
A Multiple Comparison Procedure for Comparing Several Treatments with a Control 

Author(s): Charles W. Dunnett 

Source: Journal of the American Statistical Association , Dec., 1955, Vol. 50, No. 272 
(Dec., 1955), pp. 1096-1121  

Published by: Taylor & Francis, Ltd. on behalf of the American Statistical Association 

Stable URL: https://www.jstor.org/stable/2281208

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

Taylor & Francis, Ltd.  and American Statistical Association  are collaborating with JSTOR to 
digitize, preserve and extend access to Journal of the American Statistical Association

This content downloaded from 
�����������200.144.62.89 on Sun, 07 Apr 2024 23:39:38 +00:00������������ 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/2281208


 A MULTIPLE COMPARISON PROCEDURE FOR COMPARING

 SEVERAL TREATMENTS WITH A CONTROL

 CHARLES W. DUNNETT*

 American Cyanamid Company

 I. INTRODUCTION

 A COMMON problem in applied research is the comparison of treat-
 I ments with a control or standard. Such a situation may arise, for
 example, when an agronomist tests the effects on crop yield of the addi-
 tion of chemicals to the soil, or when a pharmacologist assays drug

 samples to determine their potencies. In designing an experiment to
 measure the effects of such treatments, it is often desirable to include
 in the experiment a control in the form of either a dummy treatment,
 to measure the magnitude of the experimental response in the absence
 of the treatments under investigation, or some recognized standard
 treatment. Sometimes past experience with the control will suffice, but
 often this cannot be relied upon due to altered environmental con-

 ditions. Thus the agronomist may leave a few of his experimental plots
 untreated for comparison with the treated plots, and the pharmacolo-
 gist may measure the response to a standard drug preparation of
 known potency concomitantly with the test samples in order to esti-
 mate the potencies of the latter.

 We will consider the case where the numerical results of an experi-
 ment performed to compare p treatments with a control can be sum-

 marized in the form of a set of numbers XO, X1, ... , Xp and s, where
 the X's are means of p+l sets of observations which are assumed to be
 independently and normally distributed, Xo referring to the control and

 Xi to the i-th treatment (i= 1, * * *, p), and s is an independent esti-
 mate of the common standard deviation of the p+1 sets of observa-
 tions. This paper presents a procedure for making confidence state-
 ments about the true (or expected) values of the p differences zi- Xo,
 the procedure having the property that the probability of all p state-

 ments being simultaneously correct is equal to a specified value, P.
 Tables have been computed which enable the procedure to be used by
 the experimenter for P =.95 or .99 and p=1(1)9. When the numbers
 of observations in each set are equal, the tables enable the experimenter

 * I should like to express my appreciation to Frank Wilcoxon for suggesting this problem and for
 his constant encouragement throughout the course of the investigation. I am grateful for this oppor-
 tunity to acknowledge also my indebtedness to Robert Bechhofer and to Milton Sobel. Were it not
 for my good fortune to be associated with them while working on an Air Force contract at Cornell
 University in 1952-3, this paper could not have been written.

 I am indebted to Robert E. Bechhofer also for making the tables in reference [10] available to me.
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 COMPARING SEVERAL TREATMENTS WITH A CONTROL 1097

 to set one-sided upper (or lower) confidence limits on the true values of

 the p differences Xi- Xo such that the probability is P that all p true
 values will actually be less than the upper limits set, or to set two-sided

 confidence limits on the true values of the p differences Xi - Xo such
 that P is a lower bound to the probability that all p true values will

 actually be between the limits set. If the numbers of observations in
 each set are unequal, the tables may still be used but the associated P
 will be only approximate. The tables may also be used to set joint
 confidence limits on the potencies of p drugs relative to a common
 standard, the associated P being approximately equal to the prob-

 ability that all statements will be correct when one-sided limits are set
 and approximately a lower bound to this probability when two-sided
 limits are set.

