathrm{d}\mathbf{e}_{i}(t)}{\mathrm{d}t} = \mathbf{C}_{i}\mathbf{e}(t) = \mathbf{C}_{i}(\mathbf{x}_{r}(t) - \mathbf{x}(t))$$

Neste caso, as variáveis $\mathbf{e}_{i}(t)$ assim definidas constituem, juntamente a $\mathbf{x}(t)$ um vetor de estados aumentado $\mathbf{x}_{a}(t)$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\begin{array}{c|c} \mathbf{x}(t) \\ \hline \mathbf{e}_{\mathrm{i}}(t) \end{array} \right] = \underbrace{\left[\begin{array}{c|c} \mathbf{A} & \mathbf{0} \\ \hline -\mathbf{C}_{\mathrm{i}} & \mathbf{0} \end{array} \right]}_{\mathbf{A}_{\mathrm{a}}} \underbrace{\left[\begin{array}{c|c} \mathbf{x}(t) \\ \hline \mathbf{e}_{\mathrm{i}}(t) \end{array} \right]}_{\mathbf{X}_{\mathrm{a}}(t)} + \underbrace{\left[\begin{array}{c|c} \mathbf{B} \\ \hline \mathbf{0} \end{array} \right]}_{\mathbf{B}_{\mathrm{a}}} \mathbf{u}(t) + \underbrace{\left[\begin{array}{c|c} \mathbf{E} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{I} \end{array} \right]}_{\mathbf{E}_{\mathrm{a}}} \underbrace{\left[\begin{array}{c|c} \mathbf{w}(t) \\ \hline \mathbf{C}_{\mathrm{i}}\mathbf{x}_{\mathrm{r}}(t) \end{array} \right]}_{\mathbf{W}_{\mathrm{a}}(t)}$$

Assim, pode-se escrever a equação diferencial do sistema na forma:

$$\frac{\mathrm{d}\mathbf{x}_{\mathsf{a}}(t)}{\mathrm{d}t} = \mathbf{A}_{\mathsf{a}}\mathbf{x}_{\mathsf{a}}(t) + \mathbf{B}_{\mathsf{a}}\mathbf{u}(t) + \mathbf{E}_{\mathsf{a}}\mathbf{w}_{\mathsf{a}}(t)$$

Pode-se então formular o *problema de acompanhamento de referências* para esta planta aumentada tomando $\mathbf{x}_{r}(t)$ como referência para $\mathbf{x}(t)$ e zero como referência para $\mathbf{e}_{i}(t)$. Para que o problema tenha solução, no entanto, é necessário que o par (A_{a}, B_{a}) seja *controlável*, o que limita as possibilidades de escolha para a matriz C_{i} .

A dinâmica da planta aumentada em malha fechada é dada pela matriz de estados $\overline{A}_a = A_a - B_a K_a$ em que a matriz de ganhos K_a é:

$$K_{a} = [K \mid -K_{i}]$$

ou seja, a lei de controle pode ser reescrita como:

$$\mathbf{u}(t) = -\mathbf{K}_{\mathsf{a}}\mathbf{x}_{\mathsf{a}}(t) + \mathbf{K}\mathbf{x}_{\mathsf{r}}(t) - \mathbf{G}\mathbf{x}_{\mathsf{o}}(t)$$

Neste caso, $\mathbf{x}_{0}(t)$ deve incluir tanto $\mathbf{x}_{r}(t)$ quanto $\mathbf{w}_{a}(t)$ (em vez de $\mathbf{w}(t)$).

Introdução ao Controle Clássico

1. Diagrama de blocos de um sistema SISO em malha fechada

$$Y(s) = \underbrace{\frac{KG_{c}(s)G_{p}(s)}{1 + KG_{c}(s)G_{p}(s)}}_{T(s)}(R(s) - V(s)) + \underbrace{\frac{1}{1 + KG_{c}(s)G_{p}(s)}}_{S(s)}G_{d}(s)W(s)$$

Observe que: T(s) + S(s) = 1. Em particular, para $K \to \infty$, $T(s) \to 1 \in S(s) \to 0$.

2. Realimentação unitária equivalente - sistemas SISO

$$T(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{G_{u}(s)}{1 + G_{u}(s)} = \frac{N(s)}{D(s)}$$
$$G(s) + G(s)G_{u}(s) = G_{u}(s) + G(s)H(s)G_{u}(s)$$
$$G_{u}(s) = \frac{G(s)}{1 + G(s)H(s) - G(s)} = \frac{N(s)}{D(s) - N(s)}$$

3. Erro de acompanhamento de referência em regime permanente (SISO)

Dizemos que um sistema SISO de ordem n (com n = m + r) é do *tipo m* quando sua *função de transferência de malha aberta* tem a forma:

$$L(s) = G(s)H(s) = \frac{K_m(1+t_1s)\dots(1+t_qs)}{s^m(1+\tau_1s)\dots(1+\tau_rs)} = \frac{K_m(1+b_1s+\dots+b_qs^q)}{s^m(1+a_1s+\dots+a_rs^r)}$$

Polos em MA: s = 0, com multiplicidade m, e $s = -\frac{1}{\tau_i}$, i = 1, ..., r.

