
Chapter 2 – New Exercises and Solutions 
 
E2.1(c) Calculate the work needed for a 65 kg tourist to climb to the top of the great 
pyramid in Egypt with a height of 159 m. How much work was needed to raise a 1.0 
metric ton block of stone to that height? 
 
E2.1(c) The physical definition of work is dw = −F dz  [2.4]  

In a gravitational field the force is the weight of the object, which is F = mg  

If g is constant over the distance the mass moves, dw may be integrated to give the total work  

  
  
w = −

zi

zf∫ F dz = −
zi

zf∫ mg dz = −mg(zf − zi ) = −mgh where h = (zf − zi )

For the tourist: 2 5 5(65kg) (9 81ms ) (159m) 1.01 10 J 1.01 10 J neededw −= − × . × = − × = ×   

For the stone: 2 6(1000kg) (9.81ms ) (159 m) 1.56 10 J 1.56M J neededw −= − × × = − × =  
 
 
E2.3(c) A sample consisting of 1.00 mol of the molecules in air is expanded isothermally 
at 25°C from 24.2 dm3 to 48.4dm3 (a) reversibly, (b) against a constant external pressure 
equal to the final pressure of the gas, and (c) freely (against zero external pressure). For 
the three processes calculate q, w, ΔU, and ΔH. 
 

E2.3(c) For all cases    since the internal energy of a perfect gas depends only on temperature. (See 
Molecular interpretation 2.2 and Section 2.11(b) for a more complete discussion.) From the 
definition of enthalpy, H = U + pV, so 

ΔU = 0,

ΔH = ΔU + Δ( pV ) = ΔU + Δ(nRT )  (perfect gas). Hence, 
  ΔH = 0  as well, at constant temperature for all processes in a perfect gas. 

(a)   ΔU = ΔH = 0  
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3

ln  [2 11]

48.4dm(1 00mol) (8 314J K mol ) (298K) ln
24.2dm

1 72 10 J 1 72kJ

V
w nRT

V

− −

⎛ ⎞
= − .⎜ ⎟

⎝ ⎠
⎛ ⎞

= − . × . × × ⎜ ⎟
⎝ ⎠

= − . × = − .

 

 [First Law] 0 1 72kJ 1 72kJq U w= Δ − = + . = + .  

(b)   ΔU = ΔH = 0  

  [2.8]    w = − pexΔV 3 3(48.4 24.2)dm 24.2dmVΔ = − =

  pex can be computed from the perfect gas law  
    pV = nRT

  so 
3 1 1

ex f 3
f

(1 00mol) (0 08206dm atm K mol ) (298K) 0 505atm
48.4dm

nRTp p
V

− −. × . ×
= = = = .  



 

5 3
3

3 3

3 3 3

1 013 10 Pa 1m(0 505atm) (24.2dm )
1atm 10 dm

1 24 10 Pa m 1 24 10 J 1 24 kJ

w
⎛ ⎞ ⎛. ×

= − . × × ×⎜ ⎟ ⎜
⎝ ⎠ ⎝

= − . × = − . × = − .

⎞
⎟
⎠  

 0 1 24kJ 1 24kJq U w= Δ − = + . = + .  

(c)   ΔU = ΔH = 0  

 Free expansion is expansion against no force, so w = 0  and  q = ΔU − w = 0 − 0 = 0  

 Comment: An isothermal free expansion of a perfect gas is also adiabatic. 
 

E2.4(c) A sample consisting of 1.00 mol of perfect gas atoms, for which CV,m = 7/2R, 
initially at p1 = 1.00 bar and T1 = 273 K, is heated reversibly to 373 K at constant volume. 
Calculate the final pressure, ΔU, q, and w.  
 

