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Abstract The concept of the population attributable

risk (PAR) percent has found widespread application

in public health research. This quantity describes the

proportion of a disease which could be prevented if a

specific exposure were to be eliminated from a target

population. We present methods for obtaining point

and interval estimates of partial PARs, where the

impact on disease burden for some presumably modi-

fiable determinants is estimated in, and applied to, a

cohort study. When the disease is multifactorial, the

partial PAR must, in general, be used to quantify the

proportion of disease which can be prevented if a

specific exposure or group of exposures is eliminated

from a target population, while the distribution of

other modifiable and non-modifiable risk factors is

unchanged. The methods are illustrated in a study of

risk factors for bladder cancer incidence (Michaud DS

et al., New England J Med 340 (1999) 1390). A user-

friendly SAS macro implementing the methods

described in this paper is available via the worldwide

web.
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Introduction

What percent of cases would be prevented if it were

possible to eliminate one or more exposures from a

particular target population? The population attribut-

able risk (PAR) answers this question. The PAR provides

information about the public health significance of one

or more exposures on the burden of disease in a popu-

lation by accounting for both the strength of the asso-

ciation on the outcome and the prevalence of the

exposure in the population to which the PAR is applied.

The PAR was first formulated for a single binary

exposure [1] and subsequently extended to the multi-

variate setting [2]. To calculate the PAR, one must

estimate the relative risks for the risk factor(s) of

interest as well as those for additional risk factors which

may be potential confounders for the disease outcome

in a multivariate model. In addition, prevalences must

be estimated from the target population. A variety of

names for the PAR have been used in the literature.

According to a recent survey [3], the most common are

attributable risk (AR) [1], etiologic fraction [4], attrib-

utable risk percentage [5] and attributable fraction [6].

A unified approach for the calculation of the attribut-

able risk using multivariate models in case-control

studies has been given, in which the concept of the

partial PAR was first introduced [7]. A comprehensive

overview of these methods, which discussed the issues to

consider in correctly implementing PAR estimation

techniques and interpreting the results was given later
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[8]. Most of the literature has focused on point and

interval estimation of the PAR in case-control studies.

In this paper, we derive the variance of the partial

PAR where both the relative risks and population

prevalences are estimated from the same cohort study.

In a multifactorial disease setting, at least some key

risk factors, such as age and family history, are not

modifiable. This limits the practical utility of the full

PAR, so we do not consider it further here. An

example is given from a cohort study of risk factors for

bladder cancer incidence in the Health Professionals’

Follow-up Study (Michaud et al., 1999). The use of

publicly available software in SAS is illustrated in this

example.

Full and partial PAR for cohort studies

The population attributable risk (PAR) is formulated

as a function of relative risk(s) and the prevalence(s) of

the risk factor(s). In its simplest form (Eq. 1), there is

one exposure at two levels (exposed versus unexposed)

PAR ¼ pðRR� 1Þ
pðRR� 1Þ þ 1

¼ 1� 1

pðRR� 1Þ þ 1

¼ 1� 1
P2

s¼1 p sRRs

ð1Þ

where RR is the relative risk, p is the prevalence of the

exposure in the population and s indexes the two strata

determined by the value of the risk factor.

Equation 1 was generalized to the multifactorial

setting (Eq. 2), when there are multiple exposures at

multiple levels, as

PARF ¼
PS

s¼1 psðRRs � 1Þ
1þ

PS
s¼1 psðRRs � 1Þ

¼ 1� 1
PS

s¼1 psRRs

ð2Þ

In Eq. 2, RRs and ps, s = 1; . . . ; S, are the relative

risks and the prevalences in the target population for

the sth combination of the risk factors. Eq. 2 evalu-

ates the proportional reduction expected in the

number of diseased individuals if all the known risk

factors were eliminated from the target population.