Zeros em MA:
$$s = -\frac{1}{t_j}, j = 1, ..., q.$$

O erro de acompanhamento do sistema em MF em regime permanente pode ser obtido pela aplicação do teorema do valor final:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} sS(s)R(s) = \lim_{s \to 0} \frac{sR(s)}{1 + L(s)}$$

Note que:

$$\frac{sR(s)}{1+L(s)} = \frac{(1+a_1s+\ldots+a_rs^r)s^{m+1}R(s)}{s^m(1+a_1s+\ldots+a_rs^r)+K_m(1+b_1s+\ldots+b_qs^q)}$$

Assim, quando o limite existir:

$$\lim_{t \to \infty} e(t) = \begin{cases} \frac{1}{1+K_0} \left[\lim_{s \to 0} sR(s) \right] & \text{se } m = 0 \\ \frac{1}{K_m} \left[\lim_{s \to 0} s^{m+1}R(s) \right] & \text{se } m \ge 1 \end{cases}$$

Para um sinal de referência polinomial de grau k:

$$r(t) = R_0 + R_1 t + R_2 \frac{t^2}{2} + \ldots + R_k \frac{t^k}{k!}$$

sabemos que:

$$R(s) = R_0 \frac{1}{s} + R_1 \frac{1}{s^2} + R_2 \frac{1}{s^3} + \ldots + R_k \frac{1}{s^{k+1}}$$

Para um sistema do *tipo zero*:

$$\lim_{t \to \infty} e(t) = \begin{cases} \frac{R_0}{1 + K_0} & \text{se } k = 0\\ \infty & \text{se } k \ge 1 \end{cases}$$

Um sistema do *tipo zero* é capaz de seguir, em malha fechada, um *sinal de referência constante* (*entrada degrau*) com *erro de acompanhamento finito em regime permanente*.

Para um sistema do *tipo* $m \ge 1$:

$$\lim_{t \to \infty} e(t) = \begin{cases} 0 & \text{se } k < m \\ \frac{R_m}{K_m} & \text{se } k = m \\ \infty & \text{se } k > m \end{cases}$$

Um sistema do *tipo* $m \ge 1$ é capaz de seguir, em malha fechada, um *sinal de referência polinomial*:

- de grau igual ou inferior a (m-1) com erro de acompanhamento nulo em regime permanente.
- de grau igual a m com erro de acompanhamento finito em regime permanente.

Métodos de sintonia para controladores PID

1. Métodos de Ziegler-Nichols

$$G_c(s) = K_c \left(1 + \frac{1}{\tau_i s} + \tau_d s \right)$$

Os métodos de Ziegler-Nichols são:

• método da curva de reação (ou curva "S");

• método do ganho crítico terminal (Tab. 1).

Consultem as notas de aula do Prof. Dr. Flávio C. Trigo

TABELA 1. Parâmetros dos controladores sintetizados via método do ganho crítico Ku

Controlador	K _c	$ au_I$	$ au_D$
Р	$0.5K_u$	-	-
PI	$0.45K_u$	$P_{u}/1.2$	-
PID	$0.6K_u$	$P_u/2$	$P_u/8$

2. Sintonia via critérios de desempenho globais – ITAE e variantes

Consultem as notas de aula do Prof. Dr. Flávio C. Trigo.

Método do Lugar das Raízes

1. Funções de transferência em malha aberta e malha fechada

Canal direto:
$$E(s) \mapsto Y(s)$$

 $G(s) = G_{c}(s)G_{p}(s) = K_{G}\frac{N_{G}(s)}{D_{G}(s)}$

Malha aberta

$$L(s) = H(s)G(s) = K\frac{N_H(s)N_G(s)}{D_G(s)D_H(s)} = K\frac{N(s)}{D(s)}$$

Sensibilidade:
$$R(s) \mapsto E(s)$$

 $S(s) = \frac{1}{1 + L(s)} = \frac{D(s)}{D(s) + KN(s)} = \frac{D(s)}{B(s)}$

Malha fechada: $R(s) \mapsto Y(s)$ $T(s) = G(s)S(s) = \frac{KN_G(s)D_H(s)}{D(s) + KN(s)} = \frac{A(s)}{B(s)}$

2. Polos e zeros em malha aberta e malha fechada

	Polos	Zeros
Malha aberta	D(s) = 0	N(s) = 0
Malha fechada	B(s)=0	A(s)=0

O número complexo s é um polo em malha fechada se, e somente se:

$$B(s) = 0 \quad \Leftrightarrow \quad D(s) + KN(s) = 0 \quad \Leftrightarrow \quad \frac{1}{K}D(s) + N(s) = 0$$

Se $K \to 0$, os polos em malha aberta se tornam polos em malha fechada. Se $K \to \infty$, os zeros em malha aberta se tornam polos em malha fechada. Assim, um número complexo s só poderá ser um *polo em malha fechada* se existir um número real $0 < K < \infty$ tal que:

$$\frac{N(s)}{D(s)} = -\frac{1}{K} \quad \Rightarrow \quad \left|\frac{N(s)}{D(s)}\right| = \frac{1}{K} \quad e \quad \underline{/N(s)} - \underline{/D(s)} \equiv 180^{\circ}$$

As condições necessárias para que *s* seja um *polo em malha fechada* podem ser verificadas a partir da *função de transferência em malha aberta*.

3. Lugar das raízes

Seja
$$L(s) = K \frac{N(s)}{D(s)}, K > 0$$
, a função de transferência em malha aberta.

O *lugar das raízes* é o conjunto das possíveis posições de *pólos em malha fechada* obtidos a partir da seleção de um valor para o ganho *K*, ou seja, o lugar geométrico dos $s \in \mathbb{C}$ tais que:

$$\underline{/L(s)} = \underline{/N(s)} - \underline{/D(s)} \equiv 180^{\circ}$$

 $\alpha \equiv \beta \iff \alpha - \beta = 360^{\circ}h$ para algum $h \in \mathbb{Z}$.

