
Faculdade de Ciências da Universidade do Porto

Lecture#20

Physical Chemistry

... iremos explorar, refletir, aprender ?..

Area of chemistry concerned with the **application of the techniques and theories of physics** to the study of chemical systems.

The solvent activity

The quantity *a*_A is the activity of A, a kind of 'effective' mole fraction,

$$a_{\rm A} \rightarrow x_{\rm A}$$
 as $x_{\rm A} \rightarrow 1$
 $\mu_{\rm A} = \mu_{\rm A}^* + RT \ln x_{\rm A} + RT \ln \gamma_{\rm A}$

×

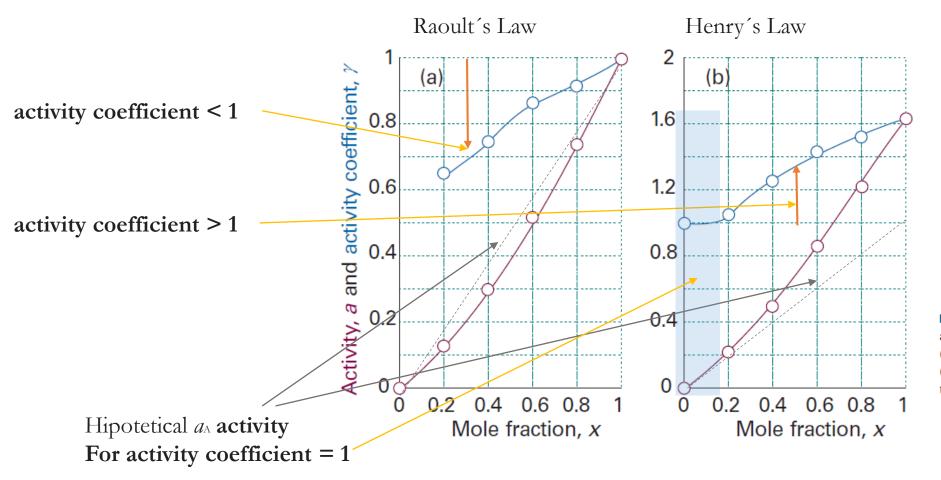
Activity coefficient

Component	Basis	Standard state	Activity	Limits
Solid or liquid		Pure	a = 1	
Solvent	Raoult	Pure solvent	$a = p/p^*, a = \gamma x$	$\gamma \rightarrow 1 \text{ as } x \rightarrow 1$ (pure solvent)
Solute	Henry	(1) A hypothetical state of the pure solute	$a = p/K, a = \gamma x$	$\gamma \rightarrow 1 \text{ as } x \rightarrow 0$
		(2) A hypothetical state of the solute at molality b^{Φ}	$a = \gamma b/b^{\oplus}$	$\gamma \rightarrow 1$ as $b \rightarrow 0$

Activities of ions in solution

 $G_{\rm m}^{\rm ideal} = \mu_+^{\rm ideal} + \mu_-^{\rm ideal}$

$$\mu_{+} = \mu_{+}^{\text{ideal}} + RT \ln \gamma_{\pm} \qquad \mu_{-} = \mu_{-}^{\text{ideal}} + RT \ln \gamma_{\pm}$$


$$\gamma_{\pm} = (\gamma_+ \gamma_-)^{1/2}$$

mean activity coefficient geometric mean of the individual coefficients

The solvent activity

The quantity *a*_A is the **activity** of A, a kind of 'effective' mole fraction,

 $a_{\rm A} =$ $p_{\rm A}^{\star}$

 $\mu_{\rm A} = \mu_{\rm A}^* + RT \ln(p_{\rm A}/p_{\rm A}^*)$ $\mu_{\rm A} = \mu_{\rm A}^* + RT \ln a_{\rm A}$

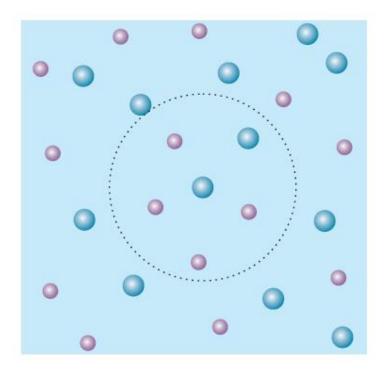
Fig. 5.31 The variation of activity and activity coefficient of chloroform (trichloromethane) and acetone (propanone) with composition according to (a) Raoult's law, (b) Henry's law.