We will refer to this as the full PAR (PARF). In an

evaluation of a preventive intervention in a multi-

factorial disease setting, the interest is in the percent

of cases associated with the exposures to be modified,

when other risk factors, possibly non-modifiable, exist

but do not change as a result of the intervention. The

partial PAR(PARp) was proposed [7] to estimate this

quantity. The term partial here evokes the partial

correlation coefficient in linear regression theory,

involving the effect of a group of variables on an

outcome after adjusting for the effects of another

group. The PARp is preferred over PARF when the set

of risk factors of interest includes some factors which

cannot be modified (even theoretically), such as age

and family history of the disease. Under the assump-

tion of no interaction of the index exposure effects with

the background risk factors, the PARp is formulated as

PARp ¼
PS

s¼1

PT
t¼1 pstRR1sRR2t �

PS
s¼1

PT
t¼1 pstRR2t

PS
s¼1

PT
t¼1 pstRR1sRR2t

¼ 1�
PT

t¼1 p:tRR2t
PS

s¼1

PT
t¼1 pstRR1sRR2t

ð3Þ

where t denotes a stratum of unique combinations of

levels of all background risk factors which are not

under study, t = 1; . . . ;T and RR2t is the relative risk in

combination t relative to the lowest risk level, where

RR2,1 = 1. As previously, s indicates an index exposure

group defined by each of the unique combinations of

the levels of the index risk factors, that is, those risk

factors to which the PARp applies, s = 1; . . . ; S, and

RR1s is the relative risk corresponding to combinations

relative to the lowest risk combination, RR1;1 ¼ 1. The

joint prevalence of exposure group s and stratum t is

denoted by pst, and p.t = Ss=1
S pst.

The partial PAR, as given by Eq. 3, represents the

difference between the number of cases expected in

the original cohort and the number of cases expected if

all subsets of the cohort who were originally exposed to

the modifiable risk factor(s) had eliminated their

exposure(s) so that their relative risk compared to the

unexposed was 1, divided by the number of cases

expected in the original cohort.

To estimate PARp or PARF in a cohort study, one

must first estimate the relative risks for the exposure(s)

of interest and for the confounders, typically but not

necessarily with a multiplicative model for the inci-

dence rate of disease, I(E, C), such as

IðE;CÞ ¼ expfb01E þ b02Cg ð4Þ

using a Poisson or pooled logistic regression model [9],

where E is a row vector of index exposure variables,

and may include one or more binary or polytomous

exposures and their interactions, C is a row vector of

background risk factors, usually including a row vector

of indicator variables for age groups considered

homogeneous with respect to disease risk, and may

also include one or more binary or polytomous risk

factors and their interactions. These models should
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include all higher order interactions suggested by the

data, as usual, or the resulting dPAR will be biased.

There is a 1–1 relationship between RR1s and a rep-

arameterization of Eq. 4. We define E as a vector of p1

categorical variables, E = ðE1; . . . ;Ep1
Þ, which have

ðS1; . . . ; Sp1
Þ levels. C is a vector of p2 categorical vari-

ables, C = ðC1; . . . ;Cp2
Þ, which have ðT1; . . . ;Tp2

Þ levels.

Without loss of generality, we assume that the reference

levels in the set of binary indicator variables generated

to represent ðE0;C0Þ0, which must be the levels with

lowest risk, are the first levels. We then generate the

binary indicator variables e¼ ðe12; . . . ; e1S1
; e22; . . . ;

e2S2
; . . . ; ep12; . . . ; ep1Sp1

Þ0 and c¼ ðc12; . . . ; c1T1
;c22; . . . ;

c2T2
; . . . ; cp22; . . . ; cp2Tp2

Þ0 of which the model

Iðe; cÞ ¼ expfb01eþ b02cg ð5Þ

is a function. Each unique set of possible values for e

can be assigned a subscript s, s = 1; . . . ;S, where

S ¼
Qp1

u¼1

Su , and each unique set of possible values for c

can be assigned a subscript t, t = 1; . . . ;T, where

T ¼
Qp2

u¼1

Tu. For each es, the corresponding relative risk

for the index exposure variables, RR1s, is

RR1s ¼ expf
PS�p1

j¼1

b1jesjg and for each ct, the corre-

sponding relative risk for the index background risk

factors, RR2t, is RR2t ¼ expf
PT�p2

j¼1

b2jctjg. Following the

conditions for confounding of the dPAR derived pre-

viously [10], unless age is either not a risk factor for

the outcome of interest or is unassociated with the

index exposure(s), the relative risks for age must be

incorporated into the estimators given by Eqs. 2 and 3

[11, 12]. Hence, the Cox model, which in many epi-

demiologic applications conditions out the relative

risks for age and assumes in its standard implemen-

tation no interactions with other model covariates

[13], is typically not useful in this setting, unless age is

jointly unassociated with all other risk factors in

model, Eq. 5.