 The problem of multiple comparisons with a control is a special case
 of the more general multiple comparisons problem considered by
 Tukey [17] and Scheff6 [16]. Tukey's procedure based on the Student-
 ized range and Scheff6's procedure based on the F-distribution enable
 the experimenter to make any number of comparisons among a set of
 sample means with the assurance that the probability of all confidence
 statements being correct will be equal to or greater than a specified

 value. When the experimenter only wishes to make comparisons be-
 tween one of the means and each of the others, as in the case when one
 of the means represents a control, use of the Tukey or Scheff6 pro-
 cedure would result in confidence limits which are wider than necessary.
 The procedure described in this paper results in narrower confidence

 limits for the p comparisons Xi- Xo than either the Tukey or the
 Scheff 6 procedure.

 In an earlier paper, Roessler [15] considered the problem of multiple

 comparisons involving a control. However, he assumed that the p com-
 parisons Xi - Xo were independent which is incorrect since they all
 have Xo in common. In the present paper it is shown that, to obtain

 simultaneous confidence limits on the Xi - Xo, the multivariate ana-
 logue of Student's t-distribution defined by Dunnett and Sobel [4] is

 encountered. This same distribution was involved in a multiple de-
 cision procedure for ranking population means described by Bechhofer
 et al., [2], to which Tables la and lb of the present paper are applicable.
 A multiple decision procedure for comparing several experimental
 categories with a control was formulated by Paulson [11]. Tables la

 and lb of the present paper are also applicable to Paulson's procedure.
 The procedure described in the present paper may also be considered

 as a multiple decision procedure; it is compared with Paulson's in
 Section VII below.
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 1098 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1955

 For the benefit of those who may be interested primarily in applica-
 tions, the procedure is illustrated by two examples in Section II. The
 main part of the theory is given in Section III with a description of the
 construction of the tables in Section IV. In Section V, the question of
 the optimum allocation of available experimental resources between
 the control and the p treatments is considered. In Section VI, the pro-
 cedure is applied to the problem of estimating the potencies of p drug
 samples relative to a common standard.

 II. EXAMPLES

 (a) The following example was adapted from one given by Villars
 [18]. The data represent measurements on the breaking strength of
 fabric treated by three different chemical processes compared with a
 standard method of manufacture.

 Breaking Strength (lbs.)

 Standard Process 1 Process 2 Process 3

 55 55 55 50
 47 64 49 44

 48 64 52 41

 Means 50 61 52 45
 Variances 19 27 9 21

 Here, p =3 and N =3. The average variance is S2 = 19, which is an
 estimate of the common variance of the four sets with (p+ 1) (N-1) = 8
 degrees of freedom. It could be calculated directly as follows:

 552 + 472 + 482 + 552 + . + 412 - 3(502 + 612 + 522 + 452)
 n2-

 8
 152

 = = 19.
 8

 The standard deviation is s -/19 = 4.36 and the estimated standard
 error of a difference between two means is s\2/N = 4.36-\2/3 = 3.56.
 The quantity which must be added to and/or subtracted from the
 observed differences between the means to give their confidence limits
 has been called by Tukey [17] an "allowance" and is given by A
 =tsV2/N, where t is obtained from Table 1 if one-sided limits are
 desired or from Table 2 if two-sided limits are wanted. For p=3 and
 d.f. =8, 1 = 2.42 for one-sided limits and t = 2.94 for two-sided limits for
 P=95%. Analogous values of t can be determined from the tables if
 P =99% confidence is required.
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 COMPARING SEVERAL TREATMENTS WITH A CONTROL 1099

 For one-sided limits, the allowance is A (2.42) (3.56) = 9 and the
 experimenter can conclude that:

 (i) The breaking strength using process 1 exceeds the standard by
 at least 61-50-9=2 lbs.

 (ii) The breaking strength using process 2 exceeds the standard by
 at least 52-50-9= -7 lbs.

 (iii) The breaking strength using process 3 exceeds the standard by
 at least 45-50-9 = -14 lbs.

 The joint statement consisting of the above three conclusions has a
 confidence coefficient of 95%, i.e., in the long run, 95% of such joint
 statements will actually be correct. Upper limits for the three differ-
 ences could be obtained in an analogous manner.

 For two-sided limits, the allowance is A = (2.94) (3.56) =11 and the
 experimenter can conclude that:

 (i) The breaking strength using process 1 exceeds the standard by
 an amount between 61-50?11=0 and 22 lbs.

 (ii) The breaking strengtlh using process 2 exceeds the standard by
 an amount between 52-50?11= -9 and 13 lbs.