O exemplo abaixo ilustra o lugar das raízes da função de transferência do tipo m = 1:

$$L(s) = \frac{K(s+1)}{s(s-1)(s^2+4s+16)} = \frac{K(s+1)}{s^4+3s^3+12s^2-16s}$$

× polos de MA (n = 4) • zeros de MA (q = 2)

4. Função de transferência em malha aberta

A função de transferência em malha aberta de um sistema SISO do tipo m e de ordem n, com n = m + r, pode ser escrita nas seguintes formas:

$$L(s) = K_m \frac{(1+t_1s)\dots(1+t_qs)}{s^m(1+\tau_1s)\dots(1+\tau_rs)} = K \frac{(s-z_1)\dots(s-z_q)}{s^m(s-p_1)\dots(s-p_r)}$$

A relação entre as constantes K_m e K pode ser obtida tomando o limite de $s^m L(s)$ para $s \rightarrow 0$:

$$K_m = K \frac{(-z_1) \dots (-z_q)}{(-p_1) \dots (-p_r)} \quad \Leftrightarrow \quad K = K_m \frac{(-p_1) \dots (-p_r)}{(-z_1) \dots (-z_q)}$$

Note que tanto K quanto K_m podem ser escritas como um produto de constantes conhecidas de cada uma das funções de transferência que compõem L(s) e uma constante K_c a ser ajustada, vinda da função $G_c(s)$ do compensador.

Conforme vimos na aula 4.1, K_m está associada ao erro, em regime permanente, de acompanhamento de referência do sistema em malha fechada.

5. Avaliação geométrica de funções de transferência

Representando a FTMA do sistema na forma:

$$L(s) = K \frac{(s-z_1)\dots(s-z_q)}{s^m(s-p_1)\dots(s-p_r)}$$

pode-se interpretar cada termo da forma (s - b) como um vetor posição de $s \in \mathbb{C}$ relativo à origem $b \in \mathbb{C}$. Representando em forma polar:

$$(s-b) = |s-b| / (s-b)$$

entende-se que |s - b| é o tamanho do vetor e /s - b o ângulo formado com o eixo real (medido no sentido anti-horário). Assim, para K > 0:

$$|L(s)| = |K| \frac{|s - z_1| \dots |s - z_q|}{|s|^m |s - p_1| \dots |s - p_r|}$$

$$\underline{/L(s)} = -\underline{m/s} + \underline{/s - z_1} + \dots + \underline{/s - z_q} - \underline{/s - p_1} - \dots - \underline{/s - p_r}$$

6. Lugar das raízes - propriedades

• O diagrama é simétrico com respeito ao eixo real e o número total de ramos observados é igual ao número n de polos de malha aberta.

2 Cada um dos *n* ramos *parte de um polo de malha aberta, com K* \rightarrow 0. Destes, *q* ramos *terminam em um zero de malha aberta, com K* $\rightarrow \infty$ e outros (*n* – *q*) *ramos tendem ao infinito, seguindo assíntotas retiliníneas*:

• que se interceptam no ponto: $\overline{\sigma} = \frac{p_1 + \ldots + p_r - z_1 - \ldots - z_q}{n - q}$

• que formam com o eixo real ângulos da forma: $\alpha_k = 180^{\circ} \frac{(2k+1)}{n-a}$

com q sendo o número de zeros de malha aberta.

• Um *ponto s sobre o eixo real* pertence ao lugar das raízes se, e somente se, o *número total de polos e zeros reais à direita de s for ímpar*. Pólos e zeros repetidos devem ser contabilizados de acordo com sua multiplicidade algébrica.

Demonstração Θ – considerando $s \in \mathbb{R}$:

- se *b* e *b* são um par de polos ou zeros conjugados (*não-reais*), a contribuição líquida do par (*s* − *b*) e (*s* − *b*) para /*L*(*s*) é nula pois /*s* − *b* = −/*s* − *b*;
- para um polo ou zero $a \in \mathbb{R}$, <u>/s a</u> será 180°, se s < a, ou 0°, se s > a.

Assim, um número total ímpar de polos e zeros à direita de $s \in \mathbb{R}$ garante que /L(s) será um múltiplo ímpar de 180°, o que é a condição suficiente para *s* pertencer ao lugar das raízes.

O exemplo acima ilustra o lugar das raízes da função de transferência do tipo m = 2:

$$L(s) = K \frac{(s+1)(s+3.5)}{s^2(s+2)(s+2.5)(s^2+3s+3)}$$

que tem n = 6 polos (×) e q = 2 zeros (•). Note que como n - q = 4, o diagrama possui 4 assíntotas que formam ângulos de ± 45° e ± 135° com o eixo real.

④ Os *pontos de separação* são caracterizados pela chegada ou saída do eixo real de dois ou mais ramos do diagrama, sempre formando um *ângulo reto* com o eixo real. Ocorrem quando, para algum valor de K > 0, $s \in \mathbb{R}$ é uma raiz múltipla de B(s) = D(s) + KN(s) = 0, ou seja:

$$\begin{cases} D(s) + KN(s) = 0\\ D'(s) + KN'(s) = 0 \end{cases} \iff \frac{D'(s)}{D(s)} = \frac{N'(s)}{N(s)} \iff \frac{dL(s)}{ds} = 0 \end{cases}$$

• Os pontos de cruzamento com o eixo imaginário, se existirem, podem ser determinados a partir da *tabela de Routh*.

