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ABSTRACT

Crop simulation models can be divided into two groups: those that
aspire to improve our understanding of the physiology and environmen-
tal interactions of crops (science), and those that aspire to provide
sound management advice to farmers or sound predictions to policy
makers (engineering). These quite different aspirations require quite
different models. Scientific models are mechanistic. With a few excep-
tions, they have failed to meet their aspirations. They are typically
flawed by being based on untestable guesses about the processes that
control growth. They may, however, provide useful serf-education for
their developers. The best engineering models are based on robust
empirical relations between plant behavior and the main environmental
variables. Because of their empirical nature, we should not expect
them to apply outside the range of the environmental variables used
in their calibration. Within their calibrated ranges, however, some
have proved useful in providing sound management advice. It is hard
to see a useful role, other than serf-education, for models that fall
between the scientific and the en~neering types.

M OST MEMBERS of the American Society of Agron-
omy probably think of themselves as agricultural

scientists. The Dutch, however, who are a very practical
people, call their graduates in agriculture engineers. I
think that much of the debate that surrounds the use of
simulation models in agriculture arises from confusion
about the difference between science and engineering.
Science is about discovering how the world works. Engi-
neering is about solving practical problems (Fig. 1).
The mode of thinking is different. In the profession of
agronomy, in which engineering and science are dosdy
intermingled, the tension between the two approaches
is often very evident. The same tension appears in ecolog-
ical analysis (Hauhs, 1990) and in hydrology (KlemeL
1986).

THE ESSENCE OF ENGINEERING

Engineers typically apply set procedures to solve their
problems. These procedures started out as rules of thumb,
and have evolved over the years into books of tables and,
with the advent of computers, into software packages, but
in spirit they remain the same. The practitioners usually
do not have much interest in questioning their rules of
thumb. They want to get on with the job of applying
them. While they may adjust these procedures in response
to experience and the ever-present imperative to cut
costs, only catastrophes like the failure of a structure
stimulate them to question their procedures fundamen-
tally, and to invoke the recursive flow of information
depicted by the dotted arrow in Fig. 1. Inventions may
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also stimulate the flow towards theory, as in the classical
example of the steam engine, which stimulated the devel-
opment of thermodynamics.

An amusing example of the persistence of an erroneous
rule of thumb comes from one developed by the ancient
Romans for calculating the flow rate in an aqueduct: the
unit of discharge was defined in terms of the cross-
sectional area of the aqueduct occupied by water, but
not in terms of the slope, and was used for hundreds of
years (Philip, 1986). Presumably, it worked, at least
most of the time, because the practitioners unconsciously
kept the slope reasonably constant, but without saying
so explicitly; they had developed the tacit understanding
of their jobs that comes from apprenticeship. The lack
of explicit understanding led to puzzles and anxieties,
however, and the occasional search for fictitious water
thieves, when the cross-sectional area of the water enter-
ing a section of aqueduct of small slope failed to be
matched by the cross-sectional area of that leaving
the section where the slope was larger. Despite such
anxieties, the ntle of thumb remained unchallenged for
centuries.

I do not mean by this example to disparage the use
of rules of thumb. In general, those that persist do so
because they work. At their best, they represent robust
empirical relationships on which we are prepared to stake
our lives. Another well-founded hydrologic example
comes from a Canadian hydrologist, Vit KlemeL who
has pointed out that the 19th century railway engineers
used to decide the height at which to build a bridge over
a river by searching for the highest flood mark they
could find and making the bridge a little higher than
that. He argues that decades of allegedly scientifically
based hydrologic modeling has failed to produce flood
prediction models that are noticeably better than this
simple rule of thumb (Kleme~, 1982; V. Kleme~, per-
sonal communication, 1995).

THE STRUCTURE OF CROP
SIMULATION MODELS

From about 1970, when computers became easily
available to help us deal with the complexity of crops,
the craft of crop simulation modeling developed rapidly.
Two distinct types of model emerged: one was essentially
practical, and combined a few rules of thumb to predict
the behavior of crops. The other was seemingly scientific
in spirit, and sought to represent the biological and
physiological processes thought to occur in plants and
their environments (Passioura, 1973). These two ap-
proaches correspond to what Addiscott and Wagenet
(1985) termed functional and mechanistic in their analysis
of leaching models, although their terminology has not
proved-popular, perhaps because there seems to be a
code of honor among most simulation modelers that
decrees that only mechanistic models are worth produc-
ing. Is, for example, a routine for calculating the rate
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Fig. 1. Loops illustrating how science and engineering differ and
interact. The solid arrows are the norm, the dashed one signifies
responses to en#neering experience, and the dotted one to engi-
neering failures or inventions. Science is concerned with developing
views about how the world works (e.g., theory, laws) and with
explicitly testing those views (e.g., by experiment, focused observa-
tion). Engineering is concerned with achieving particular practical
outcomes by using set procedures that are typically based on a
mixture of well-established theory and robust empirical relation-
ships.

of plant development that is based on a correlation with
degree-days mechanistic or functional? Perhaps the an-
swer does not matter. However, the difference in intent
implicit in the terms science and engineering in Fig. 1
does matter.

