## Physical Chemistry

... iremos explorar, refletir, aprender ?.

Area of chemistry concerned with the application of the techniques and theories of physics to the study of chemical systems.


## QF.DQB

## The activities of ions in solution

The quantity $a_{\wedge}$ is the activity of A , a kind of 'effective' concentration,

An experimental test of the Debye-Hückel limiting law.


$$
I=\frac{1}{2} \sum_{i} z_{i}^{2}\left(b_{i} / b^{\ominus}\right)
$$

Ionic strength


Debye-Hückel limiting law

$$
\log \gamma_{ \pm}=-\left|z_{+} z_{-}\right| A I^{1 / 2}
$$

The extended Debye-Hückel law

$$
\log \gamma_{ \pm}=-\frac{A\left|z_{+} z_{-}\right| I^{1 / 2}}{1+B I^{1 / 2}}+C I
$$

## QF.DQB

Phase diagrams

## Phase

state of matter that is uniform throughout

- chemical composition
- physical state


Fig. 6.1 The difference between (a) a singlephase solution, in which the composition is uniform on a microscopic scale, and (b) a dispersion, in which regions of one component are embedded in a matrix of a second component.

## Constituent of a system

chemical species (an ion or a molecule) that is present

## Component is a chemically independent constituent of a system. $C$

## Minimum number of independent species

necessary to define the composition of all the phases present in the system.

Constituent of a system chemical species (an ion or a molecule) that is present

```
# component = # Constituents - # constraints system
```



Mixture of ethanol and water has 2 constituents

$$
2 \text { Constituents - } 2 \text { component system }(\boldsymbol{C}=2-0=2)
$$

A solution of sodium chloride has $\mathbf{3}$ constituents: water, $\mathrm{Na}^{+}$ions, and $\mathrm{Cl}^{-}$ions

$$
\boldsymbol{C}=2=\mathbf{3} \text { (Constituents) }-1 \text { (constraints) }=\mathbf{2}
$$

Constraints= Charge balance, $\left|\mathrm{Na}^{+}\right|=\left|\mathrm{Cl}^{-}\right|$

## Phase diagrams

The variance, $\boldsymbol{F}$, of a system
number of intensive variables (e.g. pressure and temperature) that can be changed
independently without disturbing the number of phases in equilibrium.
phases
single-component, single-phase system ( $C=1, P=1$ ), $F=2$. system is bivariant, or that it has 2 degrees of freedom.
single-component, single-phase system $(C=1, P=2)$, $F=1$. system is univariant, or that it has 1 degrees of freedom.
single-component, single-phase system $(C=1, P=3)$, $F=0$. system is invariant, or that it has 0 degrees of freedom.


Temperature, $T$

## Phase diagrams

The variance, $F$, of a system
number of intensive variables (e.g. pressure and temperature) that can be changed independently without disturbing the number of phases in equilibrium.


$$
\mathrm{T}=0.01^{\circ} \mathrm{C} ; \mathrm{P}=611.657 \mathrm{~Pa}
$$

Triple Point of Water

https://www.nist.gov/video/triple-point-cell

## QF.DQB

## Phase diagrams




## Phase diagrams

$\mathrm{H}_{2} \mathrm{O}$

$\mathrm{CO}_{2}$


## Pure substances \& Mixtures

## PVT diagram



Why each compound have a different PVT surface profile?

- C-H- $\pi$ and $\pi-\pi$.. interactions
- H-bond
- Electrostatic .. interactions
- Molecular shape
- ...???



## Phase diagrams

The variance, $\boldsymbol{F}$, of a system
is the number of intensive variables (e.g. pressure and temperature) that can be changed independently without disturbing the number of phases in equilibrium.


## QF.DQB

## Phase diagrams

The variance, $F$, of a system
is the number of intensive variables (e.g. pressure and temperature) that can be changed independently without disturbing the number of phases in equilibrium.
J.W. Gibbs deduced the phase rule

$$
F=C-P+2 \quad C \# \text { Components }
$$

P \# Phases,

## intensive variables

The pressure, $\boldsymbol{p}$, and temperature, $\boldsymbol{T}$, count as 2 .
composition of a phase

$$
\boldsymbol{P}(C-1) \quad x_{1}+x_{2}+\cdots+x_{C}=1,(C-1) \quad \text { In each phase, } \boldsymbol{P}
$$

$$
F>P(C-1)+2
$$

Minus the Restrictions!!