③ O ângulo ϕ_i (ψ_i) que um ramo forma com a horizontal ao *partir de um polo de malha aberta* p_i (*chegar a um zero de malha aberta* z_i) é dado por:

$$\phi_{i} = \lim_{s \to p_{i}} \underline{/s - p_{i}} \equiv 180^{\circ} - \underline{m/p_{i}} + \sum_{k} \underline{/p_{i} - z_{k}} - \sum_{l \neq i} \underline{/p_{i} - p_{l}}$$
$$\psi_{i} = \lim_{s \to z_{i}} \underline{/s - z_{i}} \equiv -180^{\circ} + \underline{m/z_{i}} - \sum_{k \neq i} \underline{/z_{i} - z_{k}} + \sum_{l} \underline{/z_{i} - p_{l}}$$

O exemplo abaixo ilustra o lugar das raízes da função de transferência do tipo m = 1:

$$L(s) = \frac{K(s+1)}{s(s-1)(s^2+4s+16)} = \frac{K(s+1)}{s^4+3s^3+12s^2-16}$$

- $n = 4 \text{ polos } (\times) \text{ em } p_0 = 0, p_1 = 1, p_{2,3} = -2 \pm 2\sqrt{3} \text{ j}$
- $q = 1 \text{ zero } (\bullet) \text{ em } z_1 = -1$
- n q = 3 assíntotas formando $\pm 60^{\circ}$ e 180° com o eixo real e se interceptando no ponto:

$$\bar{\sigma} = \frac{(1-2-2)-(-1)}{3} = -\frac{2}{3}$$

Os pontos de separação são as raízes reais de:

$$\frac{4s^3 + 9s^2 + 24s - 16}{s^4 + 3s^3 + 12s^2 - 16s} = \frac{1}{s+1} \quad \Rightarrow \quad \begin{cases} s = -2.263\\ s = 0.448 \end{cases}$$

O ângulo que o ramo forma com a horizontal ao partir do polo $p_2 = -2 + 2\sqrt{3}$ j é:

$$\phi_2 = 180^\circ - 1/\underline{p_2} + \underline{p_2 - z_1} - \underline{p_2 - p_1} - \underline{p_2 - p_3}$$
$$= 180^\circ - 120^\circ + 106^\circ - 131^\circ - 90^\circ = -55^\circ$$

Tabela de Routh para $B(s) = s^4 + 3s^3 + 12s^2 + (K - 16)s + K$ s⁴ 12 1 Κ s^3 3 K - 1652 - K s^2 K $-832 + 59K - K^2$ s^1 52 - K s^0 Κ

Para a estabilidade em malha fechada, deve-se ter:

--~ --

$$52 - K > 0 \implies K < 52$$

- $832 + 59K - K^2 > 0 \implies 23.32 < K < 35.68$

Em ambos os valores críticos, $K_{min} = 23.32 \text{ e} K_{max} = 35.68$, a linha s¹ da tabela de Routh se torna identicamente nula, ou seja, os pontos de cruzamento com o eixo imaginário também são raízes do polinômio auxiliar definido na linha s^2 :

$$\frac{52 - K}{3}s^2 + K = 0 \implies s = \pm j \sqrt{\frac{3K}{52 - K}} \implies \begin{cases} s = \pm 1.562 \, j \quad (K_{\min} = 23.32) \\ s = \pm 2.562 \, j \quad (K_{\max} = 35.68) \end{cases}$$

7. Efeito da adição de polos e zeros

Heurística: a presença de um *zero* em L(s) *"atrai" para si os ramos* do lugar das raízes; a presença de um polo em L(s), "repele" tais ramos.

Diagrama original (esquerda); com adição de um zero em s = -2 (centro); com adição de um polo em s = -2(direita).

Síntese de compensadores PI, PD e PID via lugar das raízes

Considerando um ganho estritamente proporcional, as raízes de malha fechada devem satisfazer à seguinte condição:

$$1 + K_p \underbrace{\frac{N(s)}{D(s)}}_{L_0(s)} = 0$$

A construção do lugar das raízes deve ser então feita usando $L_0(s)$ como FTMA, visando um ajuste inicial para K_p .

1. Síntese de um compensador PI

Podemos agora trocar o controlador proporcional (P) por um proporcional-integral (PI), de tal forma que a nova FTMA se torna:

$$L_{\text{PI}}(s) = \left(K_p + \frac{K_i}{s}\right) \frac{N(s)}{D(s)}$$

Assim, as novas raízes em malha fechada serão dadas por:

$$1 + L_{PI}(s) = 0$$

$$1 + K_p \frac{N(s)}{D(s)} + K_i \frac{N(s)}{sD(s)} = 0$$

$$s[D(s) + K_p N(s)] + K_i N(s) = 0$$

$$1 + K_i \underbrace{\frac{N(s)}{s[D(s) + K_p N(s)]}}_{L_1(s)} = 0$$

O ajuste de K_i pode ser feito por meio da análise do lugar das raízes, usando $L_1(s)$ como FTMA. Assim pode-se calcular T_i pela expressão:

$$T_i = \frac{K_p}{K_i}$$

Assumindo os valor calculados para *T_i*, pode-se fazer um ajuste fino para *K_c*:

$$L_{\rm PI}(s) = K_c \left(1 + \frac{1}{T_i s}\right) \frac{N(s)}{D(s)}$$

As raízes de malha fechada serão dadas por:

$$1 + L_{PI}(s) = 0$$

$$1 + K_c \left(1 + \frac{1}{T_i s}\right) \frac{N(s)}{D(s)} = 0$$

$$1 + K_c \underbrace{\frac{(1 + T_i s)N(s)}{sT_i D(s)}}_{L_2(s)} = 0$$

O ajuste de K_c pode ser feito por meio da análise do lugar das raízes, usando $L_2(s)$ como FTMA.