Química-Física The activities of ions in solution

The quantity *a*_A is the **activity** of A, a kind of 'effective' concentration,

Debye-Hückel theory of ionic solutions

Describes a **tendency for anions** to be found around cations, and of cations to be found around anions


Debye–Hückel limiting law

$$\log \gamma_{\pm} = -|z_+ z_-| A I^{1/2}$$

A = 0.509 for an aqueous solution at 25°C

IONIC
STRENGTH
$$I = \frac{1}{2} \sum_{i} z_i^2 (b_i / b^{\Theta})$$

The chemical potential, central ion is lowered as *a result of its electrostatic interaction* with its ionic atmosphere.

The activities of ions in solution

The quantity a_A is the **activity** of A, a kind of 'effective' concentration,

Debye-Hückel limiting law

$$\log \gamma_{\pm} = -|z_{+}z_{-}|AI^{1/2}$$

A = 0.509 for an aqueous solution at 25°C

ionic stren

с	$I = \frac{1}{2} \sum z_i^2 (b_i / b^{\Theta})$
ngth	$I - \frac{1}{2} \sum_{i} z_i (b_i / b_i)$
	i

Table $I = kb/$		ic strengtl	h and mol	ality,
k	X ⁻	X ²⁻	X ³⁻	X ⁴⁻

M ⁺	1	3	6	10
M ²⁺	3	4	15	12
M ³⁺	6	15	9	42
M ⁴⁺	10	12	42	16

For example, the ionic strength of an M₂X₃ solution of molality *b*, which is understood to give M^{3+} and X^{2-} ions in solution is $15b/b^{\circ}$.

Synoptic Table 5.5* Mean activity coefficients in water at 298 K		
b/b^{\oplus}	KCl	CaCl ₂
0.001	0.966	0.888
0.01	0.902	0.732
0.1	0.770	0.524
1.0	0.607	0.725

* More values are given in the *Data section*.

Química-Física The activities of ions in solution

The quantity a_A is the **activity** of A, a kind of 'effective' concentration,

Debye-Hückel limiting law

$$\log \gamma_{\pm} = -|z_{\pm}z_{-}|AI^{1/2}$$

 $I = \frac{1}{2} \sum_{i} z_{i}^{2} (b_{i}/b^{\Theta})$ ionic strength

A = 0.509 for an aqueous solution at 25°C

Illustration 5.4 Using the Debye-Hückel limiting law

The mean activity coefficient of 5.0×10^{-3} mol kg⁻¹ KCl(aq) at 25°C is calculated by writing

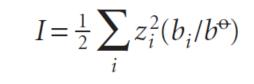
$$I = \frac{1}{2}(b_{+} + b_{-})/b^{\Theta} = b/b^{\Theta}$$

where *b* is the molality of the solution (and $b_+ = b_- = b$). Then, from eqn 5.69,

 $\log \gamma_{+} = -0.509 \times (5.0 \times 10^{-3})^{1/2} = -0.036$

Hence, $\gamma_{+} = 0.92$. The experimental value is 0.927.

Química-Física The activities of ions in solution


The quantity *a*_A is the **activity** of A, a kind of 'effective' concentration,

Debye-Hückel limiting law

 $\log \gamma_{\pm} = -|z_{+}z_{-}|AI^{1/2}$

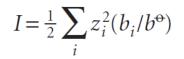
A = 0.509 for an aqueous solution at 25°C

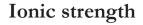
ionic strength

The extended Debye-Hückel law

 $\log \gamma_{\pm} = -\frac{A |z_{+}z_{-}| I^{1/2}}{1 + B I^{1/2}} + C I$

B and **C** are dimensionless constants


B Related with the closest approach of the ions,C is best regarded as an adjustable empirical parameter.

