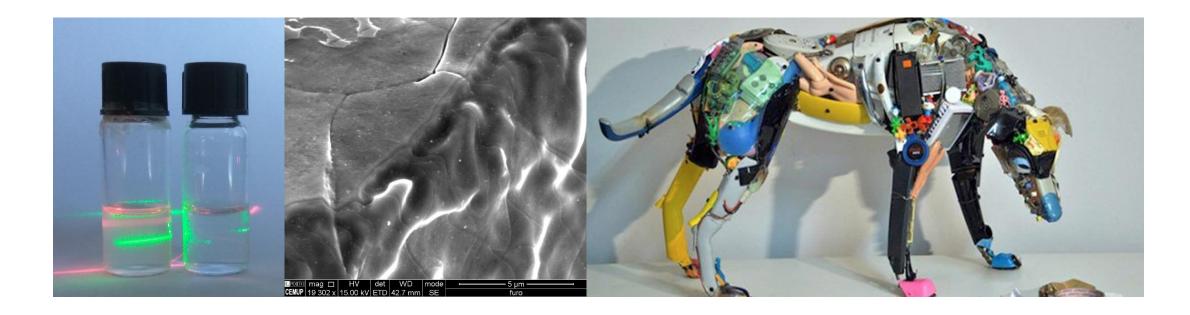


Physical Chemistry

... iremos explorar, refletir, aprender ?..

Area of chemistry concerned with the **application of the techniques and theories of physics** to the study of chemical systems.



$$\Delta U = q + w$$

Table 2.1 Varieties of work*

Type of work	dw	Comments	Units†
Expansion	$-p_{\rm ex} { m d}V$	$p_{\rm ex}$ is the external pressure d V is the change in volume	Pa m ³
Surface expansion	$\gamma \mathrm{d}\sigma$	γ is the surface tension $\mathrm{d}\sigma$ is the change in area	$\begin{array}{c} N \ m^{-1} \\ m^2 \end{array}$
Extension	fdl	f is the tension dl is the change in length	N m
Electrical	ϕ dQ	ϕ is the electric potential dQ is the change in charge	V C

^{*} In general, the work done on a system can be expressed in the form dw = -Fdz, where F is a 'generalized force' and dz is a 'generalized displacement'.

Table 2-1 *Atkins Physical Chemistry, Eighth Edition*© 2006 Peter Atkins and Julio de Paula

[†] For work in joules (J). Note that 1 N m = 1 J and 1 V C = 1 J.

$\Delta U = q + w$

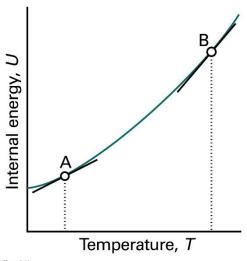


Figure 2-10 Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula

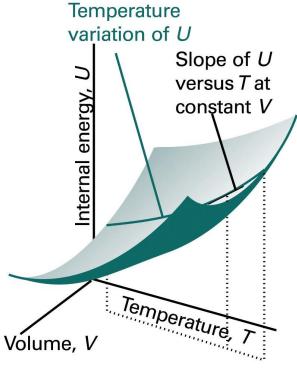


Figure 2-11
Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

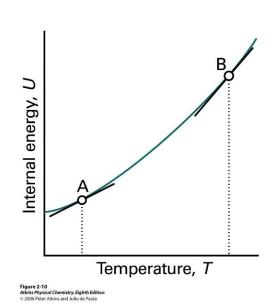
$$\Delta U = q + w$$

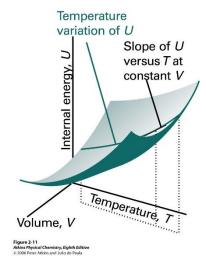
dU = dq (at constant volume, no additional work)