The prevalences for the combinations of back-

ground and index risk factors to be considered are

estimated as multinomial probabilities from the per-

son-time under follow-up in the cohort as the empirical

fraction of person-time of follow-up among cohort

members in each unique level of index exposures and

background risk factors, and denoted p̂st; s ¼ 1; . . . ; S;
t ¼ 1; . . . ;T. These are substituted into Eqs. 2 and 3.

The asymptotic variance of dPARp is derived in

Appendix 1 using the multivariate delta method for the

cohort study setting, as given previously in a more

general form [14, 15]. Appendix 2 illustrates the cal-

culation of the dPARp and its 95% confidence limits

with our user-friendly, fully-documented, publicly avail-

able macro (http://www.hsph.harvard. edu/
faculty/spiegelman/par.html).

As seen in Eqs. 2–3, the PAR is a function of the

relative risks and the prevalences of the exposures and

confounders. When the PAR is estimated in a case-

control study where the target population is the study

base from which the cases arose, Cov p̂st;dRRuv

� �
is non-

zero when s = u and t = v, and 0 otherwise. We show in

Appendix 1 that, asymptotically, in a cohort study,

cov p̂st;dRRuv

� �
¼ 0; ðs; uÞ¼1; . . . ; S; ðt; vÞ ¼ 1; . . . ;T, as

was given more generally previously [15].

The PAR is not strictly additive. Additivity concerns

the relationship between the PAR for two or more risk

factors to the sum of PARs for each of these risk fac-

tors separately. The sum of the crude PARs for each

factor of interest obtained by collapsing over all other

factors is generally less than the joint PARF for the risk

factors taken together [16]. However, the sum of the

individual PARps representing the effect of removing

one risk factor while keeping other factors unchanged

will generally be more than the PARF for all the risk

factors taken together [17].

Another important property of the PAR is its dis-

tributivity [18]. The crude PARF from a multilevel

exposure equals the PARF calculated from combining

those categories into a single exposed category [2, 18,

19]. Insofar as the distributive property may hold

approximately when there are several multilevel

exposures, it may be statistically and computationally

efficient to collapse categories, since even a modest

number of multilevel exposures may create a very large

number of joint levels with sparse information, leading

to unstable prevalence estimates that will destabilize

the overall PARF or PARp. However, it should be

noted that the distributive properly strictly holds only

for the dPARF , and will be an approximation for the
dPARP [18].

The role of fluid intake and cigarette smoking
in bladder cancer prevention [20]

In the Health Professionals’ Follow-up Study, fluid

intake and cigarette smoking were the strongest mod-

ifiable risk factors for bladder cancer. We selected

these two risk factors to examine the proportion of

bladder cancer that could be prevented by certain

public health interventions in 45,253 members of the

Health Professionals’ Follow-up Study, a cohort of male

health professionals, who were followed between 1986
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and 1996 for the incidence of bladder cancer, during

which time 238 cases occurred among 442,508

person-years with complete index exposure data. Fur-

ther details on this study have been given previously

[20]. Fluid intake was ascertained at baseline through

the reported frequency of 22 beverages. Current

smoking status (yes/no) was updated every 2 years, and

pack-years were given at baseline. Pooled logistic

regression models adjusted for age in 5 year age

groups, calendar year of questionnaire return (five

periods), geographic region (five regions), baseline

energy intake (in quintiles) and baseline intake of

fruits and vegetables (four groups) were fit to the data

to estimate the relative risks of these background risk

factors, as well as the relative risks of the index expo-

sures: fluid intake (quintiles), current smoking status

(yes/no), and pack-years of smoking (six categories).

