

Faculdade de Ciências da Universidade do Porto

Lecture#11

Physical Chemistry

... iremos explorar, refletir, aprender ?..

Area of chemistry concerned with the **application of the techniques and theories of physics** to the study of chemical systems.

QF.DQB

Faculdade de Ciências da Universidade do Porto

Química-Física

Entropy changes > specific processes

The measurement of entropy

Debye extrapolation

 $C_p = aT^3$ is assumed valid down to T = 0.

$$S(T) = S(0) + \int_0^{T_f} \frac{C_p(s)dT}{T} + \frac{\Delta_{fus}H}{T_f} + \frac{\int_{T_f}^{T_b} \frac{C_p(1)dT}{T}}{T_f} + \frac{\Delta_{vap}H}{T_b} + \int_{T_b}^T \frac{C_p(g)dT}{T}$$

Fig. 3.14 The calculation of entropy from heat capacity data. (a) The variation of C_p/T with the temperature for a sample. (b) The entropy, which is equal to the area beneath the upper curve up to the corresponding temperature, plus the entropy of each phase transition passed.

QF.DQB

Entropy changes > specific processes Ouímica-Física de de Ciências da Universidade do Porto $C_p = aT^3$ The measurement of entropy Debye extrapolation $C_p = aT^3$ is assumed valid down to T = 0. Example 3.3 Calculating the entropy at low temperatures The molar constant-pressure heat capacity of a certain solid at 4.2 K is 0.43 J K-1 mol⁻¹. What is its molar entropy at that temperature? $S(T) = S(0) + \int_{0}^{T} \frac{aT^{3}dT}{T} = S(0) + a\int_{0}^{T} T^{2}dT = S(0) + \frac{1}{3}aT^{3}$ $C_p(T) = a.T^3$ $a = C_p(T) / T^3$ $S(T) = S(0) + \frac{1}{3}C_p(T)$ $a = 0.43/(4.2)^3 = 5.8 \times 10^{-3} \text{ J K}^{-4} \text{ mol}^{-1}$ $S_{\rm m}(4.2 \text{ K}) = S_{\rm m}(0\text{K}) + 1/3 \cdot 0.43 = S_{\rm m}(0\text{K}) + 0.14 \text{ J K}^{-1} \text{ mol}^{-1}$

Faculdade de Ciências da Universidade do Porto

Química-Física

The measurement of entropy

Illustration 3.4 Calculating a standard molar entropy

The standard molar entropy of nitrogen gas at 25°C has been calculated from the following data:

 $S \oplus I(I V = 1 \text{ mol} = 1)$

	$S_{\rm m}/(J K \rm mor)$
Debye extrapolation	1.92
Integration, from 10 K to 35.61 K	25.25
Phase transition at 35.61 K	6.43
Integration, from 35.61 K to 63.14 K	23.38
Fusion at 63.14 K	11.42
Integration, from 63.14 K to 77.32 K	11.41
Vaporization at 77.32 K	72.13
Integration, from 77.32 K to 298.15 K	39.20
Correction for gas imperfection	0.92
Total	192.06

Therefore,

 $S_{\rm m}(298.15 \text{ K}) = S_{\rm m}(0) + 192.1 \text{ J K}^{-1} \text{ mol}^{-1}$

Faculdade de Ciências da Universidade do Porto

Ouímica-Física

The measurement of entropy

The Nernst heat theorem

The entropy change accompanying any physical or chemical transformation approaches zero as the temperature approaches zero: $\Delta S \rightarrow 0$ as $T \rightarrow 0$ provided all the substances involved are perfectly crystalline.

Illustration 3.5 Using the Nernst heat theorem

Consider the entropy of the transition between orthorhombic sulfur, $S(\alpha)$, and monoclinic sulfur, $S(\beta)$, which can be calculated from the transition enthalpy $(-402 \text{ J mol}^{-1})$ at the transition temperature (369 K):

$$\Delta_{\rm trs} S = S_{\rm m}(\alpha) - S_{\rm m}(\beta) = \frac{(-402 \text{ J mol}^{-1})}{369 \text{ K}} = -1.09 \text{ J K}^{-1} \text{ mol}^{-1}$$

The two individual entropies can also be determined by measuring the heat capacities from T = 0 up to T = 369 K. It is found that $S_m(\alpha) = S_m(\alpha, 0) + 37$ J K⁻¹ mol⁻¹

and $S_m(\beta) = S_m(\beta,0) + 38 \text{ J K}^{-1} \text{ mol}^{-1}$. These two values imply that at the transition temperature

 $\Delta_{\rm trs}S = S_{\rm m}(\alpha,0) - S_{\rm m}(\beta,0) = -1 \, {\rm J} \, {\rm K}^{-1} \, {\rm mol}^{-1}$

On comparing this value with the one above, we conclude that $S_m(\alpha,0) - S_m(\beta,0) \approx 0$, in accord with the theorem.

Third-law of thermodynamics

The entropy of all perfect crystalline substances is zero at T = 0.

Entropies reported on the basis that S(0) = 0 T = 0 K Third-Law entropies

A **diatomic molecule AB** there may be almost no energy difference between the arrangements . . .

AB AB AB . . . and . . . BA AB BA . . . ,

so W > 1 even at T = 0.

If S > 0 at T = 0 we say that the substance has a **residual entropy**.

Synoptic Table 3.3* Standard Third-Law entropies at 298 K

	$S_{\rm m}^{\rm o}/(\rm J~K^{-1}~mol^{-1})$
Solids	
Graphite, C(s)	5.7
Diamond, C(s)	2.4
Sucrose, C ₁₂ H ₂₂ O ₁₁ (s)	360.2
Iodine, I ₂ (s)	116.1
Liquids	
Benzene, C ₆ H ₆ (l)	173.3
Water, H ₂ O(l)	69.9
Mercury, Hg(l)	76.0
Gases	
Methane, CH ₄ (g)	186.3
Carbon dioxide, CO ₂ (g)	213.7
Hydrogen, H ₂ (g)	130.7
Helium, He	126.2
Ammonia, NH ₃ (g)	126.2

* More values are given in the Data section.

