

Faculdade de Ciências da Universidade do Porto

Lecture#19

Physical Chemistry

... iremos explorar, refletir, aprender ?..

Area of chemistry concerned with the **application of the techniques and theories of physics** to the study of chemical systems.

_ The thermodynamic mixing |Excess properties Solutions

Química-Física Faculdade de Ciências da Universidade do Porto

QF.DQB

Química-Física Faculdade de Ciências da Universidade do Porto

DQB. FCUP Luís Belchior Santos | 2024

The thermodynamic mixing

Coligative Properties

(arising from the presence of a solute in a solvent)

2. elevation of boiling point;

3. depression of freezing point;

 $\Delta T = K_{\rm b} b$

$$\Delta T = K_{\rm f} b$$

molality, b, in the solution

Synoptic Table 5.2 [*] Freezing-point and boiling-point constants				
	$K_{\rm f}/({\rm K~kg~mol^{-1}})$	$K_{\rm b}/({\rm K~kg~mol^{-1}})$		
Benzene	5.12	2.53		
Camphor	40			
Phenol	7.27	3.04		
Water	1.86	0.51		

A solution of **1 molal** (b=1) >

- 1.86 K of boiling point increase
- 0.51 K of freezing point decrease

Química-Física Faculdade de Ciências da Universidade do Porto

The thermodynamic mixing

Osmotic pressure

$$\mu_{A}^{*}(p) = \mu_{A}(x_{A}, p + \Pi)$$
$$\mu_{A}(x_{A}, p + \Pi) = \mu_{A}^{*}(p + \Pi) + RT \ln x_{A}$$
$$RTx_{B} = \Pi V_{m}$$

The **osmotic pressure**, Π ,

pressure that must be applied to the solution to stop the influx of solvent.

 $\Pi = [B]RT$

 $[B] = n_{\rm B}/V$ is the molar concentration of the solute

van 't Hoff equation:

Fig. 5.27 The equilibrium involved in the calculation of osmotic pressure, Π , is between pure solvent A at a pressure *p* on one side of the semipermeable membrane and A as a component of the mixture on the other side of the membrane, where the pressure is $p + \Pi$.

The thermodynamic mixing

The osmotic pressure, Π ,

pressure that must be applied to the solution to stop the influx of solvent.

van 't Hoff equation:

 $\Pi = [B]RT$ [B] = $n_{\rm B}/V$ is the molar concentration of the solute

Fig. 5.27 The equilibrium involved in the calculation of osmotic pressure, Π , is

Fig. 5.29 In a simple version of the osmotic pressure experiment, A is at equilibrium on each side of the membrane when enough has passed into the solution to cause a hydrostatic pressure difference.

The thermodynamic mixing

The osmotic pressure, Π ,

pressure that must be applied to the solution to stop the influx of solvent.

van 't Hoff equation:

 $\Pi = [B]RT$ [B] = $n_{\rm B}/V$ is the molar concentration of the solute

Reverse Osmosis

The solvent activity

The quantity *a*_A is the activity of A, a kind of 'effective' mole fraction,

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT \ln(p_{\rm A}/p_{\rm A}^{\star})$ $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT \ln a_{\rm A}$

 $a_{\rm A} = \frac{p_{\rm A}}{p_{\rm A}^{\star}}$

 $\mu_{\rm A} = \mu_{\rm A}^* + RT \ln x_{\rm A} + RT \ln \gamma_{\rm A}$

 $a_{\rm A} \rightarrow x_{\rm A}$ as $x_{\rm A} \rightarrow 1$

Component	Basis	Standard state	Activity	Limits
Solid or liquid		Pure	a = 1	
Solvent	Raoult	Pure solvent	$a = p/p^*, a = \gamma x$	$\gamma \rightarrow 1 \text{ as } x \rightarrow 1$ (pure solvent)
Solute	Henry	(1) A hypothetical state of the pure solute	$a = p/K, a = \gamma x$	$\gamma \rightarrow 1 \text{ as } x \rightarrow 0$
		(2) A hypothetical state of the solute at molality b^{Θ}	$a = \gamma b/b^{o}$	$\gamma \rightarrow 1$ as $b \rightarrow 0$

Illustration 5.3 Calculating the solvent activity

The vapour pressure of $0.500 \text{ M KNO}_3(aq)$ at 100°C is 99.95 kPa, so the activity of water in the solution at this temperature is

 $a_{\rm A} = \frac{99.95 \text{ kPa}}{101.325 \text{ kPa}} = 0.9864$

The solvent activity

The quantity a_A is the **activity** of A, a kind of 'effective' mole fraction,

Fig. 5.31 The variation of activity and activity coefficient of chloroform (trichloromethane) and acetone (propanone) with composition according to (a) Raoult's law, (b) Henry's law.

Química-Física The activities of ions in solution aculdade de Ciências da Universidade do Porto

The quantity *a*_A is the **activity** of A, a kind of 'effective' concentration,

Activities of ions in solution

 $G_{\rm m}^{\rm ideal} = \mu_+^{\rm ideal} + \mu_-^{\rm ideal}$ $G_{\rm m} = \mu_+ + \mu_- = \mu_+^{\rm ideal} + \mu_-^{\rm ideal} + RT \ln \gamma_+ + RT \ln \gamma_- = G_{\rm m}^{\rm ideal} + RT \ln \gamma_+ \gamma_-$

$\gamma_{\pm} = (\gamma_{+}\gamma_{-})^{1/2}$ mean activity coefficient geometric mean of the individual coefficients

 $\mu_{+} = \mu_{+}^{\text{ideal}} + RT \ln \gamma_{+} \qquad \mu_{-} = \mu_{-}^{\text{ideal}} + RT \ln \gamma_{+}$

Química-Física The activities of ions in solution

The quantity *a*_A is the **activity** of A, a kind of 'effective' concentration,

Debye-Hückel theory of ionic solutions

Describes a **tendency for anions** to be found around cations, and of cations to be found around anions

The chemical potential, central ion is lowered as *a result of its electrostatic interaction* with its **ionic atmosphere**.

Debye-Hückel limiting law

$$\log \gamma_{\pm} = -|z_{+}z_{-}|AI^{1/2}$$

A = 0.509 for an aqueous solution at 25°C

ionic strength

$$= \frac{1}{2} \sum_{i} z_i^2 (b_i / b^{\Theta})$$

ength

0

0