Table 1 gives the frequency distribution of each of

the background risk factors and the index exposures,

and the relative risks of the index exposures and

background risk factors. Based on these data and

the methods discussed above, we calculated the dPARps

corresponding to interventions focused on smoking

cessation or prevention and increasing fluid intake

(Table 2). If all HPFS cohort members increased

their fluid intake to more than 2.4 liters per day,

Table 1 Prevalences and
relative risks for study of risk
factors for bladder cancer in
the Health Professionals
Follow-up Study (n = 45, 253)

a Note: prevalences may not
add to 100% due to rounding

Variable Prevalencea

(%)
Relative risk
(95%CI)

Fluid intake
(ml/day)

Quintile 5 20 1.0

Quintile 4 20 1.57 (0.98–2.54)
Quintile 3 20 2.07 (1.30–3.30)
Quintile 2 20 1.88 (1.15–3.05)
Quintile 1 20 2.29 (1.41–3.72)

Current smoking No 92 1.0
Yes 8 1.48 (1.00–2.17)

Pack-years of
cigarette smoking

None 48 1.0

< 10 10 1.44 (0.84–2.48)
10– < 25 19 1.94 (1.31–2.86)
25– < 45 14 2.44 (1.67–3.58)
45– < 65 7 2.88 (1.85–4.49)
65+ 3 3.79 (2.30–6.24)

Region West 21 1.0
Midwest 27 1.36 (0.88–2.11)
South 27 1.68 (1.10–2.56)
Northeast 23 1.91 (1.25–2.91)
Pacific, missing 1 1.33 (0.32–5.57)

Age (years) < 50 27 1.0
50– < 55 16 2.81 (1.29–6.16)
55– < 60 15 4.04 (1.94–8.42)
60– < 65 15 6.00 (2.97–12.12)
65– < 70 13 9.55 (4.82–18.91)
70– < 75 9 14.29 (7.18–28.45)
75– < 80 4 14.55 (6.85–30.91)
80+ 1 27.60 (10.50–72.55)

Fruit and vegetable
intake (servings/day)

7.5+ 25 1.0

5– < 7.5 25 1.28 (0.89–1.83)
3.5– < 5 25 1.09 (0.73–1.64)
< 3.5 25 1.42 (0.93–2.15)

Total Energy
Intake (kcal/day)

Quintile 1 20 1.0

Quintile 2 20 1.35 (0.92–1.98)
Quintile 3 20 1.04 (0.68–1.59)
Quintile 4 20 1.09 (0.69–1.70)
Quintile 5 20 1.37 (0.87–2.17)

Calendar period 1994–1995 20 1.0
1992–1993 20 1.31 (0.85–2.01)
1990–1991 20 1.77 (1.17–2.69)
1988–1989 20 2.04 (1.34–3.10)
1986–1987 20 1.52 (0.96–2.41)
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an estimated 43% (95% CI 17%–63%) of bladder

cancer would be avoided. If all HPFS cohort members

increased their fluid intake to more than 2.4 liters per

day and quit smoking, an estimated 46% (95% CI

17%–67%) of the incident cases of bladder cancer

would be avoided. If all HPFS cohort members

increased their fluid intake to more than 2.4 liters per

day and had never smoked at all, an estimated 69%

(95% CI 36%–87%) would have been avoided.

Appendix 2 illustrates the calculation of these dPARps

with our publicly available macro (http://www.
hsph.harvard.edu/faculty/spiegelman/par.
html).

Although the additivity approximation worked for

the combined effects of increased fluid intake and

smoking cessation (43% + 5% = 48%), while the cor-

rectly calculated dPARp was 46%, the additive

approximation broke down more substantially for the

combined effects of increased fluid intake and lifetime

smoking prevention (43% + 5% + 43% = 91%), while

the correctly calculated dPARp was 69% (Table 2). The
dPARp for fluid intake when modeled by quintiles of

intake was 43%, but when we grouped those with low

fluid intake (below the fifth quintile) together into a

single exposed group, the dPARp was 40% (Table 2).