$$\Delta U = q_V$$

heat capacity at constant volume

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$





enthalpy is a **state function**

(a) The definition of enthalpy

The **enthalpy**, *H*, is defined as

$$H = U + pV$$

heat capacity at constant pressure, C_p

$$C_p = \left(\frac{\partial H}{\partial T}\right)_p$$

$$dH = C_p dT$$
 (at constant pressure)

$$q_p = C_p \Delta T$$

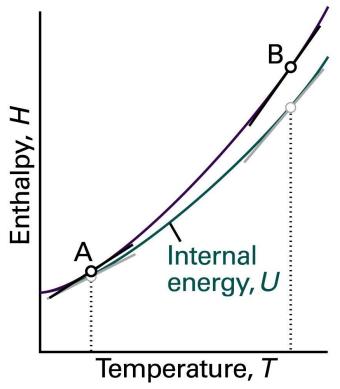


Figure 2-14

Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

First Law of Thermodynamics

enthalpy is a **state function**

heat capacity at constant pressure, $C_p = \left(\frac{\partial P}{\partial r}\right)^T$

$$C_{p,m} = a + bT + \frac{c}{T^2}$$

Synoptic Table 2.2*	Temperature variation of molar heat capacities, $C_{p,m}/(J \text{ K}^{-1} \text{ mol}^{-1}) =$
$a + bT + c/T^2$	•

	а	$b/(10^{-3} {\rm K})$	$c/(10^5 \mathrm{K}^2)$
C(s, graphite)	16.86	4.77	-8.54
CO ₂ (g)	44.22	8.79	-8.62
$H_2O(l)$	75.29	0	0
N ₂ (g)	28.58	3.77	-0.50

 $^{^{\}star}$ More values are given in the $Data\ section.$

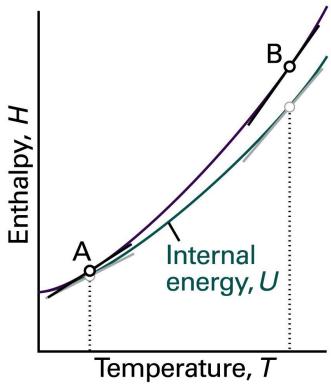


Figure 2-14

Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

enthalpy is a state function

heat capacity at constant pressure,

$$C_p = \left(\frac{\partial H}{\partial T}\right)_p$$

$$C_{p,m} = a + bT + \frac{c}{T^2}$$

$$dH = C_p dT$$
 (at constant pressure)

$$\int_{H(T_1)}^{H(T_2)} dH = \int_{T_1}^{T_2} \left(a + bT + \frac{c}{T^2} \right) dT$$

$$H(T_2) - H(T_1) = a(T_2 - T_1) + \frac{1}{2}b(T_2^2 - T_1^2) - c\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

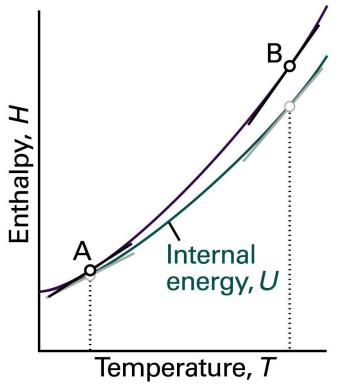


Figure 2-14

Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

First Law of Thermodynamics

enthalpy is a state function

heat capacity at constant pressure,

$$C_p = \left(\frac{\partial H}{\partial T}\right)_p \qquad C_V = \left(\frac{\partial U}{\partial T}\right)_V$$

$$H_{\rm m} \equiv U_{\rm m} + \rho V \cong U_{\rm m} + RT$$

IN GAS PHASE.. IDEAL BEHAVIOR

$$C_p = \left(\frac{\partial H}{\partial T}\right)_p = C_V = \left(\frac{\partial U}{\partial T}\right)_V + R$$

