10° Trabalho em Grupo – Estabilidade de sistemas de controle em malha fechada.

Grupo:

03

Nomes:

-					
	Aline Suzigan	Mariana Hiromi Yokota	Thalicia Alves de Oliveira		
	Julia Garavazo	Rafaela Caixeta Francisco	Yasmin G. Biassi		

1) Por meio da utilização do software Scilab, avalie a resposta do sistema em malha fechada frente a uma variação degrau de amplitude 5 no set point, empregando a estratégia de sintonia Ziegler-Nichols II. Adote as seguintes funções de transferência:

$$G_{p(s)} = \frac{3}{1+5\cdot s}$$

$$G_{p(s)} = \frac{3}{1+5\cdot s}$$
 $G_{m(s)} = \frac{1}{1+2\cdot s}$ $G_{f(s)} = \frac{0.5}{1+2\cdot s}$

$$G_{f(s)} = \frac{0.5}{1+2.5}$$

Resolução:

$$1 + G_{c(s)} \cdot G_{p(s)} \cdot G_{m(s)} \cdot G_{f(s)} = 0$$

$$1 + K_c \cdot \frac{3}{1+5\cdot s} \cdot \frac{1}{1+2\cdot s} \cdot \frac{0.5}{1+2\cdot s} = 0$$

$$2 + 18 \cdot s + 48 \cdot s^2 + 40 \cdot s^3 + 3 \cdot K_c = 0 \rightarrow \div 2$$

$$1 + 9 \cdot s + 24 \cdot s^2 + 20 \cdot s^3 + 1, 5 \cdot K_c = 0$$

Substituindo as raízes:

$$1 + 9 \cdot wi - 24 \cdot w^2 - 20 \cdot w^3i + 1, 5 \cdot K_c = 0$$

Parte real: $1 - 24 \cdot w^2 + 1, 5 \cdot K_c = 0$

Parte imaginária:
$$9 \cdot wi - 20 \cdot w^3i = 0 \rightarrow w = 0$$

$$-20w^2 + 9 = 0$$

Achando $w_{crítico}$:

$$W_{crítico} = \pm \sqrt{\frac{9}{20}} = \pm 0,6708$$

Achando $K_{c\,critico}$:

$$1 - 24 \cdot (0,6708)^2 + 1,5 \cdot K_c = 0$$

$$K_{c,critico} = 6,5329$$

Achando $T_{crítico}$:

$$T_{crítico} = \frac{2 \cdot \pi}{w_{crítico}}$$

$$T_{crítico} = \frac{2 \cdot \pi}{0,6708} = 9,3667$$

Tabela 1: Valores calculados

	K_{c}	$\tau_{_{I}}$ $\tau_{_{D}}$		Gráfico	
P	3,2664			1	
PI	2,9398	7,8056		2	
PID	3,9197	4,6834	1,1708	3	

Fonte: Própria autoria.

Considerando:

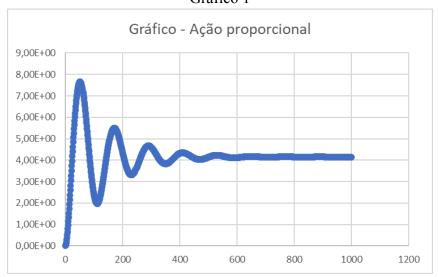
$$P = K_c$$
; $I_{PI} = \frac{K_c}{\tau_I} = 0,3766$; $I_{PID} = \frac{K_c}{\tau_I} = 0,8369$; $D = K_c \cdot \tau_D = 4,589$

$$I_{PID} = \frac{K_c}{\tau_i} = 0,8369;$$

$$D = K_c \cdot \tau_D = 4,589$$

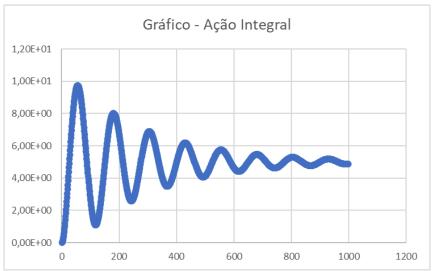
Obteve-se os gráficos:

Gráfico 1



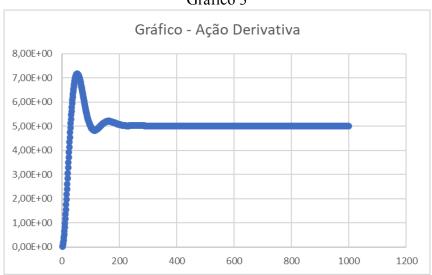
Fonte: Própria autoria.

Gráfico 2



Fonte: Própria autoria.

Gráfico 3



Fonte: Própria autoria.

Cálculo de overshoot e offset:

Tabela 2

Ke	P	τι	I	$ au_{ m D}$	D	Y(s)	offset	over sh oot
3,2664	3,2664	0	0	0	0	4,2	0,8	24,05
2,9398	2,9398	7,8056	0,3766	0	0	5	0	19,023
3,9197	3,9197	4,6834	0,8369	1,1708	4,5892	5	0	19,04

Fonte: Própria autoria.

A resposta dos gráficos expõe que o PID tem uma oscilação menor, apresentando um melhor desempenho. Como os valores de τ_I e τ_D não ultrapassam os valores críticos e têm valores positivos de *overshoot*, todos os sistemas podem ser considerados estáveis.

2) Avalie a estabilidade do processo empregando a estratégia de root locus no Scilab, a partir da multiplicação das funções de transferência (Gp*Gf*Gm). Discuta os resultados.

