Chapter 3 - New Exercises and Solutions

E3.2(c) Calculate the molar entropy of a constant-volume sample of nitrogen, N_{2}, at 350 K given that it is $191.61 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at 298 K .

E3.2(c) If we assume that neon is a perfect gas then $C_{V, m}$ may be taken to be constant and given by

$$
\begin{aligned}
C_{V, \mathrm{~m}}=C_{p, \mathrm{~m}}-R ; \quad \quad C_{p, \mathrm{~m}} & =29.125 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { [Table 2.6] } \\
& =(29.125-8.314) \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =20.811 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Integrating, we obtain

$$
\begin{aligned}
S_{\mathrm{m}}(500 \mathrm{~K}) & =S_{\mathrm{m}}(298 \mathrm{~K})+C_{\mathrm{V}, \mathrm{~m}} \ln \frac{T_{\mathrm{f}}}{T_{\mathrm{i}}} \\
& =\left(191.61 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)+\left(20.811 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln \left(\frac{350 \mathrm{~K}}{298 \mathrm{~K}}\right) \\
& =(191.61+3.35) \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=194.96 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

E3.3(c) Calculate ΔS (for the system) when the state of 2.50 mol nitrogen, assumed to be a perfect gas, is changed from $25^{\circ} \mathrm{C}$ and 2.00 atm to $125^{\circ} \mathrm{C}$ and 8.00 atm . How do you rationalize the sign of ΔS ?

E3.3(c) However the change occurred ΔS has the same value as if the change happened by reversible heating at constant pressure (step 1) followed by reversible isothermal compression (step 2)

$$
\Delta S=\Delta S_{1}+\Delta S_{2}
$$

For the first step

$$
\begin{aligned}
& \Delta S_{1}=\int \frac{\mathrm{d} q_{\mathrm{rev}}}{T}=\int \frac{C_{p, \mathrm{~m}} \mathrm{~d} T}{T}=C_{p, \mathrm{~m}} \ln \frac{T_{\mathrm{f}}}{T_{\mathrm{i}}} \\
& \Delta S_{1}=(2.50 \mathrm{~mol}) \times\left(\frac{7}{2}\right) \times\left(8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times \ln \frac{(125+273) \mathrm{K}}{(25+273) \mathrm{K}}=21.0 \overline{5} \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

and for the second

$$
\Delta S_{2}=\int \frac{\mathrm{d} q_{\mathrm{rev}}}{T}=\frac{q_{\mathrm{rev}}}{T}
$$

where $q_{\text {rev }}=-w=\int p \mathrm{~d} V=n R T \ln \frac{V_{\mathrm{f}}}{V_{\mathrm{i}}}=n R T \ln \frac{p_{\mathrm{i}}}{p_{\mathrm{f}}}$
so $\Delta S_{2}=n R \ln \frac{p_{\mathrm{i}}}{p_{\mathrm{f}}}=(2.50 \mathrm{~mol}) \times\left(8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times \ln \frac{2.00 \mathrm{~atm}}{8.00 \mathrm{~atm}}=-28.8 \overline{1} \mathrm{~J} \mathrm{~K}^{-1}$

$$
\Delta S=(21.0 \overline{5}-28.8 \overline{1}) \mathrm{J} \mathrm{~K}^{-1}=-7.8 \mathrm{~J} \mathrm{~K}^{-1}
$$

The heat lost in step 2 was more than the heat gained in step 1, resulting in a net loss of entropy. Or the ordering represented by confining the sample to a smaller volume in step 2 overcame the disordering represented by the temperature rise in step 1. A negative entropy change is allowed for a system as long as an increase in entropy elsewhere results in $\Delta S_{\text {total }}>0$.

E3.6(c) Consider a system consisting of $3.0 \mathrm{~mol} \mathrm{CO}_{2}(\mathrm{~g})$, initially at $35^{\circ} \mathrm{C}$ and 9.0 atm and confined to a cylinder of cross-section $100.0 \mathrm{~cm}^{2}$. The sample is allowed to expand adiabatically against an external pressure of 2.5 atm until the piston has moved outwards through 25 cm . Assume that carbon dioxide may be considered a perfect gas with $C_{V, \mathrm{~m}}=$ $28.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, and calculate (a) q, (b) w, (c) ΔU, (d) ΔT, (e) ΔS.