$$C_p - C_V = nR$$

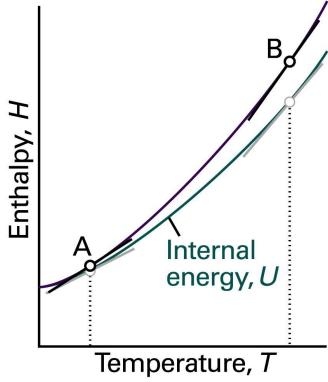


Figure 2-14
Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

DSC - Differential scanning calorimetry,

Thermocouples Sample Reference Heaters

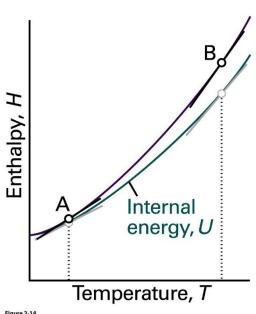
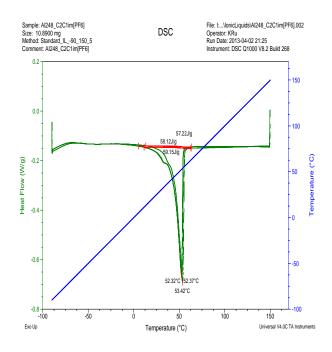


Figure 2-14 Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula

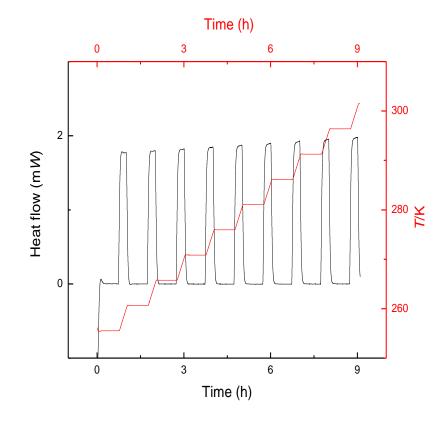


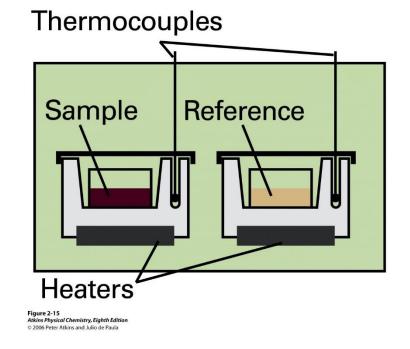
heat capacity at constant pressure,

$$C_{p,m} = a + bT + \frac{c}{T^2}$$

Temperature step mode

$$C_p = \left(\frac{\partial H}{\partial T}\right)_t$$





heat of a process, "e.g. conformation change"

Sample Reference Heaters Figure 2-15 Akins Physical Chemistry, Eighth Edition

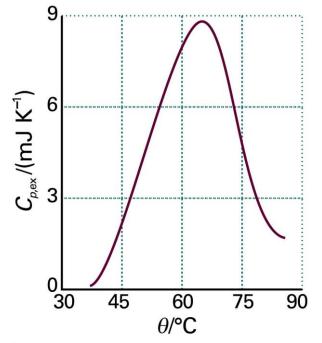


Fig. 2.16 A thermogram for the protein ubiquitin at pH = 2.45. The protein retains its native structure up to about 45° C and then undergoes an endothermic conformational change. (Adapted from B. Chowdhry and S. LeHarne, *J. Chem. Educ.* 74, 236 (1997).)

Figure 2-16
Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

U (V, **T**, n)

First Law of Thermodynamics

When T changes to T + dT at constant volume

$$U' = U + \left(\frac{\partial U}{\partial T}\right)_{V} dT$$

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$

Heat capacity at constant volume

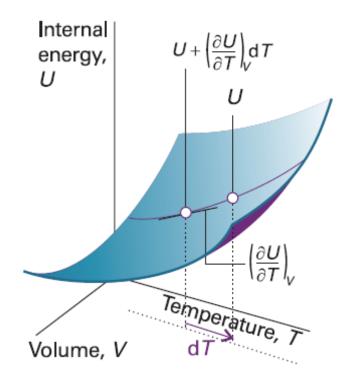
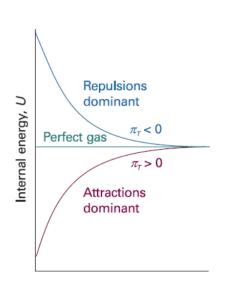


Fig. 2.22 The partial derivative $(\partial U/\partial T)_V$ is the slope of U with respect to T with the volume V held constant.

