

Physical Chemistry

... iremos explorar, refletir, aprender ?..

Area of chemistry concerned with the **application of the techniques and theories of physics** to the study of chemical systems.

The thermodynamic description of mixtures

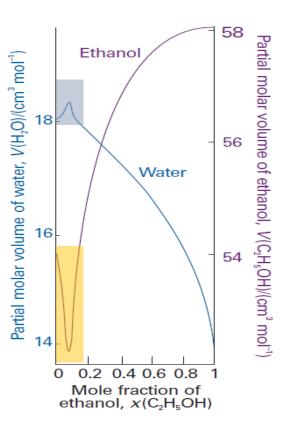
Gibbs-Duhem equation

$$G = U + pV - TS$$

$$G = n_A \mu_A + n_B \mu_B$$

chemical potential is the contribution of that substance to the **total Gibbs energy** of the mixture

$$n_{A}d\mu_{A} + n_{B}d\mu_{B} = 0$$


$$\sum_{J} n_{J}d\mu_{J} = 0$$

$$d\mu_{B} = -\frac{n_{A}}{n_{B}}d\mu_{A}$$

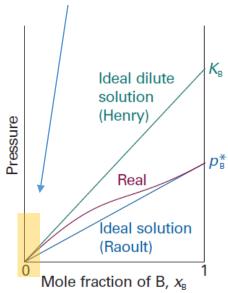
Gibbs-Duhem equation

the chemical potential of one component of a mixture cannot change independently of the chemical potentials of the other components.

Applies to all partial molar quantities !!!

$$\Delta_{\text{mix}}G = nRT(x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}})$$

ENTROPY of mixing


$$\Delta_{\text{mix}} S = -\left(\frac{\partial \Delta_{\text{mix}} G}{\partial T}\right)_{p,n_{\text{A}},n_{\text{B}}} = -nR(x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}})$$

Enthalpy of mixing

$$\Delta_{\text{mix}}H=0$$
 perfect gases

Henry Law

$$p_{\rm B} = x_{\rm B} K_{\rm B}$$
 dilute solutions

$$p_{\rm B} = b_{\rm B} K_{\rm B}$$

Henry's law is expressed in terms of the molality, *b*, of the solute,

Synoptic Table 5.1* Henry's law constants for gases in water at 298 K

	$K/(\mathrm{kPa}\mathrm{kg}\mathrm{mol}^{-1})$
CO ₂	3.01×10^{3}
H_2	1.28×10^{5}
N_2	1.56×10^{5}
O_2	7.92×10^{4}

^{*} More values are given in the Data section.

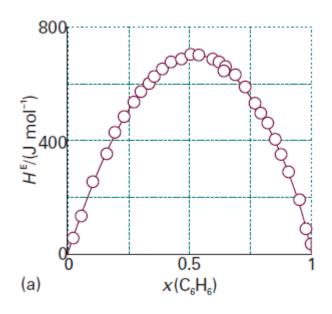
The thermodynamic mixing | Excess properties Solutions

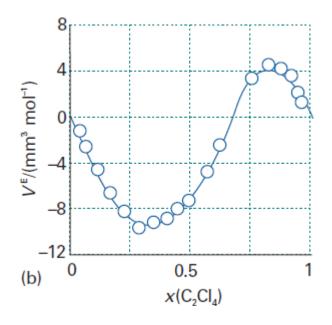
$$\Delta_{\text{mix}}G = nRT\{x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}}\}$$

$$\Delta_{\text{mix}} S = -nR\{x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}}\}$$

Ideal Enthalpy of mixing

$$\Delta_{\text{mix}}H=0$$


$$H^{\rm E} = n\beta RTx_{\rm A}x_{\rm B}$$


 β is a dimensionless parameter that is a measure of the energy of **AB** interactions relative to that of the **AA** and **BB** interactions.

Excess functions, X^{E} ,

$$X^{E} = X^{real} - X^{ideal}$$

$$S^{E} = \Delta_{\text{mix}} S - \Delta_{\text{mix}} S^{\text{ideal}}$$

The thermodynamic mixing | Excess properties Solutions

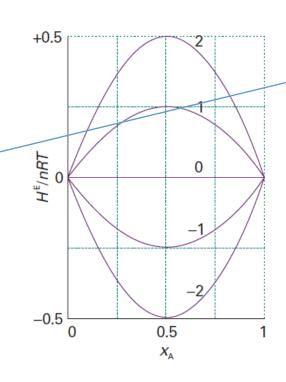
Excess functions, X^{E} ,

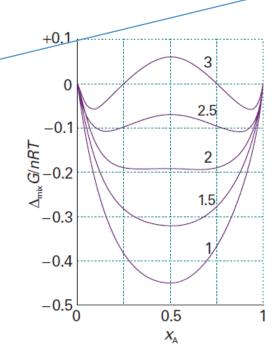
$$X^{E} = X^{real} - X^{ideal}$$

$$\Delta_{\text{mix}} S = -nR\{x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}}\}$$

$$\Delta_{\text{mix}}G = nRT\{x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}}\}$$

$$S^{E} = \Delta_{\text{mix}} S - \Delta_{\text{mix}} S^{\text{ideal}}$$


$$\Delta_{\text{mix}}G = nRT\{x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}} + \beta x_{\text{A}} x_{\text{B}}\}$$