The range in complexity among models remains large,
but the spectrum has been filled in by a plethora of
models of various degrees of complexity and purpose.
It seems to me, though, that most currently effective crop
simulation modeling is closer in spirit to an engineering
exercise than to a scientific one. Good science involves
developing a set of views about the world that are sub-
jected to penetrating experimental (or observational) test-
ing, but crop simulation models are largely untestable
in this sense. We are honest enough to have adopted the
word validation for the process of comparing the output
of a model with a new dataset. The inevitable disagree-
ment usually leads us to adjust the parameters in our
models, rather than to examine their structure, thus ensur-
ing that we remain in the right-hand loop of Fig. 1.
Changes in structure typically come from explicit experi-
mental work, aimed at testing well-defined hypotheses,
as depicted in the left-hand loop, although some structural
insights have come from simulation models, as I discuss
below.

What do I mean by structure? The following example
illustrates the idea. Many of the mechanistically based
simulation models use photosynthetic rate as the central
variable for determining the growth rate of a crop. The
photosynthesis is determined by many other variables,
one of the most important of which is stomatal conduc-
tance. If the crop starts to experience water stress, it is
supposed that the leaf water potential falls, in a way that
can be calculated in terms of the transpiration rate and
the hydraulic resistances within plant and soil, and this
in turn induces stomatal closure and reduced photosynthe-
sis. This conceptual structure is essentially that devised
by Cowan (1965) many years ago, in which for the first
time he combined the work of Gardner (1960) and others
on the flow of water to roots with a simple algorithm
for relating stomatal conductance to leaf water potential.
This structure, depicted in Fig. 2a, may often be true

la) Source LimitedI lib)Sink Limited

Low leaf I
water potentiali Ilnhibitory signal]

~ I from root, IILow stomatai ~ to leaves ~
conductance

Fig. 2. Two scenarios of markedly different structure that depict how
the growth of draughted #ants may be controlled.

where low leaf water potentials are induced in well-
watered plants by very large evaporative demands. A
particularly clear example of such circumstances, at least
for the connection between leaf water potential and sto-
matal conductance, is provided by the study of Saliendra
et al. (1995) on a riparian species. However, a simulation
model based on Fig. 2a can be made to fit the data even
where the structure is not true. Applying the model does
not challenge this structure.

An alternative view of the relation between photosyn-
thesis and growth in a water-stressed plant is that the
plant senses that its environment is deteriorating, and
determines its growth rate accordingly. In this scenario,
photosynthetic rate does not determine the growth rate
of the plant. The reverse is true: the growth rate deter-
mines the rate of photosynthesis. In the parlance of
carbon-partitioning physiologists, the plant is sink limited
rather than source limited. In fact, there is a spectrum
of circumstances, ranging from complete sink limitation
to complete source limitation. Many pieces of evidence
are available to suggest that plants growing in inhospita-
ble soil are largely sink limited, and that the root system
responds to the soil conditions by generating a signal,
probably hormonal, that is transmitted to the shoot, as
depicted in Fig. 2b (Barlow, 1986; Passioura, 1988;
Davies and Zhang, 1991; Masle, 1992). Now if this
structure is true, a model based on an entirely source-
limited model can never be relied on to work, and the
calibration of it against a given data set is, in de Wit’s
(1970) devastating words, "the most cumbersome and
subjective technique of curve-fitting that can be imag-
ined." It is notable that the well-established CERES
family of crop models, which are predominantly func-
tional-rather than mechanistic, implicitly favor this sec-
ond scenario in that they relate transpiration and growth
to soil water content rather than to leaf water potential.
SIMTAG (Slapper and Harris, 1989), an effective model
of water-limited wheat (Triticum spp.) in a Mediterranean
environment, also implicitly favors this second scenario.

An example from soil physics that matches the physio-
logical example of Fig. 2 is that of infiltration and redistri-
bution of soil water. Many modelers assume that the flow
is one-dimensional, and seek to improve the accuracy of
their predictions by measuring the appropriate parame-
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ters, for example those defining hydraulic conductivity,
with increasing spatial resolution. If the flow is occurring
preferentially, however, for example in continuous mac-
ropores, or if there are perched water tables that result
in lateral flow in the soil, then the one-dimensional model
is inappropriate, and persisting with it while increasing
the level of spatial detail is futile.

