10° Trabalho em Grupo – Estabilidade de sistemas de controle em malha fechada.

Grupo: 4

Nomes: Ana Carolina Perez Camargo	Beatriz da Cruz Biral	Cecilia Borges da Costa Pimentel
Giulia Venturini Cunha	Luis Foreste Iriarte	Maria Eduarda Lima de Oliveira

1) Por meio da utilização do software Scilab, avalie a resposta do sistema em malha fechada frente a uma variação degrau de amplitude 5 no set point, empregando a estratégia de sintonia Ziegler-Nichols II. Adote as seguintes funções de transferência:

Pelo método de substituição direta:

$$1 + kc \cdot \frac{3}{1+5s} \cdot \frac{1}{1+2s} \cdot \frac{0.5}{1+2s} = 0$$

$$(1+5s)\cdot (1+2s)^2 + 1,5kc = 0$$

$$1 + 9s + 24s^2 + 20s^3 + 1,5kc = 0$$

$$1 + 9wi + 24wi^2 + 20w^3i + 1,5kc = 0$$

$$1 + 9wi - 24w^2 - 20w^3i + 1,5kc = 0$$

Parte imaginária:

$$9wi - 20w^3i = 0$$

$$w(-20w^2 + 9) = 0$$

$$-20w^2 = -9 \text{ w}$$

$$w = \pm \sqrt{\frac{9}{20}} = \pm 0.67$$

$$w_{crítico} = 0,67$$

Substituindo w crítico na parte real:

$$-24w^2 + 1 + 1,5kc = 0$$

$$-24 \cdot 0,67^2 + 1 = -1,5kc$$

$$kc_{crítico} = 6,516$$

$$T_{crítico} = \frac{2\pi}{w \, crítico} = 9,38$$

Pelo método de sintonia Ziegler-Nichols 2:

$$kc = 0,6 \cdot kc_{crítico} = 0,6 \cdot 6,516 = 3,909$$

$$\tau_{I} = \frac{T_{crítico}}{2} = \frac{9,38}{2} = 4,69$$

$$\tau_D = \frac{T_{critico}}{8} = \frac{9,38}{8} = 1,1725$$

Obtendo os valores de P, I e D:

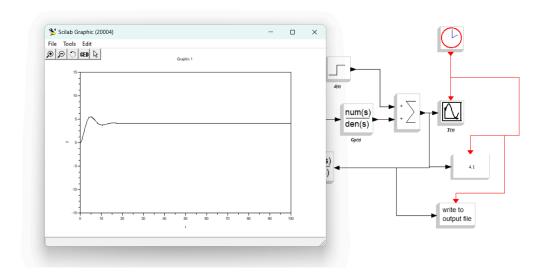
$$P = Kc = 3,909$$

$$I = \frac{Kc}{\tau_1} = \frac{3,909}{4,69} = 0,833$$

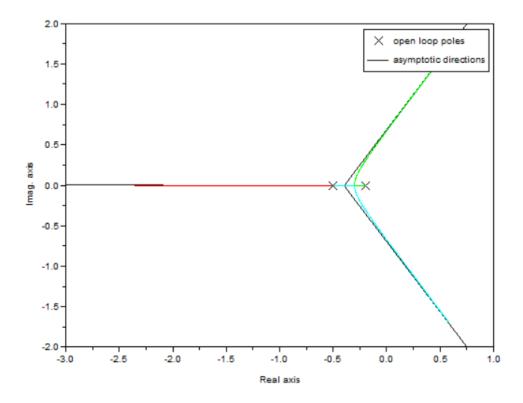
$$D = Kc \cdot \tau_D = 3,909 \cdot 1,1725 = 4,583$$

Realizou-se a simulação com amplitude 5 pelo software Scilab:

Setpoint atingido = 4,1


$$A = Pico - Setpoint atingido = 9,29 - 4,1 = 5,19$$

B = Setpoint atingido


Overshoot =
$$\frac{A}{B} = \frac{5,19}{4,1} = 1,27$$

$$Offset = Setpoint desejado - Setpoint atingido = 5 - 41 = 0,9$$

2) Avalie a estabilidade do processo empregando a estratégia de root locus no Scilab, a partir da multiplicação das funções de transferência (Gp*Gf*Gm). Discuta os resultados.