E3.6(c) (a) $\quad q=0$ [adiabatic]
(b) $w=-p_{\text {ex }} \Delta V=-(2.5 \mathrm{~atm}) \times\left(\frac{1.01 \times 10^{5} \mathrm{~Pa}}{\mathrm{~atm}}\right) \times\left(100.0 \mathrm{~cm}^{2}\right) \times(25 \mathrm{~cm}) \times\left(\frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{~cm}^{3}}\right)$

$$
=-51 \overline{7.6} \mathrm{~J}=-51 \overline{8} \mathrm{~J}
$$

(c) $\Delta U=q+w=0-51 \overline{8} \mathrm{~J}=-51 \overline{8} \mathrm{~J}$
(d) $\Delta U=n C_{V, m} \Delta T$

$$
\begin{aligned}
\Delta T=\frac{\Delta U}{n C_{V, \mathrm{~m}}} & =\frac{-51 \overline{8} \mathrm{~J}}{(2.5 \mathrm{~mol}) \times\left(28.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)} \\
& =-7.2 \mathrm{~K}
\end{aligned}
$$

(e) Entropy is a state function, so we can compute it by any convenient path. Although the specified transformation is adiabatic, a more convenient path is constant-volume cooling followed by isothermal expansion. The entropy change is the sum of the entropy changes of these two steps:

$$
\begin{aligned}
& \Delta S=\Delta S_{1}+\Delta S_{2}=n C_{V, \mathrm{~m}} \ln \left(\frac{T_{\mathrm{f}}}{T_{\mathrm{i}}}\right)+n R \ln \left(\frac{V_{\mathrm{f}}}{V_{\mathrm{i}}}\right) \\
& T_{\mathrm{f}}=308 . \overline{2} \mathrm{~K}-7.2 \mathrm{~K}=301 . \overline{2} \mathrm{~K} \\
& \left.V_{\mathrm{i}}=\frac{n R T}{p_{\mathrm{i}}}=\frac{(2.5 \mathrm{~mol}) \times\left(8.206 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}\right.}{}{ }^{-1} \mathrm{~mol}^{-1}\right) \times(308 . \overline{2} \mathrm{~K}) \\
& =7.0 \overline{25} \mathrm{dm}^{3} \\
& V_{\mathrm{f}}=7.0 \overline{25} \mathrm{dm}^{3}+\left(100 \mathrm{~cm}^{2}\right) \times(15 \mathrm{~cm}) \times\left(\frac{1 \mathrm{dm}^{3}}{1000 \mathrm{~cm}^{3}}\right) \\
& =7.0 \overline{25} \mathrm{dm}^{3}+2.5 \mathrm{dm}^{3}=9.5 \overline{3} \mathrm{dm}^{3} \\
& \Delta S=(2.5 \mathrm{~mol}) \times\left\{\left(28.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times \ln \left(\frac{301}{308}\right)\right. \\
& \left.+\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times \ln \left(\frac{9.5 \overline{3}}{7.0 \overline{25}}\right)\right\} \\
& =2.5 \mathrm{~mol}\left(-0.662 \overline{1} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}+2.53 \overline{6} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)=4.7 \mathrm{JK}^{-1}
\end{aligned}
$$

E3.7(c) The enthalpy of vaporization of ethanol is $43.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at its normal boiling point of 352 K . Calculate (a) the entropy of vaporization of ethanol at this temperature and (b) the entropy change of the surroundings.

E3.7(c)
(a) $\quad \Delta_{\text {vap }} S=\frac{\Delta_{\text {vap }} H}{T_{\mathrm{b}}}=\frac{43.5 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{352 \mathrm{~K}}=+123 . \overline{6} \mathrm{~J} \mathrm{~K}^{-1}=124 \mathrm{~J} \mathrm{~K}^{-1}$
(b) If vaporization occurs reversibly, as is generally assumed

$$
\Delta S_{\text {sys }}+\Delta S_{\text {sur }}=0 \quad \text { so } \quad \Delta S_{\text {sur }}=-124 \mathrm{~J} \mathrm{~K}^{-1}
$$

E3.14(c) Calculate the maximum non-expansion work per mole that may be obtained from a fuel cell in which the chemical reaction is the combustion of ethanol at 298 K .

E3.14(c)

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta_{\mathrm{r}} G^{\ominus}
\end{aligned}=\sum_{\text {Products }} v \Delta_{\mathrm{f}} G^{\ominus}-\sum_{\text {Recants }} v \Delta_{\mathrm{f}} G^{\ominus}[3.40] .
$$

Therefore, the maximum non-expansion work is $1325.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$ since $\left|w_{\text {add }}\right|=|\Delta G|$.

E3.15(c) (a) Calculate the Carnot efficiency of a primitive steam engine operating on steam at $180^{\circ} \mathrm{C}$ and discharging at $100^{\circ} \mathrm{C}$. (b) Repeat the calculation for a modern steam turbine that operates with steam at $360^{\circ} \mathrm{C}$ and discharges at $100^{\circ} \mathrm{C}$.