It is in the realm of environmental physics, though,
that we probably do know enough about the structure
of the main processes for us to be reasonably confident
of our predictions, at least where they concern the
aboveground microenvironment within crop canopies.
A good example of success in this area is that of Berry
et al. (1991), whose simulation of the environment close
to the Surface of transpiring corn (Zea mays L.) leaves
gave good insights into the interactions between prey
and predator mites.

Reynolds and Acock (1985), following R.V. O’Neill,
have discussed sources of error in relation to the complex-
ity of models. They dissected the notional total error into
two components, one arising from errors in estimating
parameters, the other arising from systematic bias re-
sulting from oversimplifying. They postulated that cumu-
lative errors in the parameters grow with the number of
the parameters as a model becomes more complex. And
they postulated that this systematic bias (which is similar
to what I have been calling erroneous structure) decreases
as complexity increases. Figure 3a, adapted from their
Fig. 5 illustrates this argument. Their argument is con-
vincing where we are sure of the fundamental structure
of the system-for example, adding a wing mirror to
the simulated model of a car will improve our prospects
of predicting the overall aerodynamic drag. The aerody-
namic principles are well understood. However, if the
structure is fundamentally wrong, as it could be in the
example of photosynthetically driven growth illustrated
in Fig. 2, then no amount of complexity will improve
the structural error. There will be an irreducible mini-
mum error, as illustrated by the dotted asymptote in
Fig. 3b.

Occasionally, though, the structure seems to be so
wrong that no amount of adjusting of the parameters
enables the model to fit the data. When that happens,
we have moved beyond the realm of validation and are
in a position to discover something new. A good example

a b

Complexity Complexity

Fig. 3. Notional components or’prediction error in modeis of increasing
complexity: (a) when the structure of the system is well understood;
(b) when the structure is wrong, with the irreducible structural
error represented by the dotted asymptote (after Reynolds and
Acock, 1985). Complexity and error increase away from the inter-
eept.

is the problem that the CERES models met with their
routine for the withdrawal of water from the subsoil (J.T.
Ritchie, personal communication, 1983). This routine
greatly overestimated the rate of uptake by the roots,
even when the measured root length density was used.
The disagreement stimulated research into alternative
structures for the routine: for example, that the roots
were not uniformly distributed through the given layer
of soil, but were clumped into preexisting pores or cracks
(Passioura, 1991).

Another example comes from Loomis et al. (1976),
whose sugar beet (Beta vulgaris L.) model failed when
they changed plant density, owing to its having the wrong
structure for partitioning assimilate between root and
shoot. This failure stimulated work on reciprocal grafts
between beet (large root, small leaves) and chard (small
root, large leaves) that showed that the voracious appetite
of a small fraction of the cells in the root of the beet
largely determined the size of the axis (Rapoport and
Loomis, 1986).

Even if the structure is right, as it might be in some
of the leaching models when they are applied to soils
in which the flow is essentially one-dimensional, the
models can rarely be applied with confidence to a field,
because the parameters vary greatly in space. We have
to assume average values of, say, the hydraulic conduc-
tivity to apply the Richards equation, and because this
equation is not linear, the averaging is an art rather than
a well-defined procedure, and often works poorly.

EDUCATION

So far, the part played by the large mechanistic simula-
tion models of crops, those that aspire to occupy the
scientific end of the spectrum, seems to have been largely
one of self-education for the developer. Perhaps this is
inevitable: these models are typically so complex that
nobody but the developer is likely to have the enthusiasm
to dip inside them. Thus, they are not transmissible to
others in the sense that the research described in a typical
research paper is transmissible. We do not know enough
about the structure of the soil-plant-atmosphere system
to expect such models to be accurate, except perhaps in
the domain of the aboveground microenvironment. They
are too complex to be tested as entities, but talented
developers enhance their understanding of the interac-
tions that occur and that may be far from obvious. The
formidable understanding of the interacting processes
within plants, or between plants and their environment,
that is evident in the writings of, for example, R.S.
Loomis or J.M. Norman, has undoubtedly been honed
by their developing mechanistic simulation models (see,
for example, Loomis and Connor, 1992; Norman, 1989).
At best, comprehensive mechanistic models of crops
give structural insights to their developers. At worst,
they are merely time-wasting ceremony. There is little
point, for example, in trying to cope with the structural
difficulty illustrated in Fig. 2 by creating a simulation
model that combines both scenarios. Such a model would
merely be an elaborate shopping list of disposable param-
eters having no predictive value.
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Mechanistic models are increasingly being used as
teaching tools. This use may be economical-fewer
teachers are required-but is alarming for the reasons
cogently argued by Philip (1991): there is a great danger
that students who are so taught, and who are not in a
position to question what the program is doing, will
graduate believing that what they have seen on the com-
puter screen is the truth-unless they have been thor-
oughly exposed to real as well as to simulated plants.
Fantasies in FORTRAN can too easily become fact.

