

10° Trabalho em Grupo - Estabilidade de sistemas de controle em malha fechada.

Grupo: 8

Nomes: Laura Bubenik Shabelamerence	a Viviane Freiton Amunçãos
100 1 A SOSEVIII ABOSTUS A FREE TO	1 Di Cia
Leanarda Augusta Vellas noma M. F. Contos	Lara Biaggi Circiano

1) Por meio da utilização do software Scilab, avalie a resposta do sistema em malha fechada frente a uma variação degrau de amplitude 5 no set point, empregando a estratégia de sintonia Ziegler-Nichols II. Adote as seguintes funções de transferência:

$$G_{p(s)} = \frac{3}{1+5*s}$$
 $G_{m(s)} = \frac{1}{1+2*s}$ $G_{f(s)} = \frac{0.5}{1+2*s}$

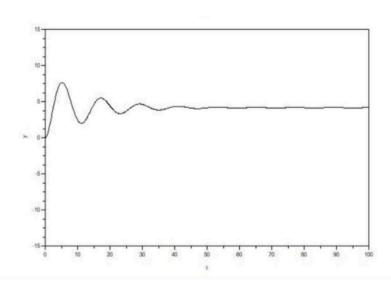
2) Avalie a estabilidade do processo empregando a estratégia de root locus no Scilab, a partir da multiplicação das funções de transferência (Gp*Gf*Gm). Discuta os resultados.

scilab-4.1.2

Copyright (c) 1989-2007 Consortium Scilab (INRIA, ENPC)

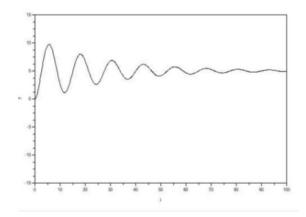
Questão 1,1

$$1 + Kc. \frac{3}{1+55} \cdot \frac{1}{1+25} \cdot \frac{0.5}{1+25}$$

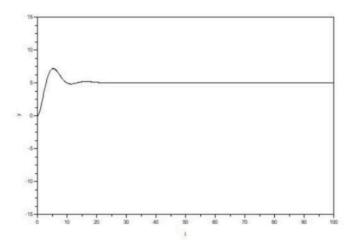

$$20.5^{3} + (10 + 10 + 4).5^{3} + (5 + 2 + 2)5 + 1 + 0.5 \text{ kc} = 0$$

$$w = + \sqrt{\frac{9}{20}}$$
 ... $w = + 0,67$ w cuties = 0,67

	kc	II	50	I
P	-3,265		,	
Pi	2,938	7,81	0,	0,37
PID	3)918	4,69	ग्रीन	0,83

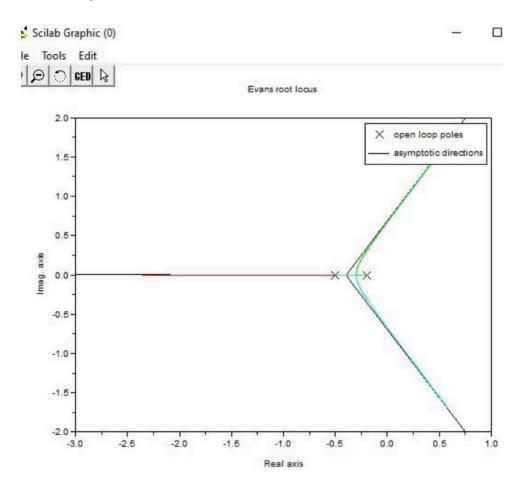

Proporciona	

W	4.2		7
		Valor máximo:	7,66E+03
1,00E+02	1,19E+01	Offset	41176,00
2,00E+02	4,66E+01		
3,00E+02	1,03E+02	а	3,51E+03
4,00E+02	1,78E+02	b	4150,00
5,00E+02	2,73E+02	Overshoot	8,46E-01
6,00E+02	3,84E+02		
7,00E+02	5,10E+02		
8,00E+02	6,51E+02		
9,00E+02	8,05E+02		
1,00E+03	9,71E+02		
1,10E+03	1,15E+03		
1,20E+03	1,33E+03		
1,30E+03	1,53E+03		


Proporcional Integral:

W	5	Valor máximo:	9,45E+03
1,00E+02	1,08E+01	Offset	-5025,00
2,00E+02	4,23E+01		
3,00E+02	9,35E+01	a	4,42E+03
4,00E+02	1,63E+02	b	5030,00
5,00E+02	2,50E+02	Overshoot	8,79E-01
6,00E+02	3,54E+02		
7,00E+02	4,73E+02		
8,00E+02	6,06E+02		
9,00E+02	7,53E+02		
1,00E+03	9,13E+02		
1,10E+03	1,08E+03		
1,20E+03	1,27E+03		

Proporcional Integral Derivativo:


W	5	Valor máximo:	9,28E+03
1,00E+02	1,44E+01	Offset	-4995.00
2,00E+02	5,68E+01		
3,00E+02	1,26E+02	а	4,28E+03
4,00E+02	2,19E+02	b	5000,00
5,00E+02	3,37E+02	Overshoot	8,56E-01
6,00E+02	4,76E+02		
7,00E+02	6,36E+02		
8,00E+02	8,15E+02		
9,00E+02	1,01E+03		
1,00E+03	1,22E+03		

Conclusão:

Para o sistema, escolhe-se como a melhor condição a que apresenta o menor valor de overshoot e o menor valor de offset. Assim, pelo método de substituição direta e Ziegler-Nichols 2, a melhor condição é o <u>Proporcional Integral Derivativo</u>.

Questão 2)