 (iii) The breaking strength using process 3 exceeds the standard by
 an amount between 45-50?11= -16 and 6 lbs.

 The joint confidence coefficient for these three statements is greater
 than 95%. (Due to an approximation made in computing Tables 2a
 and 2b, the tabulated values of t are somewhat larger than necessary
 so that the actual P's attained are slightly greater than 95 and 99%.
 No such approximation was made in computing Tables la and lb.)

 (b) The following data are blood count measurements on three
 groups of animals, one of which served as a control while the other two
 were treated with two drugs. Due to accidental losses, the numbers of
 animals in the three groups are unequal.

 Blood Counts (millions of cells per cubic millimeter)

 Controls Drug A Drug B

 7.40 9.76 12.80
 8.50 8.80 9.68
 7.20 7.68 12.16
 8.24 9.36 9.20
 9.84 10.55
 8.32

 Sums: 49.50 35.60 54.39
 N: 6 4 5
 Means: 8.25 8.90 10.88
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 1100 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1955

 Computations:

 49.502 35.602 54.392
 7.402+8.502+ * +9.202+10.552- - -_ _

 s26 4 5
 (ENi) -(p+1)

 16.566 16.566
 = = = ~~1.3805

 15-3 12

 s =\/1.3805 = 1.175

 For d.f. = ( EN)-(p+1) = 12 and P=95%, t=2.11 (one-sided) or
 t = 2.50 (two-sided).

 "Allowances" for differences from the control:

 One-sided: drug A: (2.11) (1.175) V1/6 + 1/4 -1.60

 drug B: (2.11) (1.175)V\/1/6 + 1/5- 1.50

 Two-sided: drug A: (2.50) (1.175) V1/6 + 1/4 = 1.90

 drug B: (2.50)(1.175)V/1/6 + 1/5 = 1.78

 If the experimenter is interested only in upper one-sided limits for the
 differences from the control, he can make the following statements:

 (i) Drug A raises the blood count by at most 8.90-8.25+1.60
 = 2.25 millions per cmm.

 (ii) Drug B raises the blood count by at most 10.88-8.25+1.50
 =4.13 millions per cmm.

 The joint confidence coefficient for these two statements is approxi-
 mately 95%. (Since the tables of t were computed for equal numbers
 of observations per group, their use in the case of unequal numbers
 results in the desired probabilities being only approximately achieved.)
 Corresponding lower limits could be calculated in an analogous manner.

 If the experimenter desires simultaneous upper and lower limits on
 the differences, he should use the two-sided allowances as follows:

 (i) Drug A raises the blood count by an amount between 8.90-8.25
 ? 1.90= -0.25 and 2.55 millions per cmm.

 (ii) Drug B raises the blood count by an amount between 10.88
 -8.25?1.78=0.85 and 4.41 millions per cmm.

 An approximate lower bound to the joint confidence coefficient of
 these statements is 95%.
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 COMPARING SEVERAL TREATMENTS WITH A CONTROL 1101

 III. THEORETICAL BASIS

 Suppose there are available No observations on the control, N1 ob-
 servations on the first treatment, , N, observations on the p-th
 treatment. Denote these observations by Xii (i =0, 1, *, p; j = 1,
 2, * , Ne), and the i-th treatment mean, 7Nf$ X l/N, by Xi. We
 make the assumptions usually made in the analysis of variance, namely,

 that the Xij are independent and normally distributed with common
 variance a2 and means mi. We assume also that there is available an
 estimate s2 of a2, independent of the Xi, which is based on n degrees of
 freedom. For example, we may take

 p Ni

 S2 = E E (Xj - )2/n (1)
 i-O j=1

 where n = ( = Ni) - (p+ 1). Our problem is to obtain separate con-
 fidence limits for each of the differences mi - mo (i= 1, 2, , p), such
 that the joint confidence coefficient, i.e., the probability that all p
 confidence intervals will contain the corresponding mi-mo, is equal to
 a preassigned value, P (0 <P < 1).