Hence, as noted previously [19], the distributive

property often holds approximately in multifactorial

disease settings although it is strictly true only for the

full PAR given by Eqs. 2 and 3. Interestingly, not only

did the point estimates and confidence bounds differ

for index exposures to which the distributive property

was applied, but they also differ for binary risk factors

in the model which in a univariate setting would not be

affected by this change. For example, the dPARp for

smoking cessation went from 5% (95% CI 2%–12%)

to 7% (95% CI 1%–13%) when the distributive

property was applied to pack-years of smoking and

fluid intake. From a comparison of the ratio of the

standard errors of the dPARp to the point estimates,

there was no obvious efficiency gain here in collapsing

risk factors categories to apply the distributive

property approximation.

Some authors have incorrectly suggested that a

PARp can be validly estimated by using the simple

formula gPARp ¼
PS

s¼1
p̂s: eb̂s�1ð Þ

1þ
PS

s¼1
p̂s: eb̂s�1ð Þ, where eb̂s is the mul-

tivariate-adjusted relative risk comparing the sth level

of the exposure to the reference level obtained by fit-

ting (Eq. 5) by Poisson or pooled logistic regression

and p̂s: is the marginal prevalence of level s of exposure

in the cohort study. With a bit of algebra, some

re-arrangement of Eq. 3 reveals that unless RR2t = 1

for all t = 1; . . . ;T , or unless the index exposures are

not associated with the background risk factors, i.e.

unless pst = ps. p.t, this method of estimating dPARp will

be biased, as has been shown previously as early as

1983 [11, 12]. For example, the dPARp correctly calcu-

lated from Eq. 3 was 5.0% for cessation of smoking;

using this incorrect method, it was under-estimated by

26% as 3.7%. That is, an estimated 5% of the incident

cases of bladder cancer would have been eliminated in

the Health Professionals’ Follow-up Study if all those

currently smoking quit. The dPARp correctly calculated

from Eq. 3 was 40% for low fluid intake, defined as

below the fifth quintile, using the distributive approx-

imation which appeared to be reasonable here; using

the incorrect method described above, little difference

was seen—it was estimated as 39%. The correlations

between the index exposures, fluid intake, current

smoking and pack-years, and the highest risk back-

ground factors in our data are low. The highest

Table 2 dPARp (95% CI) for several risk factors for bladder cancer in the Health Professionals Follow-up Study [20]

Exposure dPARF from
crude model

dPARp from
multivariate model

gPARp from collapsed
multivariate model

Fluid intake 0.41 (0.15, 0.62) 0.43 (0.17, 0.63) 0.40 (0.16, 0.59)
Current smoking 0.08 (0.03, 0.13) 0.05 (–0.02, 0.12) 0.07 (0.01, 0.13)
Pack-years of cigarette smoking 0.50 (0.32, 0.64) 0.43 (0.21, 0.62) 0.41 (0.25, 0.55)
Fluid intake + current smoking 0.49 (0.23, 0.69) 0.46 (0.17, 0.67) 0.44 (0.18, 0.64)
Fluid intake + pack-years

of cigarette smoking
0.77 (0.55, 0.89) 0.68 (0.36, 0.86) 0.65 (0.40, 0.81)

Current smoking + pack-years
of cigarette smoking

0.50 (0.28, 0.67) 0.45 (0.20, 0.65) 0.44 (0.27, 0.59)

Fluid intake + current smoking + pack-years
of cigarette smoking

0.77 (0.53, 0.90) 0.69 (0.36, 0.87) 0.67 (0.40, 0.83)

Number of combinations of index exposure
and background risk factors observed
in the study (of total possible)

60 (of 60) 66,155 (of 240,000) 16,793 (of 32,000)
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correlation observed with an important background

risk factor is that between age and pack-years, 0.19. It

should be noted that in simulation studies, presumably

with much higher correlations between index and

background risk factors, severe bias has been reported

when this biased method is used [11].

Discussion

The variance of the partial dPAR was derived for cohort

studies. It was noted that Poisson or pooled logistic

regression models, rather than the Cox model, are

needed to estimate the relative risks, because estimates

of the relative risks of all background risk factors and

index exposures are necessary, including those of age,

if unbiased estimates of the PARp are to be obtained.