E2.4(c) For a perfect gas at constant volume 

 
  

p
T
=

nR
V

= constant, hence,
p1

T1

=
p2

T2
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1

373K (1 00bar) 1.37 bar
273K

Tp p
T

⎛ ⎞ ⎛ ⎞
= × = × . =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

m

1 1

3

7 [2.16b] ( ) ( ) (373K 273K)
2

7(1 00 mol) ( ) (8 314 J K mol ) (100 K)
2

2.91 10 J 2.91kJ

VU nC T n R,

− −

Δ = Δ = × × −

= . × × . ×

= × = +

 

 0  [constant volume] [First Law] 2.91kJ 0 2.91kJw q U w= = Δ − = − = +  

 

E2.8(c) The constant-pressure heat capacity of a sample of a perfect gas was found to 
vary with temperature according to the expression Cp/(J K–1) = 20.17 + 0.03665(T/K). 
Calculate q, w, ΔU, and ΔH when the temperature is raised from 25°C to 300°C (a) at 
constant pressure, (b) at constant volume. 
 
E2.8(c) (a)  , since pressure is constant q = ΔH

  
ΔH =

Ti

Tf

∫ dH , dH = nCp,mdT  

  d(H / J) = {20.17 + 0.3665(T / K)}d(T / K)  



( )

f

i

473

298

4732

298

3 4

( J) ( J) {20 17 0 3665( K)}d( K)

0.3665(20 17) (573 298)
2

(5.546 10 ) (2 4725 10 ) 3.03 10

K

T

T
H H T T

T

Δ / = / = . + . / /

⎛ ⎞= . × − + ×⎜ ⎟
⎝ ⎠

= × + . × = ×

∫ ∫

4

 

43.03 10 J 30.3 kJq H= Δ = × = +  

  w = − pexΔV  [2.8] where pex = p 

1 1 3

( ) [constant pressure] ( ) [perfect gas]

( 1 00 mol) (8 314J K mol ) (573K 298K) 2.29 10 J 2.29 kJ

w p V pV nRT nR T
− −

= − Δ = −Δ = −Δ = − Δ

= − . × . × − = − × = −
 

 (30 3kJ) (2.29kJ) 28.0kJU q wΔ = + = . − = +  

(b) The energy and enthalpy of a perfect gas depend on temperature alone (Molecular 
interpretation 2.2 and Exercise 2.3); hence it does not matter whether the temperature change is 
brought about at constant volume or constant pressure; ΔH  and ΔU  are the same. 

 30.3 kJ , 28.0 kJH UΔ = + Δ = +  

Under constant volume, w = 0 . 

 28.0 kJq U w= Δ − = +  

 

E2.10(c) A sample of oxygen of mass 96 g at 25.0°C is allowed to expand reversibly and 
adiabatically from 5.00 dm3 to 10.00 dm3. What is the work done by the gas? 
 
E2.10(c) Reversible adiabatic work is 
  

  
w = CVΔT  [2.27] = n(Cp,m − R) × (Tf − Ti )

where the temperatures are related by 

 
  
Tf = Ti

1/c
Vi

Vf

⎛

⎝⎜
⎞

⎠⎟
 [2.28a] where mm 2.531pV C RC

c
R R

,, −
= = =  

So 
1 2.5313

f 3

5.00 dm[(25 0 273 15) K] 227 K
10.00 dm

T
/

⎛ ⎞
= . + . × =⎜ ⎟

⎝ ⎠
 

and 1 1
1

96.0g [(29.355 8 3145) J K mol ] (227 298) K 4.48 kJ
32.0g mol

w − −
−

⎛ ⎞
= × − . × − = −⎜ ⎟
⎝ ⎠

 

E2.11(c) Calculate the final pressure of a sample of water vapour that expands reversibly 
and adiabatically from 5.7 atm and 50.0 dm3 to a final volume of 100.0 dm3. Take γ = 
1.3. 
 
E2.11(c) For reversible adiabatic expansion 

  [2.29] so   pfVf
γ = piVi

γ ( )
1.33

i
f i 3

f

50 dm5.7 atm 2.9 atm
100 dm

V
p p

V

γ
⎛ ⎞ ⎛ ⎞

= = × =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 



Comment: Note that knowledge of the initial and final temperatures is not needed to solve this exercise.  

 

E2.13(c) When 5.00 mol N2 is heated at a constant pressure of 3.00 atm, its temperature 
increases from 298 K to 345 K. Given that the molar heat capacity of N2 at constant 
pressure is 29.125 J K–1 mol–1, calculate q, ΔH, and ΔU. 
 
