

Lecture#06

Physical Chemistry

... iremos explorar, refletir, aprender ?..

Area of chemistry concerned with the **application of the techniques and theories of physics** to the study of chemical systems.

U (V, T, n)

First Law of Thermodynamics

 $dU = \pi_T dV + C_V dT$

Isobaric expansion coefficient,

Changes in internal energy at constant pressure

 $\left(\frac{\partial U}{\partial T}\right)_{\rm p} = C_V \qquad \text{Perfect gas !} \\ \pi_{\rm T} = 0$

Synoptic Table 2.8* Ex	cpansion
coefficients (α) and isothe	rmal
compressibilities (κ_T) at 29	98 K
$\alpha / (10^{-4} V^{-1})$	r /(10 ⁻⁶ bar
α/(10 K)	$\kappa_T/(10)$ Dat

Benzene	12.4	90.9	
Diamond	0.030	0.185	
Lead	0.861	2.18	
Water	2.1	49.0	

* More values are given in the Data section.

U (V, T, n)

First Law of Thermodynamics

$$\left(\frac{\partial U}{\partial T}\right)_{p} = C_{V} \qquad \begin{array}{l} \text{Perfect gas !} \\ \pi_{T} = 0 \end{array}$$

$$C_{p} - C_{V} = \left(\frac{\partial H}{\partial T}\right)_{p} - \left(\frac{\partial U}{\partial T}\right)_{p}$$

$$H = U + pV = U + nRT$$

$$C_p - C_V = \left(\frac{\partial U}{\partial T}\right)_p + nR - \left(\frac{\partial U}{\partial T}\right)_p = nR$$

$$C_p - C_V = \frac{\alpha^2 T V}{\kappa_T}$$

$$\boldsymbol{\alpha}$$
 ... for liquids and solids

$$C_p \approx C_V$$
.

If ... K_T is small .then, α^2 / κ_T might be large

Expansion coefficient,

Compressibility coefficient

$$\dot{T}_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

U (V, T, n)

First Law of Thermodynamics

Synoptic Table 2.8^{*} Expansion coefficients (α) and isothermal compressibilities (κ_T) at 298 K

	$lpha/(10^{-4}{ m K}^{-1})$	$\kappa_T / (10^{-6} \mathrm{bar}^{-1})$
Benzene	12.4	90.9
Diamond	0.030	0.185
Lead	0.861	2.18
Water	2.1	49.0

Changes in internal energy at constant pressure

Isobaric expansion coefficient, e.q 2.43 $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$

isothermal compressibility coefficient

Example 2.8 Calculating the expansion coefficient of a gas	fore values are given in the Data section
Derive an expression for the expansion coefficient of a perfect gas.	
Method The expansion coefficient is defined in eqn 2.43. To use this expression substitute the expression for V in terms of T obtained from the equation of stat for the gas. As implied by the subscript in eqn 2.43, the pressure, p , is treated as constant.	a
Answer Because $pV = nRT$, we can write	
$\alpha = \frac{1}{V} \left(\frac{\partial (nRT/p)}{\partial T} \right)_p = \frac{1}{V} \times \frac{nR}{p} \frac{dT}{dT} = \frac{nR}{pV} = \frac{1}{T}$	
The higher the temperature, the less responsive is the volume of a perfect gas to change in temperature.	a
Self-test 2.9 Derive an expression for the isothermal compressibility of a perfect gas. $[\kappa_T = 1/p]$	t]

U (V, T, n)

Type equation here. $k_T = (-1/V nRT) . (-1/p^2)$

 $k_T = (-p) . (-1/p^2) = 1/p$

Changes in internal energy at constant pressure

Isobaric expansion coefficient,

e.q 2.43

 $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$

isothermal compressibility coefficient

Self-test 2.9	Derive an expression for the isothermal compressibility of a perfect
gas.	$[\kappa_{T^*}=1/p]$

 $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$

$$k_T = -\frac{1}{V} \left(\frac{\partial (nRT)}{\partial p} \right)_T = -\frac{1}{V} nRT \cdot \frac{-1}{p^2}$$
$$k_T = -\mathbf{p} \cdot \frac{-1}{p^2} = \frac{1}{p}$$

Synoptic Table 2.8^{*} Expansion coefficients (α) and isothermal compressibilities (κ_T) at 298 K

	$lpha/(10^{-4}{ m K}^{-1})$	$\kappa_T / (10^{-6} \mathrm{bar}^{-1})$
Benzene	12.4	90.9
Diamond	0.030	0.185
ead	0.861	2.18
Vater	2.1	49.0

* More values are given in the *Data section*.