Investigators can switch from the perhaps more stan-

dard Cox regression analysis of their cohort study to

Poisson or pooled logistic regression analysis by

transforming the data into counting process format [21]

(also known as person-time format), if it is not already

in that form, from the one record per person structure,

and by grouping the primary time variable, typically

age, into a series of suitable indicator variables to be

entered into the new model.

The methods were applied to a study of bladder

cancer incidence in relation to increased fluid intake

and smoking cessation and prevention. Publicly-avail-

able user-friendly software using a newly developed

SAS macro was illustrated. Since to our knowledge, no

other such software is publicly available, this addresses

a significant need, as noted in Benichou’s recent review

[8]. It should be noted that Mezzetti et al. [22] provided

a SAS macro for the point and interval estimation of

the partial dPAR in case-control studies, based upon

formulas given by [7, 23], where the estimated expo-

sure prevalences are correlated with the estimated

relative risks. In cohort studies, as shown in Appendix 1,

these asymptotic correlations are 0, and hence the

variance formula is not valid in this setting. In addition,

the formula for the point estimate for the partial dPAR

used in case-control studies uses an estimate of the

proportion of cases that are exposed [24], rather than

an estimate of the exposure prevalence in the study

basis as the cohort study version does. In a cohort

study, the latter quantity can be estimated with sub-

stantially more data, and hence, the estimator which

uses estimates of exposure in the cases alone, although

valid, is likely to be inefficient. To be certain of this

conjecture, this issue would need further study.

As always, the estimated PARp and its estimated

confidence bounds will be valid only when the

assumptions used to estimate it are valid. The relative

risk model (Eq. 4), and consequently, its reparame-

terization, Eq. 5, must be correctly specified, and the

risk factors not included in the intervention to be

evaluated should not be intermediates on the causal

pathways of any of the index exposures. As always, the

relative risk and prevalence estimates are assumed to

be unbiased estimates of their underlying parameters.

For this to be true, it is assumed that no information

bias, residual or unmeasured confounding, or selection

bias is present.

Although the relative risks for the background risk

factors and index exposures can typically be most val-

idly estimated in a well designed epidemiologic cohort

study, for the evaluation of public health interventions

it is often of greatest interest to estimate the joint

prevalences of the risk background factors and index

exposures in a more general population to which these

interventions may be applied, such as complex popu-

lation-based surveys such as NHANES [25] or NHIS

[26]. The variance of the dPARp for this situation has

been derived [27] and some SAS code has been pro-

vided, although enhanced user-friendliness is needed

for broader applicability. The specific derivation of the

variance and implementation of software for dPARps

calculated in cohort studies, which allow for interven-

tions on some but not all of a polytomous index

exposure (e.g. eliminating both under-weight and over-

weight in the prevention of ovulatory infertility) [28],

and for dPARps which consider interventions that alter

the prevalences of the index exposures without entirely

eliminating high risk groups, also called the general-

ized impact fraction [15, 29, 30], are also needed. The

partial population attributable risk can be a useful tool

for translating the results of analytic epidemiology to

public health practice.
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Appendix 1: Derivation of the Var dPARp

� �

Var dPARp

� �

¼ Var

PT
t¼1 p̂:tdRR2t

PS
s¼1

PT
t¼1 p̂st

dRR1s
dRR2t

 !

¼ Varðf ðp̂; dRR1; dRR2ÞÞ �
@f p;RR1;RR2ð Þ

@p

� �0��
�
�^
p;cRR

� Var p̂
� � @f p;RR1;RR2ð Þ

@p

� ��
�
�
�^
p;cRR

þ @f p;RR1;RR2ð Þ
@ RR01;RR02
� �0

" #�
�
�
�
�^
p;cRR

Var dRR
0
1
dRR

0
2

� �0h i

� @f p;RR1;RR2ð Þ
@ RR01;RR02
� �0

" #�
�
�
�
�^
p;cRR

ð6Þ

where

@f p;RR1;RR2ð Þ
@pst

¼ b RR2t � a RR2tRR1s

b2
;

@f p;RR1;RR2ð Þ
@RR1s

¼ � a
PT

t¼1 pstRR2t

b2
;

@f p;RR1;RR2ð Þ
@RR2t

¼ bp:t � a
PS

s¼1 pstRR1s

b2
;

a ¼
XT

t¼1

p:tRR2t; b ¼
XS

s¼1

XT

t¼1

pstRR1sRR2t;

where S s pst = p.t, and RR1 ¼ RR1;1;RR1;2; . . . ;RR1S

� �0

and RR2 ¼ RR2;1;RR2;2; . . . ;RR2T

� �0
are the vectors of

the relative risks corresponding to the modifiable and

unmodifiable risk factors respectively.