## QF.DQB

## Phase diagrams

The variance, $\boldsymbol{F}$, of a system
is the number of intensive variables (e.g. pressure and temperature) that can be changed independently without disturbing the number of phases in equilibrium.
J.W. Gibbs deduced the phase rule

$$
F=C-P+2
$$

$$
F>P(C-1)+2 \quad \text { Minus the Restrictions !! }
$$

Relation due to of a phase equilibrium

$$
\begin{aligned}
& \boldsymbol{C}(P-1) \quad \mu_{\mathrm{J}}(\alpha)=\mu_{\mathrm{J}}(\beta)=\ldots \quad \text { for } P \text { phases For each, } \boldsymbol{C} \\
& F= P(C-1)+2-C(P-1)=C-P+2
\end{aligned}
$$



Temperature, $T$

## QF.DQB

## Phase diagrams

The variance, $F$, of a system
is the number of intensive variables (e.g. pressure and temperature) that can be changed independently without disturbing the number of phases in equilibrium.

## J.W. Gibbs deduced the phase rule

$$
F=C-P+2
$$

Minimum value of variance, $\boldsymbol{F}$, should be $\boldsymbol{F}=\mathbf{0}$

$$
\begin{aligned}
& C=1 \quad P \text { \# Phases Maximum? } \\
& F=1-P+2 \ldots . . \mathrm{P} \leq 3-0 \\
& \mu_{\mathrm{J}}(\alpha ; p, T)=\mu_{\mathrm{J}}(\beta ; p, T) \quad \mu_{\mathrm{J}}(\beta ; p, T)=\mu_{\mathrm{J}}(\gamma ; p, T) \quad \mu_{\mathrm{J}}(\gamma ; p, T)=\mu_{\mathrm{J}}(\delta ; p, T) \\
& \text { three equations for two unknowns ( } p \text { and } T \text { ) are not consistent } \\
& C=\mathrm{X} \\
& \mathrm{P} \leq \mathrm{X}+2-\mathbf{0} \\
& C=2 \quad \# \max P=4 \\
& C=3 \quad \# \max P=5 \\
& \text { Temperature, } T
\end{aligned}
$$

## QF.DQB

## Phase diagrams

One-component systems

$$
\boldsymbol{C}=1 \quad F=1-P+2 \ldots . . \# P-1,2,3
$$




Fig. 6.3 The phase diagram for water, a simplified version of Fig. 4.5. The label $T_{3}$ marks the temperature of the triple point, $T_{\mathrm{b}}$ the normal boiling point, and $T_{\mathrm{f}}$ the normal freezing point.


Time, $t$

$$
\begin{aligned}
& \text { Liquid } \\
& \begin{array}{l}
\text { Mole fraction } \\
\text { of } \mathrm{A}, x_{\mathrm{A}}
\end{array} \\
& p_{\mathrm{A}}=x_{\mathrm{A}} p_{\mathrm{A}}^{*} \quad p_{\mathrm{B}}=x_{\mathrm{B}} p_{\mathrm{B}}^{*} \\
& p_{\mathrm{A}}+p_{\mathrm{B}}=x_{\mathrm{A}} p_{\mathrm{A}}^{*}+x_{\mathrm{B}} p_{\mathrm{B}}^{*}=p_{\mathrm{B}}^{*}+\left(p_{\mathrm{A}}^{*}-p_{\mathrm{B}}^{*}\right) x_{\mathrm{A}} \\
& y_{\mathrm{A}}=\frac{p_{\mathrm{A}}}{p} \quad y_{\mathrm{B}}=\frac{p_{\mathrm{B}}}{p} \\
& p_{\mathrm{A}}^{*} \\
& p_{\mathrm{B}}^{*}+\left(p_{\mathrm{A}}^{*}-p_{\mathrm{B}}^{*}\right) x_{\mathrm{A}}
\end{aligned} y_{\mathrm{B}}=1-y_{\mathrm{A}}
$$



Fig. 6.10 The points of the pressure-



Composition


Composition

## Lever rule

The distances $l \alpha$ and $l \beta$ are used to find the proportions of the amounts of phases $\alpha$ (such as vapour) and $\beta$ (for example, liquid) present at equilibrium.

$$
n_{\alpha} l_{\alpha}=n_{\beta} l_{\beta}
$$

Fig. 6.12 The general scheme of interpretation of a pressure-composition diagram (a vapour pressure diagram).

## Lever rule

The distances $l \alpha$ and $l \beta$ are used to find the proportions of the amounts of phases $\alpha$ (such as vapour) and $\beta$ (for example, liquid) present at equilibrium.

$$
n_{\alpha} l_{\alpha}=n_{\beta} l_{\beta}
$$



Proportions of the amounts

$$
\begin{aligned}
& \text { phase } \alpha=\mathrm{L}_{2} / \mathrm{L} \\
& \text { phase } \beta=\mathrm{L}_{1} / \mathrm{L}
\end{aligned}
$$

e.g. $\mathrm{L}=0.50 ; \mathrm{L}_{1}=0.20 ; \mathrm{L}_{2}=0.30$;
phase $\alpha=0.3 / 0.5=0.60 \ldots 60 \%$
phase $\beta=0.2 / 0.5=0.40 \ldots 40 \%$