 Consider first the case p= 1, where there is only one treatment to be
 compared with the control. The method of obtaining confidence limits
 for mi - m, as described in almost any statistics textbook, is based on
 Student's t-distribution. If we write

 X- Xo- (mi- MO)

 / 1 1

 V/ NJ No

 which is normally distributed with mean 0 and variance u2, then
 t-z/s follows the Student t-distribution with n degrees of freedom. A
 lower limit on mi-m 0 with the desired confidence coefficient will be
 given by

 /1 1
 - Xo0 -d's + 1

 N,No

 if d' is chosen so that

 Prob (t < d') P (2)

 Similarly, if an upper confidence limit is required, it will be given by

 X- Xo+ d's/' + 1
 0'VN, No
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 1102 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1955

 On the other hand, if the experimenter wishes to have bounds on

 ml -m, in both directions, he may take

 X1i - Xo ?+ N0

 where d" is chosen to satisfy

 Prob(|t| <d")=P (3)

 The constant d' or d" corresponding to the desired value of P can be

 obtained from tables of the percentage points of Student's t-distribu-
 tion, which are widely available.

 Now consider the general case where there are p treatments and a
 control. Write

 Xi-X - (mi -MO)
 zi

 / 1 1

 'VNi No

 and ti=zi/s, i=1, 2, , p. Then lower confidence limits with
 joint confidence coefficient P for the p treatment effects mi-mo will
 be given by

 Xi -/ 1 1 Xi-Xo-di's N + N~ ' (i = 1, 2, *..., p),

 if the p constants di' are chosen so that

 Prob (t, < di', t2 < d2',**, tp < dp')-=P. (4)

 Similarly, upper confidence limits will be given by

 / 1 1
 Xi-Xo + dits N + -N

 On the other hand, two-sided confidence limits having the desired joint
 confidence coefficient will be given by

 1 1~~~ Xi -Xo ?distt4 + A~ (i = 1, 2, ... A,)

 if the p constants di" are chosen to satisfy

 Prob (I t, < dil, I t2 I< d2", ., tj I < d") = P. (5)
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 COMPARING SEVERAL TREATMENTS WITH A CONTROL 1103

 To find any set of constants di' or di" satisfying these equations, the
 joint distribution of the ti is required. It may be noted that the joint
 distribution of the zi is a multivariate normal distribution with means
 0 and variances a2 and where the correlation between zi and zj is given
 by

 Pij= No @+ No +1)

 The joint distribution of the ti is thus the multivariate analogue of
 Student's t-distribution defined by Dunnett and Sobel [4].

 To find solutions to (4) and (5), we require a tabulation of the multi-
 variate Student t-distribution. We shall show now that the problem of
 tabulating the multivariate Student t-distribution can be reduced to the
 problem of tabulating the corresponding multivariate normal distribu-
 tion. Consider first equation (4) above. It can be written

 P = Prob (z1 < di's, Z2 < d2's, * , zp < dp's)
 r (6)

 = j __ F(d/'s, d2's, * * *, dp's) p(s)ds
 00

 where F (z1, Z2, * , Zp) is the multivariate normal c.d.f. of the zi and
 p(s) is the probability density function of s. Thus, if F were tabulated,
 it would be fairly easy using a desk calculator to evaluate (6) by nu-
 merical integration for any set of fixed di', and hence to find solutions
 to (4) as functions of P, p and n.

 Similarly, (5) can be written

 P = Prob (I z' I < di"s, I Z21 <d2"s, * * *, I zPI < dp"s)
 r+00 (7)

 = f G(df"s, d2"s, * * *, dp"s)p(s)ds
 -00

 where G (zI, Z2, * ,Zp) is the c.d.f. of the I z i. Again, if G were tabu-
 lated, we could also evaluate (7) and determine the solutions to (5) as
 functions of P, p and n.

 The functions F and G can be obtained for p =2 from K. Pearson's
 tables of the bivariate normal distribution [13], although the tabulation
 interval is not fine enough for numerical integration purposes. How-
 ever, for p = 2, (4) and (5) can be evaluated directly from the results of
 Dunnett and Sobel [4]. The function F has been tabulated for equal
 values of its arguments and for p < 9 by the National Bureau of Stand-
 ards [10] for the special case Pij = 1/2. As will be explained in the next
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 1104 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1955

 section, Table 1 of this paper was based on this tabulation. It would be
 extremely useful for the purpose of the problem considered in this paper
 to have a corresponding tabulation of the function G.