E2.13(c) 1 1

m[2 24] (5 00mol) (29 1J K mol ) (47 K) 6.8 kJp p pq C T nC T − −
,= Δ . = Δ = . × . × = +  

 [2 23b] 6.8 kJpH qΔ = . = +  

 1 1

( ) [From ] ( ) [perfect gas]

(6.8kJ) (5 00mol) (8 314J K mol ) (47 K) (6.8kJ) (1.95kJ) 4.8kJ

U H pV H U pV H nRT H nR T
− −

Δ = Δ −Δ ≡ + = Δ −Δ = Δ − Δ

= − . × . × = − = +
 

E2.14(c) A sample of 6.0 mol N2 is originally confined in 30 dm3 at 273 K and then 
undergoes adiabatic expansion against a constant pressure of 95 kPa until the volume has 
increased by a factor of 2.0. Calculate q, w, ΔT, ΔU, and ΔH. (The final pressure of the 
gas is not necessarily 95 kPa.) 
 
E2.14(c) In an adiabatic process, q = 0 .  Work against a constant external pressure is 

 
3 3

3
ex 1 3

(95 10 Pa) (2 30 30)dm 2.85 10 J
(10dm m )

w p V −

− × × × −
= − Δ = = − ×  

 32.85 10 JU q wΔ = + = − ×  

 One can also relate adiabatic work to ΔT  (eqn 2.27): 

  so Δ
  
w = CVΔT = n(Cp,m − R)ΔT T =

w
n(Cp,m − R)

, 

 
3

1 1

2.85 10 J 23K
(6 0 mol) (29.125 8 3145) J K mol

T − −

− ×
Δ = = −

. × − .
. 

      3 1 1

( ) ,

2.85 10 J (6 0mol) (8 3145J K mol ) ( 23K) 4 0 10 J

H U pV U nR T
− −

Δ = Δ + Δ = Δ + Δ

= − × + . × . × − = − . × 3  

E2.15(c) A sample consisting of 2.5 mol of perfect gas molecules with Cp,m = 29.4 J K–1 
mol–1 is initially at 303 kPa and 335 K. It undergoes reversible adiabatic expansion until 
its pressure reaches 250 kPa. Calculate the final volume and temperature and the work 
done. 
 
E2.15(c) In an adiabatic process, the initial and final pressures are related by (eqn 2.29) 

  pfVf
γ
 = piVi

γ where 
1 1

,m ,m
1 1

,m ,m

29.4 J K  mol 1.39
(29.4 8.31) J K  mol

p p

V p

C C
C C R

γ
− −

− −= = = =
− −  

 Find Vi from the perfect gas law: 

  
-1 -1

3i
i 3

i

(2.5 mol)(8.31 J K  mol )(335 K) 0.0230 m
303 10  Pa

nRT
V

p
= = =

×  



 so 
1/ 1/1.394

3 3i
f i

f

303 kPa(0.0230 m ) 0.0264 m
250 kPa

p
V V

p

γ
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

 Find the final temperature from the perfect gas law: 

  
3 3

f f
f -1 -1

(250 10  Pa) (0.0264 m ) 318 K
(2.5 mol)(8.31 J K  mol )

p V
T

nR
× ×

= = =   

 Adiabatic work is (eqn 2.27) 

      1 1 2(29.4 8.31) J K  mol 2.5 mol (318 335) K 9.0 10  JVw C T − −= Δ = − × × − = − ×  

E2.17(c) The standard enthalpy of formation of benzene is 49.0 kJ mol–1. Calculate its 
standard enthalpy of combustion. 
 
E2.17(a) The reaction is 
  15

6 6 2 2 22C H (l) + O (g) 6 CO (g) + 3 H O(1)→  

  

O O O O
c f 2 f 2 f 6

1

-1

6 (CO g) 3 (H O l) (C H ,l)

[(6) ( 393 51) (3) ( 285 83) (49.0)]kJ mol

3267 6 kJ mol

H H H H
−

Δ = Δ , + Δ , − Δ

= × − . + × − . −

= − .