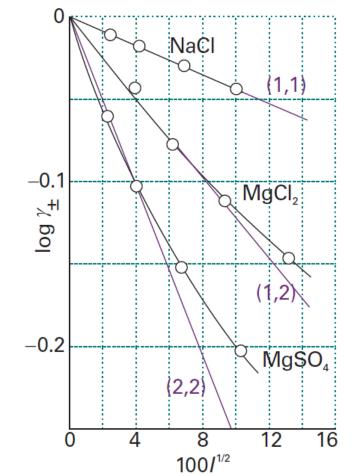

DQB. FCUP Luís Belchior Santos | 2024

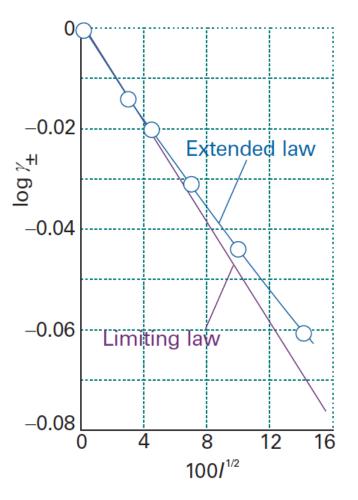
The activities of ions in solution

The quantity *a*_A is the **activity** of A, a kind of 'effective' concentration,

Debye-Hückel limiting law

 $\log \gamma_{\pm} = -|z_+ z_-| A I^{1/2}$


The extended Debye–Hückel law


$$\log \gamma_{\pm} = -\frac{A |z_{+}z_{-}| I^{1/2}}{1 + BI^{1/2}} + CI$$

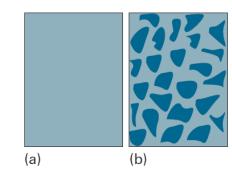
Gibbs–Duhem equation can also be used to estimate the activity coefficient of the solute

$$\mathrm{d}\mu_{\mathrm{B}} = -\frac{n_{\mathrm{A}}}{n_{\mathrm{B}}} \,\mathrm{d}\mu_{\mathrm{A}}$$

An experimental test of the Debye–Hückel limiting law.

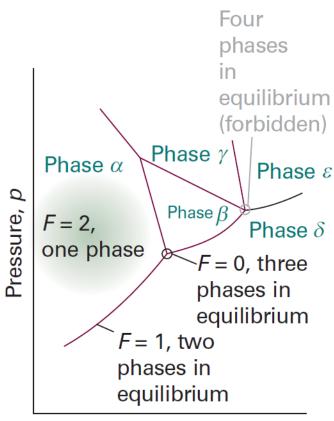
DQB. FCUP Luís Belchior Santos | 2024

QF.DQB


Química-Física Faculdade de Ciências da Universidade do Porto

Phase diagrams

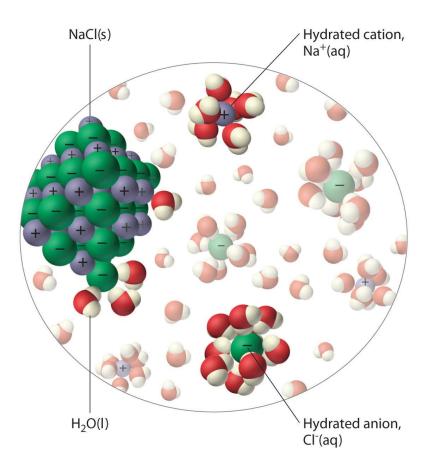
Phase


state of matter that is uniform throughout

- chemical composition
- physical state

Fig. 6.1 The difference between (a) a singlephase solution, in which the composition is uniform on a microscopic scale, and (b) a dispersion, in which regions of one component are embedded in a matrix of a second component.

Temperature, T


Constituent of a system

chemical species (an ion or a molecule) that is present

Mixture of ethanol and water has 2 constituents

A solution of **sodium chloride** has **3 constituents**: **water**, Na⁺ ions, and Cl⁻ ions

Phase diagrams

Química-Física Faculdade de Ciências da Universidade do Porto

Component is a *chemically independent* constituent of a system. *C*

Minimum number of independent species necessary to define the composition of all the phases present in the system.

component = **#** Constituents - **#** constraints system

e.g. mixture of ethanol and water

2 Constituents - **2** component system (C = 2 - 0 = 2)

Aqueous NaCl

C = 2 = 3 (Constituents) - 1 (constraints) = 2

Constraints = Charge balance, $|Na^+| = |Cl^-|$

 $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ Phase 1 Phase 2 Phase 3

C = 2 = 3 (Constituents) - 1 (constraints) = 2

Constraints= Massa balance...chemical reaction