 Until exact tables are available, it will be necessary in general to rely
 upon approximations to the solutions of (4) and (5). From the results
 given by Dunnett and Sobel [5], we can write, when

 pzj = / 1 C + 1 _+ 1),

 p

 Prob (ti < d1', t2 < d2', p, t < dp') > T Prob (t < di') (8)
 i=l

 and

 Prob (f t1I < d11, I t2| < d2", t, It < dp")

 > ][I Prob t |It < di").
 i=j

 Thus, upper bounds to the constants di' and di" can be determined
 by equating the right-hand sides of (8) and (9) to the desired value of
 P. These calculations involve only the probability integral of the uni-
 variate Student t-distribution, which has been tabulated most recently
 by Hartley and Pearson [8, 12].

 Since (4) and (5) are each increasing functions of the correlations
 Pij, alternative lower bounds which are closer than the lower bounds
 given in (8) and (9) may be obtained by taking pij = 0. Pillai and
 Ramachandran [14] have tabulated solutions d'= d2'= ... dp' to (4)
 and solutions d1"=d211= * =d," to (5) for P=.95 and pij=O. It
 would be useful to have a tabulation of such equicoordinate percentage
 points of the multivariate Student t-distribution in the important spe-
 cial case where pij = 0 for other values of P.

 Lower bounds based on the bivariate Student t-distribution can also

 be obtained, as shown in [5]. Taking di' = = .. =dp'=d', di"
 =d2 = *.** =dp"=d", and pij=p=p>O, these can be written

 Prob (ti < d', t2 < d', .. * * tp < d' I Pij = P) (10)
 > [Prob (ti < d', t2 < d' I P12 = P)]p/2

 and

 Prob (I tiI < d", I t2| < d", * *, | t1I < d" I pijP)(
 >!_ [Prob (I ti I. < d",It2 < d" I P 12t| . = P) IP/2
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 COMPARING SEVERAL TREATMENTS WITH A CONTROL 1105

 The probability within the square brackets can be determined from
 the probability integral of the bivariate Student-t distribution [4] with

 correlation p. The bounds obtained from these inequalities are sharper
 than those given by (8) and (9), and in most cases will also be sharper
 than those obtained by using the Pillai and Ramachandran tables [14].

 There are, of course, infinitely many solutions to (4) and (5). For the
 applications considered in this paper, we will take the constants to be

 equal, viz., di'= d2'= d. =zdp' (= d', say) and di" = d21 = ... =dp"
 (=dd", say). Besides greatly simplifying the computational problem,
 there are some theoretical grounds for doing so in the case where

 Pij= p >0, which occurs frequently in practice. For example, it can be
 shown that >E di2 and E di"' are each minimized by this choice.

 IV. CONSTRUCTION OF THE TABLES

 Tables la and lb give solutions d'= d'= ... = dp' to (4) for P =-.95
 and .99, respectively, for p < 9 and Pij = 1/2. They are applicable to the
 situation where there are equal numbers of observations on the control

 and the p treatments, viz, No = N1 = ... = Np. These tables were con-
 structed by numerical evaluation of the integral in (6) using tables of
 the function F computed by the National Bureau of Standards [10].
 The method used was as follows: For n = 5, 10, 20, 25 degrees of free-
 dom, the integral in (6) was calculated for three successive values of d'
 differing by 0.1 such that the desired value of P was bracketed. The
 required value of d' was then determined to 3 decimal places by 3-point
 inverse interpolation. For n = oo degrees of freedom, the values given
 in tables computed by Bechhofer [1] were used. For the intermediate
 degrees of freedom, the values were obtained by interpolation with 1/n
 as argument. An accuracy of 1 in the second decimal place should be
 achieved by this method.

 Tables 2a and 2b give solutions d" =d"= . . . = dp" to the right-
 hand side of (11) for P = .95 and .99, respectively, for p < 9 and pij = 1/2.
 The method of constructing these tables was as follows: For n =5, 10,
 20, 40, oo degrees of freedom, the probability in the square brackets of
 (11) was calculated for three successive values of d" differing by 0.1
 such that the desired value of P was bracketed, using the expressions
 developed in [4] for the probability integral of the bivariate Student
 t-distribution. The required value of d" was then determined by 3-point
 inverse interpolation to 3 decimal places. For the intermediate degrees
 of freedom, the required values were obtained by interpolation using
 1/n as argument. An accuracy of 1 in the second decimal place should
 be achieved by this method.