6

,

 

E2.18(c) The standard enthalpy of combustion of n-propane is –2220 kJ mol–1 at 25°C. 
From this information and enthalpy of formation data for CO2(g) and H2O(g), calculate 
the enthalpy of formation of n-propane. The enthalpy of formation of propene is +20.42 
kJ mol–1. Calculate the enthalpy of hydrogenation of propene to propane. 
 
E2.18(c) First  is calculated, and then that result is used to calculate   for the 

hydrogenation 
f 3 8[C H g]HΔ Δr H

   -1
3 8 2 2 2 cC H (g) +5 O (g)  3 CO (g) + 4 H O(l) 2220kJ molH→ Δ = −

  
f 3 8 c f 2 f 2

1

1

[C H g] 3 (CO g) 4 (H O,g)

[ 2220 (3) ( 393 51) (4) ( 285 83)]kJ mol

103.85kJ mol

H H H H
−

−

Δ , = −Δ + Δ , + Δ

= + + × − . + × − .

= −

 

   3 6 2 3 8 rC H (g) + H (g) C H (g) ?H→ Δ =

  
r f 3 8 f 3 6

1 1

(C H g) [C H g]

( 103.85 20 42) kJ mol 124.27 kJ mol

H H H
− −

Δ = Δ , − Δ ,

= − − . = −
 

 

E2.20(c) Calculate the standard enthalpy of solution of AgI(s) in water from the 
enthalpies of formation of the solid and the aqueous ions. 
 
E2.20(c) The reaction is A  gI(s) Ag (aq) I (aq)+ −→ +

 
O O O O

sol f f f

1 1

(Ag aq) (I aq) (AgI,s)

[105.58 ( 55.19) ( 61.8)] kJ mol 112.19 kJ mol

H H H H+ −

− −

Δ = Δ , + Δ , − Δ

= + − − − = +
 



E2.21(c) Given that the standard enthalpy of combustion of graphite is –393.51 kJ mol–1 

and that of buckminsterfullerene, C60, is – 2.589 × 104 kJ mol–1, calculate the enthalpy of 

the graphite-to-buckminsterfullerene transition. 

E2.21(c) The combustion products of graphite and buckminsterfullerene are the same, so the transition 
 is equivalent to the combustion of graphite plus the reverse of the 

combustion of buckminsterfullerene. However we need to recognize that a molecular formula 
of buckminsterfullene contains 60 C atoms, whereas a molecular formula of graphite is one 
carbon atom.  

C(gr) C(buck)→

O 4 1
trans [60 ( 393.51) ( 2.589 10 )] kJ mol +2.279 MJ molH 1− −Δ = × − − − × =  

E2.22(c) Given the reactions (1) and (2) below, determine (a) O
r HΔ and O

rUΔ for 
reaction (3), (b) O

f HΔ for both HBr(g) and H2O(g) all at 298 K.  
(1) H2(g) + Br2(l) → 2 HBr(g)   O

r HΔ = - 72.80 kJ mol–1

(2) 2 H2(g) + O2(g) → 2 H2O(g)   O
r HΔ = –483.64 kJ mol–1

(3) 4 HBr(g) + O2(g) → 2 Br2(l) + 2 H2O(g) 
 

E2.22(c) (a) reaction(3) = (–2) × reaction(1) + reaction(2) and  Δng = −1

The enthalpies of reactions are combined in the same manner as the equations (Hess’s law). 

  

O O O
r r r

1

1

(3) ( 2) (1) (2)

[( 2) ( 72.80) ( 483 64)]kJ mol

338.04kJ mol

H H H
−

−

Δ = − ×Δ + Δ

= − × − + − .

= −

 

  
Ο Ο 1 1

r r g

1

[2 21] ( 338.04kJ mol ) ( 1) (2 48kJ mol )

335.56kJ mol

U H n RT − −

−

Δ = Δ − Δ . = − − − × .