2. Síntese de um compensador PID

Podemos agora trocar o controlador proporcional-integral (PI) por um proporcional-integralderivativo (PID), de tal forma que a nova FTMA se torna:

$$L_{\text{PID}}(s) = \left(K_p + \frac{K_i}{s} + K_d s\right) \frac{N(s)}{D(s)}$$

Assim, as novas raízes em malha fechada serão dadas por:

$$1 + L_{\text{PID}}(s) = 0$$

$$1 + K_p \frac{N(s)}{D(s)} + K_i \frac{N(s)}{sD(s)} + \frac{K_d s N(s)}{D(s)} = 0$$

$$sD(s) + (K_p s + K_i)N(s) + K_d s^2 N(s) = 0$$

$$1 + K_d \underbrace{\frac{s^2 N(s)}{sD(s) + (K_p s + K_i)N(s)}}_{L_3(s)} = 0$$

O ajuste de K_d pode ser feito por meio da análise do lugar das raízes, usando $L_3(s)$ como FTMA. Assim pode-se calcular T_d pelas expressão:

$$T_d = \frac{K_d}{K_p}$$

Finalmente, assumindo os valores calculados para T_i e T_d , pode-se fazer um ajuste fino para K_c :

$$L_{\text{PID}}(s) = K_c \left(1 + \frac{1}{T_i s} + T_d s \right) \frac{N(s)}{D(s)}$$

As raízes de malha fechada serão dadas por:

$$1 + L_{\text{PID}}(s) = 0$$

$$1 + K_c \left(1 + \frac{1}{T_i s} + T_d s\right) \frac{N(s)}{D(s)} = 0$$

$$1 + K_c \underbrace{\frac{(1 + T_i s + T_d T_i s^2)N(s)}{sT_i D(s)}}_{L_4(s)} = 0$$

O ajuste de K_c pode ser feito por meio da análise do lugar das raízes, usando $L_4(s)$ como FTMA.

3. Síntese de um compensador PD

Podemos agora trocar o controlador proporcional (P) por um proporcional-derivativo (PD), de tal forma que a nova FTMA se torna:

$$L_{\rm PD}(s) = \left(K_p + K_d s\right) \frac{N(s)}{D(s)}$$

Assim, as novas raízes em malha fechada serão dadas por:

$$1 + L_{PD}(s) = 0$$

$$1 + K_p \frac{N(s)}{D(s)} + \frac{K_d s N(s)}{D(s)} = 0$$

$$D(s) + K_p N(s) + K_d s N(s) = 0$$

$$1 + K_d \underbrace{\frac{s N(s)}{D(s) + K_p N(s)}}_{L_5(s)} = 0$$

O ajuste de K_d pode ser feito por meio da análise do lugar das raízes, usando $L_5(s)$ como FTMA. Assim pode-se calcular T_d pelas expressão:

$$T_d = \frac{K_d}{K_p}$$

Finalmente, assumindo os valor calculado para T_d , pode-se fazer um ajuste fino para K_c :

$$L_{\rm PD}(s) = K_c \left(1 + T_d s\right) \frac{N(s)}{D(s)}$$

As raízes de malha fechada serão dadas por:

$$1 + L_{PD}(s) = 0$$

1 + K_c
$$\underbrace{\frac{(1 + T_d s) N(s)}{D(s)}}_{L_6(s)} = 0$$

O ajuste de K_c pode ser feito por meio da análise do lugar das raízes, usando $L_6(s)$ como FTMA.

Síntese de compensadores de avanço e atraso de fase via lugar das raízes

1. Compensador de avanço de fase

Um compensador de avanço de fase tem uma função de transferência da forma:

$$G_c(s) = \frac{1+Ts}{1+\alpha Ts} = \frac{1}{\alpha} \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}} = \frac{1}{\alpha} \frac{s-z_c}{s-p_c} \quad \text{com} \quad 0 < \alpha < 1$$

Tal compensador adiciona ao sistema um polo, em $s = p_c = -\frac{1}{\alpha T}$ e um zero em $s = z_c = -\frac{1}{T}$, com $p_c < z_c$, sem alterar o valor de $K_m = \lim_{s \to 0} s^m L(s)$ do sistema.

Observando sua *resposta em frequência*, nota-se que o *avanço de fase* ocorre em todo o espectro de frequência, tendo seu valor máximo dado por:

$$\phi_m = \arcsin\left(\frac{1-\alpha}{1+\alpha}\right) \quad \text{em} \quad \omega_m T = \frac{1}{\sqrt{\alpha}}$$

Em termos de ganho, este tipo de compensador tem características de um filtro passa-altas:

- não há praticamente nenhum aumento no ganho para $\omega T \ll 1$;
- o ganho é amplificado em +10 $|\log_{10} \alpha|$ dB para $\omega_m T = \frac{1}{\sqrt{\alpha}}$;
- o ganho é amplificado em +20 | $\log_{10} \alpha$ | dB para $\omega T \gg \frac{1}{\alpha}$.

1.1. Síntese de um compensador de avanço de fase. Consideremos novamente a função de transferência de malha aberta do exemplo A-6-19 de OGATA (2001)¹, que modela *piloto automático para o modo longitudinal (pitch) de um avião*:

$$L(s) = G(s)H(s) = \frac{K(s+a)}{s(s-b)(s^2 + 2\zeta\omega_n s + \omega_n^2)} = K\frac{N(s)}{D(s)}$$

com:

$$N(s) = (s + a)$$

$$D(s) = s(s - b)(s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2})$$

Adote-se a = b = 1, $\zeta = 0.5$ e $\omega_n = 4$:

$$L(s) = \frac{K(s+1)}{s(s-1)(s^2+4s+16)}$$

Neste caso, o sistema é do tipo 1, tendo um zero em $z_1 = -1$ e quatro polos em $p_0 = 0$ (multiplicidade algébrica 1), $p_1 = +1$ e $p_{2,3} = -2 \pm 2\sqrt{3}j$.

Vamos tentar projetar um compensador de avanço de fase que leve os polos dominantes do sistema em malha fechada para a posição $\bar{p}_{1,2} = -0.4 \pm 1$ j.