$$\mathrm{d}H = \left(\frac{\partial H}{\partial p}\right)_T \mathrm{d}p + \left(\frac{\partial H}{\partial T}\right)_p \mathrm{d}T$$

: Joule–Thomson coefficient, μ

$$\mu = \left(\frac{\partial T}{\partial p}\right)_{H} \qquad \text{For a perfect gas, } \mu = 0;$$

isothermal Joule–Thomson coefficient

$$\mu_{T} = \left(\frac{\partial H}{\partial p}\right)_{T}$$
$$\left(\frac{\partial H}{\partial p}\right)_{T} = -\frac{(\partial T/\partial p)_{H}}{(\partial T/\partial H)_{p}} = \left(\frac{\partial T}{\partial p}\right)_{H} \left(\frac{\partial H}{\partial T}\right)_{p} = -\mu C_{p}$$

First Law of Thermodynamics

Fig. 2.29 The isothermal Joule–Thomson coefficient is the slope of the enthalpy with respect to changing pressure, the temperature being held constant.

H (*p*, **T**, n)

First Law of Thermodynamics

$$\mathrm{d}H = \left(\frac{\partial H}{\partial p}\right)_T \mathrm{d}p + \left(\frac{\partial H}{\partial T}\right)_p \mathrm{d}T$$

isothermal Joule–Thomson coefficient

 $\mu_T = \left(\frac{\partial H}{\partial p}\right)_T$

For a perfect gas, $\mu = 0$:

Fig. 2.29 The isothermal Joule–Thomson coefficient is the slope of the enthalpy with respect to changing pressure, the temperature being held constant.

Synoptic Table 2.9* Inversion temperatures ($T_{\rm I}$), normal freezing ($T_{\rm f}$) and boiling ($T_{\rm b}$) points, and Joule–Thomson coefficient (μ) at 1 atm and 298 K

	$T_{\rm I}/{ m K}$	$T_{\rm f}/{ m K}$	T_b/K	$\mu/(K bar^{-1})$
Ar	723	83.8	87.3	
CO_2	1500		194.7	+1.10
He	40		4.2	-0.060
N ₂	621	63.3	77.4	+0.25

* More values are given in the Data section.

First Law of Thermodynamics

Química-Física Faculdade de Ciências da Universidade do Porto

$$\mathrm{d}H = \left(\frac{\partial H}{\partial p}\right)_T \mathrm{d}p + \left(\frac{\partial H}{\partial T}\right)_p \mathrm{d}T$$

: Joule–Thomson coefficient, μ

 $\mu = \left(\frac{\partial T}{\partial p}\right)_{H}$

positive sign .. cooling Negative sign .. cooling

Real gases have nonzero Joule-Thomson coefficients

isothermal Joule–Thomson coefficient

$$\mu_T = \left(\frac{\partial H}{\partial p}\right)_T$$

For a perfect gas, $\mu = 0$:

 μ > 0, is observed under conditions μ when attractive interactions are dominant

Fig. 2.31 The sign of the Joule–Thomson coefficient, μ , depends on the conditions.

H (*p, T,* n)

First Law of Thermodynamics

Cold

gas -

Compressor

Liquid

Heat

exchanger

isothermal Joule-Thomson coefficient

 $\mu_T = \left(\frac{\partial H}{\partial p}\right)_T$

For a perfect gas, $\mu = 0$:

First Law of Thermodynamics

Ouímica-Física culdade de Ciências da Universidade do Porto **H** (p, T, n)

 $\mu > 0$, is observed under conditions

when attractive interactions are dominant Z <1

$$I_{entropy}$$

Atkins Physical Chemistry, Eighth Editi 0 2006 Peter Atkins and Julio de Paula

Perfec

 $dH = \left(\frac{\partial H}{\partial p}\right)_{T} dp + \left(\frac{\partial H}{\partial T}\right)_{T} dT$

isothermal Joule-Thomson coefficient

 $\mu_T = \left(\frac{\partial H}{\partial p}\right)_T$

 $\mu = \left(\frac{\partial T}{\partial p}\right)_{H}$ positive sign ... cooling Negative sign ... cooling

Real gases have nonzero Joule–Thomson coefficients

For a perfect gas, $\mu = 0$

This sequence of molecular events explains the Joule-Thomson effect: the cooling of a real gas by adiabatic expansion. The cooling effect, which corresponds to $\mu > 0$, is observed under conditions when attractive interactions are dominant (Z < 1, eqn 1.17), because the molecules have to climb apart against the attractive force in order for them to travel more slowly. For molecules under conditions when repulsions are dominant (Z > 1), the Joule–Thomson effect results in the gas becoming warmer, or $\mu < 0$.