= −
 

(b)   Δ f H O  refers to the formation of one mole of the compound, hence  

  
Ο

Ο r
f

J

(J)
(J)

H
H

ν
Δ

Δ =  

  O 1
f

72.80(HBr g) kJ mol 36.40 kJ mol
2

H 1− −−
Δ , = = −  

  
  
Δ f H O (H2O,g) = −483.64

2
kJ mol−1 = −241.82 kJ mol-1  

E2.26(c) Calculate Ο
r HΔ and Ο

rUΔ at 298 K and Ο
r HΔ at 348 K for the hydrogenation 

of ethene (ethylene) to ethane  from the enthalpy of combustion and heat capacity data in 
Tables 2.5 and 2.6. Assume the heat capacities to be constant over the temperature range 
involved. 
 
E2.26(c)  The hydrogenation reaction is  



O
2 4 2 2 6 r(1)C H (g) H (g) C H (g) ( )H T+ → Δ = ?  

The reactions and accompanying data which are to be combined in order to yield reaction (1) 
and   Δ r H

O (T )  are 

 
  
(2) H2 (g) + 1

2
O2 (g)→ H2O(l) Δc H O (2) = −285.83kJ mol−1  

   (3) C2H4 (g) + 3O2 (g)→ 2H2O(l) + 2CO2 (g) Δc H O (3) = −1411kJ mol−1  

 O 1
2 6 2 2 2 c

7(4) C H (g) O (g) 3H O(l) 2CO (g) (4) 1560 kJ mol
2

H −+ → + Δ = −  

  reaction (1) reaction (2) reaction (4) reaction (3)= − +

(a) Hence, at 298 K: 

       
O O O O

r c c c

1 1

(2) (4) (3)

[( 285 83) ( 1560) ( 1411)]kJ mol 137 kJ mol

H H H H
− −

Δ = Δ − Δ + Δ

= − . − − + − = −
  

 
O O

r r g g

1 1

[2.21]; 1

137 kJ mol ( 1) (2 48kJ mol ) 135kJ mol

U H n RT n
− −

Δ = Δ − Δ Δ = −

= − − − × . = − 1−
 

(b) At 348 K: 

 
  
Δ r H

O (348 K) = Δr H
O (298 K) + Δ rCp

O (348 K − 298 K)  [Example 2.6] 

 
O O O O

r J ,m ,m 2 6 ,m 2 4 ,m 2
J

3 1 1 3 1

(J)[2 37] (C H g) (C H g) (H g)

(52.63 43 56 28 82) 10 kJ K mol 19.75 10 kJ K mol

p p p p pC C C C Cν

1− − − − −

Δ = . = , − , − ,

= − . − . × = − ×

∑
−

 

 
O 1 3 1

r

1

(348K) ( 137 kJ mol ) (19.75 10 kJ K mol ) (50 K)

138 kJ mol

H − − − −

−

Δ = − − × ×

= −

1

 

 

E2.29(c) A vapor at 39 atm and 25°C was allowed to expand adiabatically to a final 
pressure of 1.00 atm, the temperature fell by 12 K. Calculate the Joule–Thomson 
coefficient, μ, at 25°C, assuming it remains constant over this temperature range. 
 
E2.29(c) The Joule-Thomson coefficient μ is the ratio of temperature change to pressure change under 

conditions of isenthalpic expansion. So 

  112K 0.32K atm
(1 00 39)atm

H

T T
p p

μ −⎛ ⎞∂ Δ −
= ≈ = =⎜ ⎟∂ Δ . −⎝ ⎠

 

E2.30(c) For a van der Waals gas, πT = a/Vm
2. Calculate ΔUm for the isothermal 

expansion of oxygen gas from an initial volume of 1.00 dm3 to 22.4 dm3 at 273 K. What 
are the values of q and w? 
 
E2.30(c) The internal energy is a function of temperature and volume, Um = Um(T,Vm), so 

  

  

dUm =
∂Um

∂T
⎛

⎝⎜
⎞

⎠⎟Vm

dT +
T

∂Um

∂Vm

⎛

⎝⎜
⎞

⎠⎟
dVm [πT = (∂Um / ∂V )T ]  

For an isothermal expansion dT = 0; hence 



 
  
dUm =

T

∂Um

∂Vm

⎛

⎝⎜
⎞

⎠⎟
dV = πT dVm =

a
Vm

2 dVm  

 