Usando a função de transferência do sistema não compensado $L_0(s) = \frac{N(s)}{D(s)}$ verifica-se que, para o polo $\bar{p}_1 = -0.4 + 1$ j o valor de $/L_0(p_1)$ é igual a 149.5°. Ou seja, para que o polo desejado faça parte do lugar das raízes, é necessário um avanço de fase $\varphi = 180^\circ - 149.5^\circ = 30.5^\circ$.

¹OGATA, K. (2001) Modern Control Engineering, 4th ed., Pearson.

Uma regra prática para a alocação do zero z_c e do polo p_c do compensador que maximiza o valor de α (ou seja, maximiza o ganho em alta frequência) consiste em adotar:

$$z_c = \operatorname{Re}(\bar{p}_1) - \frac{\operatorname{Im}(\bar{p}_1)}{\tan\left(\frac{\bar{\psi}_1 + \varphi}{2}\right)}$$
$$p_c = \operatorname{Re}(\bar{p}_1) - \frac{\operatorname{Im}(\bar{p}_1)}{\tan\left(\frac{\bar{\psi}_1 - \varphi}{2}\right)}$$

 $\operatorname{com}\psi_1=\underline{/\bar{p}_1}.$

Assim, os valores de *T* e α podem ser calculados como:

$$T = -\frac{1}{z_c}$$
 e $\alpha = \frac{z_c}{p_c}$

A nova função de transferência de malha aberta, com o compensador de avanço projetado, é dada por:

$$L_1(s) = K_c \underbrace{\frac{1}{\alpha} \frac{(s - z_c)}{(s - p_c)}}_{\text{avanco}} \frac{N(s)}{D(s)}$$

O ganho K_c para que $\bar{p}_{1,2}$ sejam efetivamente polos em malha fechada pode então ser calculado a partir da condição $L_1(\bar{p}_1) = -1$, ou seja:

$$\frac{K_c}{\alpha} \left| \frac{(\bar{p}_1 - z_c)}{(\bar{p}_1 - p_c)} \frac{N(\bar{p}_1)}{D(\bar{p}_1)} \right| = 1 \quad \Rightarrow \quad K_c = \alpha \left| \frac{(\bar{p}_1 - p_c)}{(\bar{p}_1 - z_c)} \frac{D(\bar{p}_1)}{N(\bar{p}_1)} \right|$$

2. Compensador de atraso de fase

Um compensador de atraso de fase tem uma função de transferência da forma:

$$G_{g}(s) = \frac{1+Ts}{1+\beta Ts} = \frac{1}{\beta} \frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}} = \frac{1}{\beta} \frac{s-z_{g}}{s-p_{g}} \quad \text{com} \quad \beta > 1$$

Tal compensador adiciona ao sistema um polo, em $s = p_g = -\frac{1}{\beta T}$ e um zero em $s = z_g = -\frac{1}{T}$, com $z_g < p_g$, sem alterar o valor de $K_m = \lim_{s \to 0} s^m L(s)$ do sistema.

Observando sua *resposta em frequência*, nota-se que o *atraso de fase* ocorre em todo o espectro de frequência. Em termos de *ganho*, este tipo de compensador tem características de um filtro *passa-baixas*:

- não há praticamente nenhuma redução no ganho para $\omega T \ll \frac{1}{\beta}$;
- o ganho é atenuado em $-20 |\log_{10} \beta| dB$ para $\omega T \gg 1$.

O atraso de fase em si não é um efeito desejável (veremos adiante que *atrasos podem ser prejudiciais à estabilidade* do sistema em malha fechada).

No entanto, a presença deste tipo de compensador torna possível aumentar o ganho K_m do sistema (*reduzindo erros de acompanhamento de referência*) sem afetar de forma significativa a resposta do sistema em alta frequência.

A configuração tipicamente escolhida para o *compensador de atraso* é um *dipolo*, ou seja, escolhem-se $z_g e p_g \operatorname{com} \frac{z_g}{p_g} = \beta$ tais que, sendo \bar{p} um *polo dominante* do sistema em malha fechada:

$$\left|\bar{p}-z_{g}\right| \approx \left|\bar{p}-p_{g}\right| \quad \Rightarrow \quad |G_{c}(\bar{p})| \approx \frac{1}{\beta}$$

Desta forma, ao inserirmos na malha de controle um compensador de atraso, podemos amplificar $K_m \text{ em } \beta$ vezes, reduzindo erros de acompanhamento de referência e mantendo praticamente inalterada a resposta do sistema em alta frequência.

2.1. Síntese de um compensador de atraso. Voltando ao exemplo anterior, vamos avaliar como reduzir em 10 vezes o erro de acompanhamento do sistema.

Partimos da função de transferência em malha aberta já com o compensador de avanço:

$$L_1(s) = K_c \underbrace{\frac{1}{\alpha} \frac{(s - z_c)}{(s - p_c)}}_{\text{avanço}} \frac{N(s)}{D(s)}$$

e a modificamos para a forma:

$$L_2(s) = \overbrace{\beta K_c}^{\text{ganho}} \underbrace{\frac{1}{\beta} \frac{(s - z_g)}{(s - p_g)}}_{\text{atraso}} \underbrace{\frac{1}{\alpha} \frac{(s - z_c)}{(s - p_c)}}_{\text{avanço}} \frac{N(s)}{D(s)}$$

Resposta em frequência e margens de estabilidade de um sistema SISO

As características da resposta em malha fechada de um sistema SISO podem ser inferidas a partir da análise da função de transferência em malha aberta:

$$L(s) = G(s)H(s) = K\frac{N(s)}{D(s)}$$

com:

• *G*(*s*) sendo a função de transferência equivalente ao canal direto;

• *H*(*s*) sendo a função de transferência equivalente ao canal de realimentação.