This content downloaded from 
�����������200.144.62.89 on Sun, 07 Apr 2024 23:39:38 +00:00������������ 

All use subject to https://about.jstor.org/terms



 1106 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1955

 V. OPTIMUM ALLOCATION OF OBSERVATIONS BETWEEN

 CONTROL AND TREATMENTS

 The tables given in this paper were prepared to handle the case where
 equal numbers of observations are available on each of the p treatments

 and on the control. In many practical situations, the experimenter will,
 in fact, wish to allocate the available number of observations equally
 to each group. Where it is feasible, however, it may be advantageous
 to do otherwise. In this section, we will consider the consequences of
 allocating No observations to the control and N1 observations to each of
 the other treatment groups, i.e., we will take N1 = N2= N =N, and
 No$N1.

 Lower confidence limits to the mi-mo will be given by

 Xi- XO -d's4f + N~ (i = 1, 2) y P)l

 where d' is chosen to satisfy

 Prob (ti < d', i = 1, 2, .. * *,p) = P' (12)

 the tt having the multivariate Student t-distribution with

 P=i + 1

 We will consider the allocation No/N1 optimum if it maximizes P for
 fixed value of

 1 1

 N' t + No

 and fixed total number of observations, No+pN,. It may be noted that
 fixing the total number of observations also fixes n, the number of de-
 grees of freedom associated with the multivariate t-distribution, if s is
 defined by (1). Let

 h = d' +No

 Then (12) can be written

 h

 Prob ti < 1 1 ' = 1, 2, * * p P (13)

 N1 No
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 COMPARING SEVERAL TREATMENTS WITH A CONTROL 1107

 From (13), it is evident that P can be increased for fixed h by de-
 creasing

 /1 1
 'V NJ No

 It is easy to show, as has been pointed out by several authors, see, for
 example, Finney [7], that

 /1 1

 'V NJ No

 attains a minimum for fixed No+ pNI when No/N, = V/p. However, this
 choice makes pij<1/2, which operates to decrease P.

 In order to investigate numerically the effect of different allocations
 on P, the curves shown in Figs. 1 and 2 computed. Fig. 1 shows P as a

 function of No/N1 for p = 2 and n = 1, 2, 5, 10, oo, with h chosen in each
 case to make P=. 95 when No/N1= 1. Fig. 2 shows P as a function of
 No/N1 for p=2, 4, 9 and n= oo, with h again chosen to make P=.95
 when No/N1= 1. The curves for finite n were computed from formulas
 given in [4]. The curves for n = oo were computed by numerical integra-

 tion using tables of the normal distribution [9], with certain points for
 p = 2 checked against Pearson's bivariate normal tables [13].

 Figs. 1 and 2 indicate that the optimum allocation occurs where

 No/N1 is only slightly less than \/p except when the number of degrees
 of freedom is small. Some further computations carried out by the
 author for the case of n = oo degrees of freedom indicated that the point
 of optimum allocation becomes even closer to -\/p when h is chosen to
 make P = .99 for No/N1 = 1. However, for h chosen to make P = .75 for
 No/N, = 1, it was found that P <.75 for No/N, = Vlp and the optimum
 value of No/N, was considerably less than \p. For practical purposes,
 we can thus conclude that, if the experimenter is working with a joint
 confidence coefficient in the neighborhood of P=.95 or greater, then
 the experiment should be designed so that No/N1 = V/p approximately,
 where No is the number of observations on the control and N1 the num-
 ber on each of the p treatments.

 VI. APPLICATION TO BIOLOGICAL ASSAY

 An important example involving the multiple comparison of several
 treatments with a control arises in the biological assay of several drug
 samples relative to a common standard. In the "parallel line" type of

 biological assay, regression lines Y=ao+bX and Y=al+bX are fitted

This content downloaded from 
�����������200.144.62.89 on Sun, 07 Apr 2024 23:39:38 +00:00������������ 

All use subject to https://about.jstor.org/terms



 1108 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1955

 Relaionship Between Allocation Ratio and

 Confidence Coefficient for p=2and Various n.