Under the proportional hazards model, RR1s ¼ eb01es ,

where es is the vector of values of the binary indicators

corresponding to the sth combination of modifiable

exposure variables, of which there are S combinations,

and RR2t ¼ eb02ct where ct is the vector of values of the tth

combination of unmodifiable background risk, of which

there are T combinations. Then, Var dRR
0
1
dRR

0
2

� �0h i
¼

DRD0, where R ¼ Var ^
b01
; ^
b02

� �0h i
, and D = [(Duv),

u ¼ 1; . . . ; Sþ T; v ¼ 1; . . . ; p1 þ p2] where

Duv ¼

@RR1;u

@b1;v
if u6S and v6p1

@RR2;u�S

@b2;v�p1

if u[S and v[p1

0 if u6S and v[p1

0 if u[S and v6p1

8
>>><

>>>:

Under the proportional hazards model,
@RR1;u

@b1;v
¼

euveb01eu , where euv is the vth element of the vector eu,

and
@RR2;u�S

@b2;v�p
¼ cu�S;v�p1

eb02cu�S , where cu�S;v�p1
is the v –

p1th element of the vector cu�S.

The variance of the dPARp is estimated by replacing,

in Eq. 6, p;RRð Þ with p̂;dRR
� �

, S with the estimated

variance-covariance matrix of ^
b01
; ^
b02

� �0
obtained from

the pooled logistic regression model or Poisson
regression model used to fit (Eq. 5). In a cohort
study, the multinomial distribution is used to
estimate the variance-covariance matrix of p̂,
where p = (p1;1; p1;2; . . . ; pST), and Covðp̂st; p̂uvÞ ¼

p̂stð1� p̂stÞ=n if s ¼ u & t ¼ v
�p̂stp̂uv=n if s 6¼ u or u 6¼ v

�

, and n is the total

number of units of person-time of follow-up observed.

In the spirit of transformation suggested by Leung

and Kupper [31], to improve the asymptotic behavior

of the 95% confidence intervals of dPARp and to ensure

that the confidence intervals remain within the range of

–100% to 100%, it is useful to calculate the confidence

intervals using the Fisher’s Z transformation, that is

dVar Fisherz dPARp

� �h i

� 1

1þ dPARp

� �
1� dPARp

� �h i2
dVar dPARp

� �

Then the 95% confidence interval for the dPARp is

estimated as

e
2 dPARp�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cVar ½FisherzðdPARpÞ�

q� �

� 1

e
2 dPARp�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cVar ½FisherzðdPARpÞ�

q� �

þ 1

;

where FisherzðdPARpÞ ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þdPARp

1�dPARp

s" #

:

In a cohort study, it can be shown Cov p̂; b̂
� �

� 0

by a double expectation argument: The estimators b̂

and p̂ are the solutions of the following estimating

equations,

Ub b; pð Þ ¼
Xn

i¼1

@gðei; ci; bÞ
@ðb0; p0Þ0

Yi � EðYijgðei; ci; bÞÞ½ � ¼ 0

Up b;pð Þ

¼
0ðSþT�p1�p2Þ�1

Pn

i¼1

Iðei ¼Es & ci ¼CtÞ�EðIðei ¼Es & ci ¼CtÞÞ½ �

0

B
@

1

C
A

¼ 0;
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where Yi is 1 if the unit of person-time is a case and 0