Em particular, sabemos que a função de transferência em malha fechada é dada por:

$$T(s) = \frac{G(s)}{1 + L(s)}$$

Assim, a condição necessária para que um valor de $s \in \mathbb{C}$ seja um *polo do sistema em malha fechada* é:

$$1 + L(s) = 0 \implies |L(s)| = 1 \quad e \quad /L(s) \equiv 180^{\circ}$$

A análise da condição $/L(s) \equiv 180^{\circ}$ leva à construção do *lugar das raízes*.

Veremos agora como a análise da resposta em frequência $L(j\omega)$ para $\omega \ge 0$ pode nos fornecer informações acerca da resposta do sistema em malha fechada, podendo assim ser usada como critério de projeto de compensadores.

1. Resposta em frequência e margens de estabilidade

Uma das formas que conhecemos para visualizar $L(j\omega)$, $\omega > 0$ é por meio dos *diagramas de Bode* que representam:

- $20 \log_{10} |L(j\omega)|$ (em escala dB) vs. ω (em escala logaritimica)
- $/L(j\omega)$ (em graus) vs. ω (em escala logaritimica)

Se estivessemos em uma situação de *ganho crítico*, o sistema teria polos sobre o eixo imaginário, ou seja, para algum $\omega > 0$:

$$L(j\omega) = -1 \implies 20 \log_{10} |L(j\omega)| = 0 \quad e \quad /L(j\omega) \equiv 180^{\circ}$$

Em outras palavras, para algum valor de ω deveríamos ter *simultaneamente* o gráfico de magnitude cruzando o limiar de o dB e o gráfico de fase cruzando o limiar de -180° .

Nos exemplos mostrados, seja adotando um ganho proporcional K = 30 ou o compensador PID, a resposta do sistema em malha fechada é estável, o que nos permite identificar:

- ω_{ϕ} : frequência de ganho crítico (*gain crossover*) para a qual $20 \log_{10} |L(j\omega_{\phi})| = 0 \text{ dB}$;
- ω_c : frequência de fase crítica (*phase crossover*), para a qual $/L(j\omega_c) = -180^\circ$.

Estaremos em uma situação de ganho crítico, portanto, se $\omega_{\phi} = \omega_c$. Caso contrário, dispomos de *margens de estabilidade* para *variação de ganho* ou *atrasos em fase* sem que a estabilidade nominal do sistema esteja comprometida. Definimos assim as margens de ganho e fase:

• Margem de ganho (GM):

$$GM = \frac{1}{|L(j\omega_c)|}$$
 ou $GM(dB) = -20\log_{10}|L(j\omega_c)|$

• Margem de fase (PM):

$$PM = 180^{\circ} + /L(j\omega_{\phi})$$
 com $/L(j\omega_{\phi}) < 0$

Outra forma de avaliar a estabilidade é por meio da resposta em frequência da *função de sensibilidade*:

$$S(j\omega) = \frac{1}{1 + L(j\omega)}$$

Em particular, o valor de $\omega = \omega_s$ para o qual $|S(j\omega)|$ é máximo, corresponde ao ponto do eixo imaginário cuja imagem por L(s) está o mais próximo possível do ponto crítico -1, uma vez que o valor $|1 + L(j\omega_s)|$ será mínimo.

2. Critério de Nyquist

Considere:

- N: número líquido de voltas no sentido-horário que a imagem de L(jω), -∞ < ω < +∞, dá ao redor do ponto s = −1;
- Z_R : número de zeros da função F(s) = 1 + L(s) no semi-plano direito;
- P_R : número de polos da função F(s) no semi-plano direito.

Como corolário do Princípio do Argumento de Cauchy, vale a seguinte relação:

$$N = Z_R - P_R$$

Observe que:

- os polos de *F*(*s*) coincidem com os polos de *L*(*s*), ou seja, são *polos em malha aberta*;
- os zeros de F(s) são os valores de $s \in \mathbb{C}$ tais que L(s) = -1, ou seja, são *polos em malha fechada*.

Assim, a equação acima pode ser interpretada como:

O número líquido *N* de *voltas no sentido horário* que a imagem de $L(j\omega)$, $-\infty < \omega < +\infty$, dá ao redor do ponto s = -1 é igual à *diferença entre o número de polos do sistema em malha fechada e o número de polos do sistema em malha aberta*.

Para a *estabilidade em malha fechada*, é necessário que $Z_R = 0$, ou seja:

$$N = -P_R$$

Em outras palavras:

- para um sistema já estável em malha aberta, a malha fechada será estável se a imagem de $L(j\omega)$, $-\infty < \omega < +\infty$, não contornar o ponto s = -1;
- para um sistema instável em malha aberta, a malha fechada será estável se o número de contornos no *sentido anti-horário* em torno do ponto s = -1 pela imagem de $L(j\omega)$, $-\infty < \omega < +\infty$, for exatamente igual ao número de polos instáveis em malha aberta.

3. Carta de Nichols

Alternativamente ao diagrama de Bode, que usa dois gráficos para representar $20 \log_{10} |L(j\omega)| (dB)$ vs. $\omega e /L(j\omega)$ (°) vs. ω , a carta de Nichols é um diagrama da forma $20 \log_{10} |L(j\omega)| (dB)$ vs. $/L(j\omega)$.

Para um sistema estável em malha fechada, a curva do diagrama deverá passar à direita do ponto $(\pm 180^\circ, 0 dB)$ mais próximo.