Perhaps the most promising use of simulation models
as teaching aids is in educating farmers. Good farmers
are generally good observers of what is happening in
their fields, and involving them with models, at least
models with an easily satisfied thirst for data, may make
them even better observers. The SIRATAC model for
guiding integrated pest management in cotton (Gossyp-
iurn spp.) eventually outlived its usefulness because the
participating farmers became such talented observers that
they could make appropriate tactical decisions without
the use of the model (Hearn and Brook, 1989; A.B.
Hearn, personal communication, 1995).

REALM OF APPLICABILITY

If few crop simulation models are clearly at the scien-
tific end of the spectrum with engineering at the other,
then there is not much point to the rest unless they are
useful in some practical sense. How effective can we
expect them to be? If they are based essentially on rules
of thumb- empirical relationships established in a given
environment-there is little reason to expect that these
relationships will apply outside that environment. An
essential requirement for a good working crop model is
that it be able to predict yield with reasonable accuracy
throughout the range of variables over which it was
calibrated. If it can do that, then it can usefully provide
both strategic and tactical advice. An example of strategic
use is given by Hearn’s (1994) cotton model, OZCOT,
which has been calibrated for a given restricted irrigation
area and which can be used to decide what area of cotton
to grow in dry years when irrigation water is restricted
(Dudley and Hearn, 1993). For example, if only half
the normal water supply is available, the model can give
good advice on whether it is better to grow, say, only
half the normal area of cotton and give it the normal
amount of irrigation, or to grow the normal area with
only half the normal amount of irrigation.

What is especially alarming is the use of models outside
the range over which they have been calibrated, as for
example in trying to assess the response of crops to
scenarios concerned with global atmospheric change.
Trouble is sure to arise, not only because we are extrapo-
lating beyond our calibrating dataset rather than interpo-
lating within it, but also because the processes that we
are trying to model are generally nonlinear, so that
interactions between them can often lead to unexpected
results. To claim that we can predict what will happen
is disingenuous.

A fascinating example of the influence of nonlinear
interactions comes from a study of the AFRCWHEAT

model for a range of scenarios predicted by three general
circulation (GCM) models (Marshall et al., 1996). 
model was used in two ways for four sites. Although
the GCMs all produced roughly similar scenarios in
relation to annual averages of climatic variables (e.g.,
in predicting changes in average temperatures), they gave
different estimates of variability on a monthly scale.
When AFRCWHEAT was run using synthetic weather
generated by each of the GCMs for the year 2050, it
predicted a slight decrease in yield, of about 2%, for
each of the four sites. However, when it was run using
synthetic weather generated from a composite scenario
of the climate, obtained by averaging the predictions
of the GCMs, AFRCWHEAT predicted a substantial
increase in yield, of about 10%, at every site. In these
nonlinear systems, the order in which one does any
averaging can profoundly affect the outcome. Nonhebel
(1994), in a similar analysis, showed large differences
in the output of a crop simulation model depending on
whether actual daily weather data were used as input
over a run of years, or whether synthetic daily data were
used, calculated as averages from the same run of years.
Russell and van Gardingen (1996) have highlighted the
problem of the large variation in actual yield within an
apparently uniform field. They cite an example of wheat
yield data collected at a scale of tens of square meters
with a recording harvester; the yield ranged from 4.5
to 8.0 t ha- 1 and averaged 6.6 t ha- 1. Can we be confident
that average inputs for soil properties will accurately
predict the average yield for such a field?

CONCLUDING REMARKS

There is much that we do not know about the mechanis-
tic structure of the workings of plants and their interac-
tions with their environment. As crop physiologists and
agronomists, we are faced with two main challenges: to
illuminate those hidden structures- a scientific challenge;
and to make use of what we do .know to improve the
management of agricultural enterprises-an engineering
challenge. It is important to distinguish between the two.
While we remain ignorant of essential structures, it is
futile to develop mechanistic simulation models to-help
manage farms that are based on guesses about these
structures. To claim that we know these structures when
we do not gives us something in common with snake
oil salesmen. Perhaps the best that could be said in our
defense in such circumstances is that, to paraphrase
Medawar’s (1967) remark about Teilhard de Chardin:
Before deceiving others we had taken great pains to
deceive ourselves.

What I think we have learnt about agronomic (engi-
neering) simulation models so far is that they need to
be as simple as possible, and especially that they must
have a small appetite for data; that, where we are not
totally confident of the mechanistic structure, they should
be based on simple robust empirical relationships be-
tween the main variables; and that, given this empirical
nature, we should not expect, or claim, that they will be
applicable outside the conditions in which the empirical
relations were established. The overall aim is accurate
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prediction on which to base sound advice. In contrast,
the aims of the best scientific simulation models are
qualitative. We are looking for illuminating comprehen-
sive failures that will stimulate us to change the way we
think about the workings of the crop and its interactions
with its environment. Confusing the two aims leaves us
floundering.
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