U (**V**, T, n)

When V changes to V + dV at constant temperature



$$U' = U + \left(\frac{\partial U}{\partial V}\right)_T dV$$

$$\pi_T = \left(\frac{\partial U}{\partial V}\right)_T$$
 Internal pressure

$$\pi_T = 0$$
. Perfect gas

$$pV=nRT$$
 Only depends of temperature

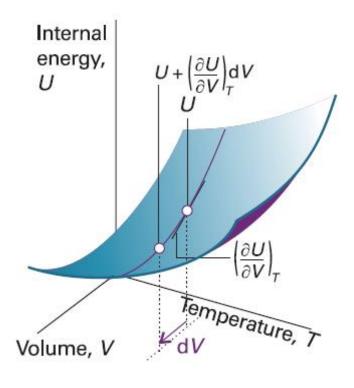


Fig. 2.21 The partial derivative $(\partial U/\partial V)_T$ is the slope of U with respect to V with the temperature T held constant.

U(V, T, n)

First Law of Thermodynamics

When T and V changes to T + dT and V + dV

$$U' = U + \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT$$

$$dU = \pi_T dV + C_V dT$$

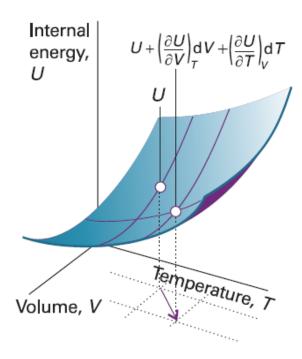


Fig. 2.23 An overall change in U, which is denoted dU, arises when both V and T are allowed to change. If second-order infinitesimals are ignored, the overall change is the sum of changes for each variable separately.

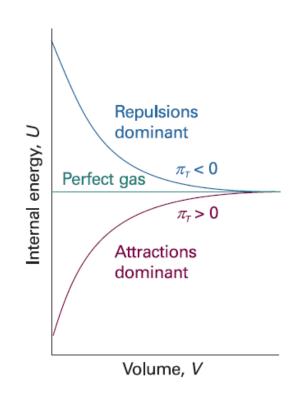
U (**V**, **T**, n)

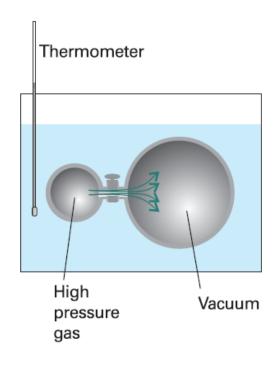
First Law of Thermodynamics

The Joule experiment

$$U' = U + \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT$$

$$dU = \pi_T dV + C_V dT$$





Changes in internal energy at constant pressure

$$\mathrm{d}U = \pi_T \mathrm{d}V + C_V \mathrm{d}T$$

$$\left(\frac{\partial U}{\partial T}\right)_{p} = \pi_{T} \left(\frac{\partial V}{\partial T}\right)_{p} + C_{V}$$

$$\left(\frac{\partial U}{\partial T}\right)_{p} = \alpha \pi_{T} V + C_{V}$$

expansion coefficient,

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

isothermal compressibility

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

Synoptic Table 2.8* Expansion coefficients (α) and isothermal compressibilities (κ_T) at 298 K

	$\alpha/(10^{-4}{\rm K}^{-1})$	$\kappa_T/(10^{-6}{\rm bar}^{-1})$
Benzene	12.4	90.9
Diamond	0.030	0.185
Lead	0.861	2.18
Water	2.1	49.0

^{*} More values are given in the Data section.