As linhas de grade da carta de Nichols permitem prever os valores de ganho 20 $\log_{10} |T(j\omega)|$ (dB) e fase $/T(j\omega)$ (°) da função de trasferência de malha fechada quando se admite *realimentação unitária*, ou seja, quando:

$$T(s) = \frac{G(s)}{1 + G(s)}$$

Especificações de projeto para compensadores de sistemas SISO

1. Especificações de polos dominantes para projeto via lugar das raízes

Caso o sistema em malha fechada possua um único polo dominante localizado em $\bar{p}_1 = -\frac{1}{\tau}$, seu comportamento pode ser aproximado por uma função de transferência equivalente de primeira ordem:

$$T(s) \approx \frac{1}{1+\tau s}$$

em que τ é a *constante de tempo*. Em termos de resposta a degrau, 5τ deve ser o tempo necessário para que a resposta y(t) se aproxime com erro inferior a 1% da referência escolhida.

Caso o sistema em malha fechada possua apenas um par de polos complexos conjugados dominantes $\bar{p}_{1,2} = -\sigma \pm j\omega$, seu comportamento em malha fechada pode ser aproximado por uma função de transferência equivalente de segunda ordem:

$$T(s) \approx \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

em que $\omega_n = \sqrt{\sigma^2 + \omega^2}$ é a *frequência natural* (não-amortecida) e $\zeta = \frac{\sigma}{\omega_n}$ é a *razão de amortecimento*.

A resposta de um sistema de segunda ordem a uma referência degrau pode ser caracterizada por:

(a) tempo de subida (t_r) – tempo requerido para que a resposta a um degrau unitário suba de y = 0.1 a y = 0.9:

$$t_r \approx \frac{1 + 1.1\zeta + 1.4\zeta^2}{\omega_n}$$

Para um sistema linear em geral (não necessariamente de segunda ordem), o tempo de subida (*rise time*) é inversamente proprocional à largura de banda (*bandwidth*).

(b) tempo de acomodação (t_s) – tempo requerido para que a resposta a um degrau unitário atinja e permaneça em um intervalo 1 - f < y < 1 + f com f sendo uma fração, cujos valores típicos são f = 0.05 (5%) ou f = 0.02 (2%).

$$t_s = -\frac{1}{\zeta \omega_n} \ln\left(f\sqrt{1-\zeta^2}\right)$$

Em particular, para $\zeta \ll 1$ e f = 0.02, uma boa aproximação consiste em tomar:

$$t_s \approx \frac{4}{\zeta \omega_n}$$

(c) tempo de pico (*t_p*) – tempo necessário para que a resposta a um degrau unitário atinja seu valor máximo.

$$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

(d) sobressinal ou *overshoot* (M_p) – quanto o valor máximo observado para a saída excede o degrau unitário

$$M_p = y(t_p) - 1 = \exp\left(\frac{-\zeta \pi}{\sqrt{1 - \zeta^2}}\right)$$

A partir desta equação, podemos expressar a razão de amortecimento como:

$$\zeta = \frac{-\ln\left(M_p\right)}{\sqrt{\pi^2 + \ln^2\left(M_p\right)}}$$

2. Especificações de margem de estabilidade para projeto via diagrama de Bode

2.1. Compensador de avanço de fase.

$$G_c(s) = \frac{1 + \tau_c s}{1 + \alpha \tau_c s} = \frac{1}{\alpha} \frac{s + \frac{1}{\tau_c}}{s + \frac{1}{\alpha \tau_c}}, \quad 0 < \alpha < 1$$

<u>PASSO 1</u> – determinar a margem de fase do sistema não-compensado. <u>PASSO 2</u> – Determine a fase ϕ_m a ser avançada, admitindo uma margem de segurança (tipicamente +5°) e calcule o respectivo valor de α .

$$\phi_m = \arcsin\left(\frac{1-\alpha}{1+\alpha}\right) \quad \text{em} \quad \omega_m \tau_c = \frac{1}{\sqrt{\alpha}} \quad \Rightarrow \quad \alpha = \frac{1+\sin\phi_m}{1-\sin\phi_m}$$

<u>PASSO 3</u> – Determine a frequência ω_m no gráfico do sistema não-compensado, onde se observa uma magnitude de $\sqrt{\alpha}$ (ou –10|log₁₀ α | dB).

<u>PASSO 4</u> – Calcule τ_c e conclua o projeto do compensador.

2.2. Compensador em atraso de fase.

$$G_g(s) = \frac{1 + \tau_g s}{1 + \beta \tau_g s} = \frac{1}{\beta} \frac{s + \frac{1}{\tau_g}}{s + \frac{1}{\beta \tau_g}}, \quad \beta > 1$$

O compensador de atraso neste caso, vai atuar reduzindo o valor de ω_c , com o objetivo de colocá-lo nesta faixa de frequências em que se observa o maior valor de $180^\circ + /L_1(j\omega)$, o que maximiza o valor da margem de fase (PM = $180^\circ + /L_1(j\omega_c)$).

<u>PASSO 1</u> – Avaliar o diagrama de Bode da malha aberta ainda sem compensador de atraso. <u>PASSO 2</u> – A partir da margem de fase desejada, admitindo uma margem de segurança (tipicamente $+5^{\circ}$), encontre o valor da nova frequência de corte.

<u>PASSO 3</u> – Obter τ_g considerando que o zero do compensador esteja, em módulo, uma década abaixo de ω_c , ou seja:

$$\frac{1}{\tau_g} = 0.1\omega_c$$

<u>PASSO 4</u> – Obter β considerando que na freqûencia de corte ω_c , $|G_q(\omega_c)L_1(\omega_c)| = 1$, ou seja:

$$\left|\frac{1}{\beta}L_1(j\omega_c)\right| = 1 \quad \Rightarrow \quad \beta = |L_1(j\omega_c)| \quad (20\log_{10}\beta = 20\log_{10}|L_1(j\omega_c)|)$$