E3.15(c) $\quad \varepsilon_{\text {rev }}=1-\frac{T_{\mathrm{c}}}{T_{\mathrm{h}}}$ [3.10]

$$
\begin{array}{ll}
\varepsilon=1-\frac{373 \mathrm{~K}}{353 \mathrm{~K}}=0.18 & \text { (18 per cent efficiency for the old steam engine) } \\
\varepsilon=1-\frac{453 \mathrm{~K}}{633 \mathrm{~K}}=0.41 & \text { (41 per cent efficiency for the modern turbine) }
\end{array}
$$

E3.16(c) Suppose that $2.5 \mathrm{~mol} \operatorname{Ar}(\mathrm{~g})$ occupies $72 \mathrm{dm}^{3}$ at 298 K and expands to $100 \mathrm{dm}^{3}$. Calculate ΔG for the process.

$$
\text { E3.16(c) } \begin{aligned}
\Delta G & =n R T \ln \left(\frac{p_{\mathrm{f}}}{p_{\mathrm{i}}}\right)[3.56]=n R T \ln \left(\frac{V_{\mathrm{i}}}{V_{\mathrm{f}}}\right) \text { [Boyle's law] } \\
\Delta G & =(2.5 \mathrm{~mol}) \times\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K}) \times \ln \left(\frac{72}{100}\right)=-2.0 \mathrm{~kJ}
\end{aligned}
$$

E3.17(c) The change in the Gibbs energy of a certain constant-pressure process was found to fit the expression $\Delta G / \mathrm{J}=-85.40+42.8(T / \mathrm{K})$. Calculate the value of ΔS for the process.

E3.17(c) $\quad\left(\frac{\partial G}{\partial T}\right)_{p}=-S[3.50] ;$ hence $\left(\frac{\partial G_{\mathrm{f}}}{\partial T}\right)_{p}=-S_{\mathrm{f}}$, and $\left(\frac{\partial G_{\mathrm{i}}}{\partial T}\right)_{p}=-S_{\mathrm{i}}$

$$
\begin{aligned}
\Delta S=S_{\mathrm{f}}-S_{\mathrm{i}} & =-\left(\frac{\partial G_{\mathrm{f}}}{\partial T}\right)_{p}+\left(\frac{\partial G_{\mathrm{i}}}{\partial T}\right)_{p}=-\left(\frac{\partial\left(G_{\mathrm{f}}-G_{\mathrm{i}}\right)}{\partial T}\right)_{p} \\
& =-\left(\frac{\partial \Delta G}{\partial T}\right)_{p}=-\frac{\partial}{\partial T}\left(-85.40 \mathrm{~J}+42.8 \mathrm{~J} \times \frac{T}{\mathrm{~K}}\right) \\
& =-42.8 \mathrm{JK}^{-1}
\end{aligned}
$$

E3.19(c) Calculate the change in chemical potential of a perfect gas when its pressure is increased isothermally from 202.0 kPa to 352.0 kPa at $70^{\circ} \mathrm{C}$.

E3.19(c)

$$
\begin{aligned}
\Delta G_{\mathrm{m}} & =G_{\mathrm{m}, \mathrm{f}}-G_{\mathrm{m}, \mathrm{i}}=R T \ln \left(\frac{p_{\mathrm{f}}}{P_{\mathrm{i}}}\right)[3.56] \\
& =\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(343 \mathrm{~K}) \times \ln \left(\frac{352.0}{202.0}\right)=1.58 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

E3.20(c) The fugacity coefficient of a certain gas at 290 K and 3.1 MPa is 0.70 . Calculate the difference of its molar Gibbs energy from that of a perfect gas in the same state.
E3.20(c) For an ideal gas, $\quad G_{\mathrm{m}}^{\mathrm{O}}=G_{\mathrm{m}}^{\ominus}+R T \ln \left(\frac{p}{p^{\ominus}}\right)\left[3.56\right.$ with $\left.G_{\mathrm{m}}=G_{\mathrm{m}}^{\mathrm{O}}\right]$
But for a real gas, $\quad G_{\mathrm{m}}=G_{\mathrm{m}}^{\ominus}+R T \ln \left(\frac{f}{p^{\ominus}}\right)$ [3.58]
So $\quad G_{\mathrm{m}}-G_{\mathrm{m}}^{\mathrm{o}}=R T \ln \frac{f}{p}$ [3.58 minus 3.56]; $\frac{f}{p}=\phi$

$$
=R T \ln \phi=\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(290 \mathrm{~K}) \times(\ln 0.70)=-0.86 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

E3.21(c) Estimate the change in the Gibbs energy of $1.00 \mathrm{dm}^{3}$ of ethanol when the pressure acting on it is increased from 101.3 kPa to 202.6 kPa .

E3.21(c)

$$
\begin{aligned}
& \Delta G=n V_{\mathrm{m}} \Delta p[3.55]=V \Delta p \\
& \Delta G=\left(1.0 \mathrm{dm}^{3}\right) \times\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{dm}^{3}}\right) \times\left(101.3 \times 10^{3} \mathrm{~Pa}\right)=101.3 \mathrm{~Pa} \mathrm{~m}^{3}=101 \mathrm{~J}
\end{aligned}
$$

E3.22(c) Calculate the change in the molar Gibbs energy of methane when its pressure is increased isothermally from 101.3 kPa to 202.6 kPa at 500 K .

E3.22(c)

$$
\begin{aligned}
\Delta G_{\mathrm{m}} & =R T \ln \left(\frac{p_{\mathrm{f}}}{p_{\mathrm{i}}}\right)[3.56]=\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(500 \mathrm{~K}) \times \ln \left(\frac{202.6 \mathrm{kPa}}{101.3 \mathrm{kPa}}\right) \\
& =+2.88 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