otherwise, gðei;ci;bÞ will typically be the expit or

exponential function, depending on whether pooled

logistic regression or Poisson regression is used to

estimate b, E(�) is the expectation operator, and Ið�Þ is

an S + T vector of indicator functions which take

values 1 when the condition inside the parentheses is

true and 0 otherwise. Because they are unbiased score

functions, E Ubi
^
b;p̂
� �h i

¼ 0 and E Upi
^
b;p̂
� �h i

¼ 0,

i = 1; . . . ;n. This implies that

Cov Ubi
^
b; p̂
� �

;Upi
^
b; p̂
� �h i

¼ EYi;ci;ei
Ubi

^
b; p̂
� �

U 0pi
^
b; p̂
� �h i

¼ Ec;eEYjc;e Ubi
^
b; p̂
� �

U 0pi
^
b; p̂
� �h i

¼ Ec;eEYjc;e

"
@gðei; ci; bÞ
@ðb0; p0Þ0

½Yi � EðYijgðei; ci; bÞÞ�

0ðSþT�p1�p2Þ�1

Pn

i¼1

Iðei¼Es & ci ¼ CtÞ�EðIðei ¼ Es & ci ¼ CtÞÞ½ �

0

B
@

1

C
A

0#

¼ Ec;e

"
@gðei; ci; bÞ
@ðb0; p0Þ0

0ðSþT�p1�p2Þ�1

Pn

i¼1

Iðei ¼ Es & ci ¼ CtÞ � EðIðei ¼ Es & ci ¼ CtÞÞ½ �

0

B
@

1

C
A

0
#

EYjc;e Yi � EðYijgðei; ci; bÞÞ½ � ¼ 0:

Appendix 2. Sample SAS code for calculating the

dPARP

Program:

title ‘make variance-covariance matrix of beta
coefficients’;

proc logistic descending data=all covout
outest=betas;
model bladder=

volrnk0 volrnk1
volrnk2 volrnk3

/* lowest 4 quintiles of
fluid intake */

region1 region2
region3 region4

/* geographic regions */

agegrp2 - agegrp8 /* 5-year age groups */
smkc /* current smoking */
packyr2-packyr6 /* categories of pack-

years */
period1 period2

period3 period4
/* calendar time periods

*/
calor2-calor5 /* highest 4 quintiles of

caloric intake */

Continued

Program:

fruv1-fruv3; /* lowest 3 categories of
fruit-and-
vegetable intake */

title ‘make dataset of joint prevalences of
modifiable and unmodifiable risk

factors’;
proc sort data=all; by

volrnk0 volrnk1 volrnk2 volrnk3
region1 region2 region3 region4
agegrp2 - agegrp8
smkc
packyr2-packyr6
period1 period2 period3 period4
calor2-calor5
fruv1-fruv3;

run;
proc means noprint data=all; var bladder;
output out=phats n=fq;
by

volrnk0 volrnk1 volrnk2 volrnk3
region1 region2 region3 region4
agegrp2 - agegrp8
smkc
packyr2-packyr6
period1 period2 period3 period4
calor2-calor5
fruv1-fruv3;

run;
%par(bdata=betas, pdata=phats, n_or_p=n,

n_or_pname=fq,
fixedvar=agegrp2 agegrp3 agegrp4 agegrp5 agegrp6

agegrp7 agegrp8 period1
period2 period3 period4
region2 region3 region4 region5 calor2 calor3

calor4 calor5
fruv862 fruv863 fruv861
modvar=smkc packyr2 packyr3 packyr4 packyr5

packyr6
volrnk0 volrnk1 volrnk2 volrnk3);

Output:

option for the variance-covariance matrix of the
prevalences is FIXED .

Partial PAR (95% CI) for
modifiable vbls : VOLRNK0 VOLRNK1 VOLRNK2
VOLRNK3 SMKC PACKYR2

PACKYR3 PACKYR4 PACKYR5 PACKYR6
fixed vbls : AGEGRP2 AGEGRP3 AGEGRP4 AGEGRP5
AGEGRP6 AGEGRP7 AGEGRP8

PERIOD1 PERIOD2 PERIOD3 PERIOD4 REGION2 REGION3
REGION4 REGION5 CALOR2

CALOR3 CALOR4 CALOR5 FRUV862 FRUV863 FRUV861
0.692 (0.366 , 0.869)
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