3 -1
3 -1

m 2 m 1

3 -1
m 1 m 2 3 -1

22.4 dm  mol
22.4 dm  mol

m
m m m2 21.00 dm  mol mm m 1.00 dm  mol

3
3 1 3 1 3 1

d
d d

21.4= 0.955 mol dm ;
22.4 dm  mol 1.00 dm  mol 22.4 dm  mol

V V

V V

Va aU U V a
VV V

a a a a

, ,

, ,

− − −
−

Δ = = = =−

− + = =

∫ ∫ ∫
3   

 

From Table 1.5, a = 1.364 dm6 atm mol–1

 

-3 6 2
m

3 5
3 1 1

 = (0.9553 mol dm ) (1.364 dm  atm mol )

1 m 1.013 10  Pa= (1.30 dm  atm mol ) = +131 J mol
10 dm atm

U −

− −

Δ ×

⎛ ⎞×⎛ ⎞× ×⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  where 
  
w = − p dVm∫ p =

RT
Vm − b

−
a

Vm
2  for a van der Waals gas.  Hence, 

 
  
w = −

RT
Vm − b
⎛

⎝⎜
⎞

⎠⎟
dVm +

a
Vm

2 dVm∫∫ = −q + ΔUm  

Therefore, 

 

3 1 3 1

3 1
3 1

22.4 dm mol 22.4dm mol

m m 1.00dm mol1.00dm mol m

2
1 1 3

2

d ln( )

22.4 3 2 10(8 314 J K mol ) (273K) ln 7.13 10 J mol
1 00 3 2 10

RTq V RT V b
V b

− −

−
−

−⎛ ⎞
⎜ ⎟− − −
⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
= = − |⎜ ⎟−⎝ ⎠

− . ×
= . × × = + ×

. − . ×

∫
1

 

and 3 1 1 3
m (7.13 10 J mol ) (131J mol ) 7 00 10 J molw q U 1− − −= − + Δ = − × + = − . ×  

E2.32(c) The isothermal compressibility of diamond at 293 K is 1.87 × 10–7 atm–1. 
Calculate the pressure that must be applied in order to increase its density by 0.08 per 
cent. 
 
E2.32(c)    The isothermal compressibility is 

  
  
κT = − 1

V( )
T

∂V
∂p

⎛
⎝⎜

⎞
⎠⎟

[2.44] so 
T

∂V
∂p

⎛
⎝⎜

⎞
⎠⎟

= −κTV  

 At constant temperature 

 
  
dV =

T

∂V
∂p

⎛
⎝⎜

⎞
⎠⎟

dp  so dV = κT V dp or dV
V

= −κT dp  

Substituting 
 
V =

m
ρ

 yields dV = −
m
ρ2 dρ ;  dV

V
= −

dρ
ρ

= −κT dp  

Therefore, 
 

δρ
ρ
≈κ Tδ p  

For 
4 4

2 4 3
7 1

8 10 8 100 08 10 8 10 4.3 10  atm
1.87 10 atmT

pδρ δ
ρ κ

− −
− −

− −
× ×= . × = × , ≈ = = ×

×
 

 

E2.33(c) Given that μ = − 0.062 K atm–1 for helium, calculate the value of its isothermal 
Joule–Thomson coefficient. Calculate the energy that must be removed as heat to 



maintain constant temperature when 20.0 mol of He flows through a throttle in an 
isothermal Joule–Thomson experiment and the pressure drop is 100 atm. 
 
E2.33(c) The isothermal Joule-Thomson coefficient is 

  1 1 1 1m
m (0 062K atm ) (20.8J K mol ) 1.29J atm molp

T

H
C

p
μ 1− − − − −

,

∂⎛ ⎞
= − = . × =⎜ ⎟∂⎝ ⎠

 

 
  
dH = n

T

∂Hm

∂p
⎛

⎝⎜
⎞

⎠⎟
dp = −nμCp,m dp  

  [μ and C
  
ΔH = p1

p2∫ (−nμCp,m )dp = −nμCp,m ( p2 − p1) p are constant] 

  1 1(20.0mol) ( 1.29J atm mol ) ( 100atm) 2.58kJH − −Δ = × + × − = −

so (removed) 2.58 kJq H= +Δ = −  
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