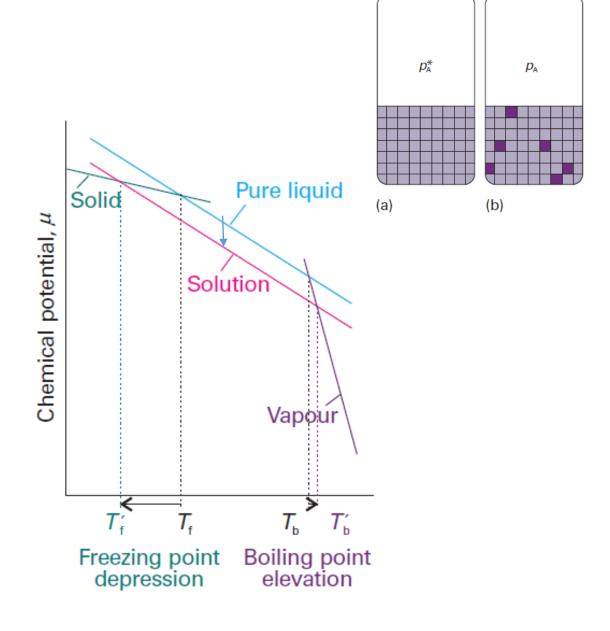

Ideal Enthalpy of mixing

$$\Delta_{\text{mix}}H=0$$

$$H^{\rm E} = n\beta RTx_{\rm A}x_{\rm B}$$

 β is a dimensionless parameter that is a measure of the energy of **AB** interactions relative to that of the **AA** and **BB** interactions.

Coligative Properties


(arising from the presence of a solute in a solvent)

Properties:

- 1. lowering of vapour pressure;
- 2. elevation of boiling point;
- 3. depression of freezing point;
- 4. osmotic pressure.

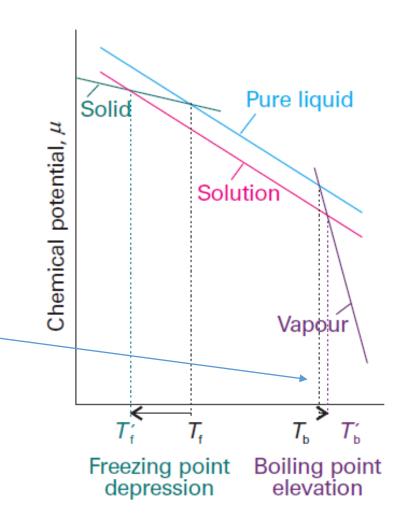
The chemical potential of a solvent in the presence of a solute.

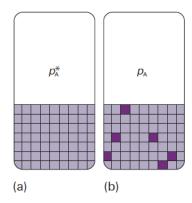
The lowering of the liquid's chemical potential has a greater effect on the freezing point than on the boiling point because of the angles at which the lines intersect.

Coligative Properties

(arising from the presence of a solute in a solvent)

2. elevation of boiling point;


Normal boiling point from T^*


$$\Delta T = Kx_{\rm B}$$
 $K = \frac{RT^{*2}}{\Delta_{\rm vap}H}$

$$\Delta T = K_{\rm b}b$$

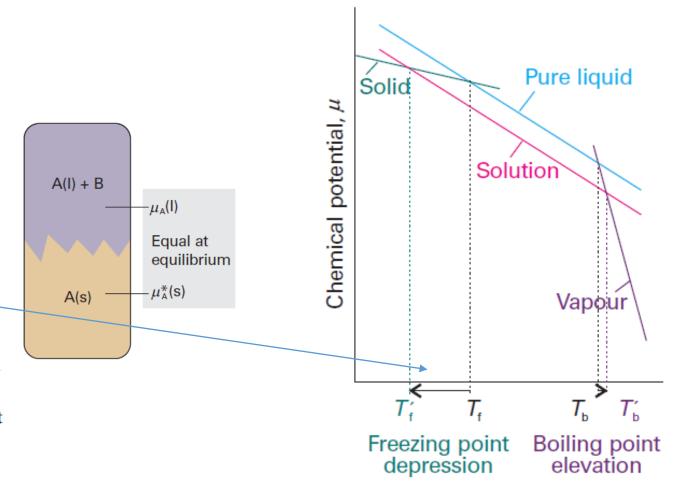
molality, b, in the solution

where K_b is the empirical **boiling-point constant** of the solvent

Coligative Properties

(arising from the presence of a solute in a solvent)

3. depression of freezing point;


Normal boiling point from *T**

$$\Delta T = K' x_{\rm B}$$
 $K' = \frac{RT^{*2}}{\Delta_{\rm fus}H}$

$$\Delta T = K_{\rm f} b$$

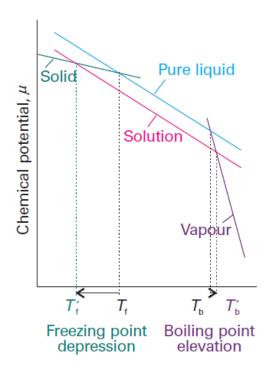
molality, b, in the solution

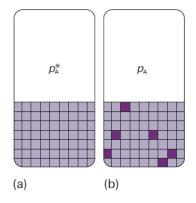
where K_f is the empirical freezing-point constant

Coligative Properties

(arising from the presence of a solute in a solvent)

2. elevation of boiling point;


3. depression of freezing point;


$$\Delta T = K_{\rm b}b$$

$$\Delta T = K_{\rm f} b$$

molality, b, in the solution

	$K_{\rm f}/({\rm K~kg~mol^{-1}})$	$K_{\rm b}/({\rm K~kg~mol^{-1}})$
Benzene	5.12	2.53
Camphor	40	
Phenol	7.27	3.04
Water	1.86	0.51