Química-Física Faculdade de Ciências da Universidade do Porto

Third-law of thermodynamics

standard reaction entropy, $\Delta_r S^{\circ}$

$$\Delta_{\rm r} S^{\oplus} = \sum_{\rm Products} v S^{\oplus}_{\rm m} - \sum_{\rm Reactants} v S^{\oplus}_{\rm m}$$

To calculate the standard reaction entropy of $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$ at 25°C, we use the data in Table 2.7 of the *Data Section* to write

$$\Delta_{\rm r} S^{\oplus} = S^{\oplus}_{\rm m}({\rm H}_2{\rm O},{\rm l}) - \{S^{\oplus}_{\rm m}({\rm H}_2,{\rm g}) + \frac{1}{2}S^{\oplus}_{\rm m}({\rm O}_2,{\rm g})\} = 69.9 \text{ J K}^{-1} \text{ mol}^{-1} - \{130.7 + \frac{1}{2}(205.0)\} \text{ J K}^{-1} \text{ mol}^{-1} = -163.4 \text{ J K}^{-1} \text{ mol}^{-1}$$

The negative value is consistent with the conversion of two gases to a compact liquid.

Synoptic	Table	3.3*	Standard
Third-Law	entrop	ies at	298 K

	$S_{\rm m}^{\rm o}/({\rm J~K}^{-1}{\rm mol}^{-1}$
Solids	
Graphite, C(s)	5.7
Diamond, C(s)	2.4
Sucrose, C ₁₂ H ₂₂ O ₁₁ (s)	360.2
Iodine, I ₂ (s)	116.1
Liquids	
Benzene, C ₆ H ₆ (l)	173.3
Water, H ₂ O(l)	69.9
Mercury, Hg(l)	76.0
Gases	
Methane, CH ₄ (g)	186.3
Carbon dioxide, CO ₂ (g)	213.7
Hydrogen, H ₂ (g)	130.7
Helium, He	126.2
Ammonia, NH ₃ (g)	126.2

* More values are given in the Data section.

Química-Física aculdade de Ciências da Universidade do Porto Third-law of thermodynamics

the H⁺ ions in water is taken as zero at all temperatures:

 $S^{\Theta}(H^+, aq) = 0$

Because the entropies of ions in water are values relative to the hydrogen ion in water, they may be either positive or negative

e.g. the standard molar entropy of

 $Cl^{-}(aq)$ is +57 J K⁻¹ mol⁻¹ $Mg^{2+}(aq)$ is $-128 J K^{-1} mol^{-1}$.

Química-Física Faculdade de Ciências da Universidade do Porto Third-law of thermodynamics

standard reaction entropy,
$$\Delta_r S^{\oplus}$$
: $\Delta_r S^{\oplus} = \sum_{\text{Products}} v S^{\oplus}_m - \sum_{\text{Reactants}} v S^{\oplus}_m$

e.g. Haber process for the production of ammonia from nitrogen and hydrogen gas

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

At 298.15 K :

 $S^{o}(NH_{3}) = 192.5 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1} \qquad \Delta S^{0} = 2*S^{0}(NH_{3}) - [S^{0}(N_{2}) + (3*S^{0}(H_{2}))]$ $S^{o}(H_{2}) = 130.6 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1} \qquad \Delta S^{0} = 2*192.5 - [191.5 + (3*130.6)]$ $S^{o}(N_{2}) = 191.5 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1} \qquad \Delta S^{0} = -198.3 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$

DQB. FCUP Luís Belchior Santos | 2024

Química-Física Faculdade de Ciências da Universidade do Porto Third-law of thermodynamics

standard reaction entropy,
$$\Delta_{r}S^{\oplus}$$
: $\Delta_{r}S^{\oplus} = \sum_{\text{Products}} vS^{\oplus}_{m} - \sum_{\text{Reactants}} vS^{\oplus}_{m}$

combustion of isooctane (C_8H_{18}) is as follows:

 $\mathrm{C}_8\mathrm{H}_{18}(\mathrm{l}) + \frac{25}{2}\mathrm{O}_2(\mathrm{g}) \rightarrow 8\,\mathrm{CO}_2(\mathrm{g}) + 9\,\mathrm{H}_2\mathrm{O}(\mathrm{g})$

$$\begin{split} \Delta S_{\rm rxn}^{\circ} &= \sum m S^{\circ}({\rm products}) - \sum n S^{\circ}({\rm reactants}) \\ &= [8S^{\circ}({\rm CO}_2) + 9S^{\circ}({\rm H}_2{\rm O})] - [S^{\circ}({\rm C}_8{\rm H}_{18}) + \frac{25}{2}S^{\circ}({\rm O}_2)] \\ &= \{[8 \ {\rm mol} \ {\rm CO}_2 \times 213.8 \ {\rm J/(mol} \cdot {\rm K})] + [9 \ {\rm mol} \ {\rm H}_2{\rm O} \times 188.8 \ {\rm J/(mol} \cdot {\rm K})]\} \\ &- \left\{ [1 \ {\rm mol} \ {\rm C}_8{\rm H}_{18} \times 329.3 \ {\rm J/(mol} \cdot {\rm K})] + \left[\frac{25}{2} \ {\rm mol} \ {\rm O}_2 \times 205.2 \ {\rm J/(mol} \cdot {\rm K})\right] \right\} \\ &= 515.3 \ {\rm J/K} \end{split}$$