 .953a-

 CL951

 0

 0'

 947

 /~~~~~i I
 .96

 0.8 1.0 1.2 1.4 1.6 1.8 2.0

 Allocation Rcatio) N0/Nl
 FIG. 1.-In plotting these curves, d'V(-/N)+?(1/No) was fixed for each n

 so that P =.95 for No =N1, where d's V(1/N1)+(1/NO) is the difference between
 X,-Xo and its lower confidence limit. The dotted curve indicates where the
 optimum occurs for each n; the vertical dashed line is drawn at No/N = =p-=\2.

 to data representing observed responses Y at several log-dose levels X
 of a standard drug preparation S and a test sample U. The estimated
 log-potency of U relative to S is represented by the horizontal distance
 between the two regression lines,

 m l a-a = b XO-Xi + bY (14)
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 Relationshi p Between Allocation Ratio and Confidence
 Coefficient; for n?=0o ond Various p

 .972

 p=9

 ..968
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 Zt.964
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 0
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 .948
 1.0 1.5 a.0 2.5 3.0 3.5 4.0

 Allocation Ratio, No/N1

 FIG. 2.-In plotting these curves, d'V/(1I/N') + (1/No) was fixed for each p
 so that P =.95 for No = N1, where d'aV/(l/Ni)+ (1/No) is the difference between
 X,-XO and its lower confidence limit. The black arrows indicate where the
 optima occur; the white arrows indicate the points where No/N, = V/P.

 where X0 and X1 are the mean log-dose levels, and Yo and Y7 are the
 mean observed responses, of S and U respectively. On the other hand,
 the true log-potency may be represented by

 M = Xo-X+ miM o (15)

 where mo, ml and ,B are the expected values of Yo, T1 and b, respectively.
 Assuming that the responses Y are independent and normally dis-
 tributed with common variance U2 and means mo+,B(X-Yo) and
 ml+fl(X-71) for S and U respectively, we can obtain confidence
 limits for M by Fieller's [6] method by considering
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 1110 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1955

 71-0o-(M-Yo + Xi)b

 __ + 1 + (M-Xo + Y)2c2]

 Here, No and N1 are the numbers of responses observed on S and U
 respectively, and C2o-2 is the variance of the common slope b. Then z is
 normally distributed with mean 0 and variance 2. If S2 is an estimate
 of a-2 independent of z, based on n degrees of freedom, then z/s has
 Student's t-distribution with n degrees of freedom. Hence, confidence
 limits for M with confidence coefficient P can be obtained by equating

 z2/S2 to t2, where t is the P-percentage point of Student's t, and solving
 the resulting quadratic equation for M. The solution may be found, for

 example, in Bliss [3].
 Now suppose there are p unknown drug samples: U1, U2 *, U, to

 be compared with a common standard, S. Extending the above nota-
 tion in an obvious way, we define the p variables,

 Yi-Y0- (M -Xo + X)b
 Zi 1 _ _- 111 . I p (17)

 + + (M i-Xo + X)2c21

 The zi have a joint p-variate normal distribution with means 0,
 common variance a-2 and correlation between zi and zi given by

 Pii =(l+ Ej) N/o( + 1+ 6ei2) (NO+ 1+ 6j2)

 where e = M- Xo+ X)cVNO. For the p pairs of confidence limits on
 the Hi to have a joint confidence coefficient equal to P, we are led to
 consider the joint distribution of the zi/s, which is the multivariate
 Student t-distribution as in Section III, with this important difference:
 the correlations Pij are no longer known exactly since they involve the
 unknown parameters Mi and Mj. Fortunately, ei may be expected to be
 fairly small in most cases since it is common practice in designing a
 biological assay experiment to try to arrange the dose levels so that

 O- Xi is close to Mi. Thus, we can obtain confidence limits for the Mi
 which have approximately the desired confidence coefficient by assum-

 ing the ei to be negligible, whence

 Pii = 1/ 1/( N + 1) ( + 1). (18)
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 Contour Curves for Correlation Coefficient

 in Bioloqical Assay Case

 -0.5
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 FIG. 3

 This takes the value 12 in the usual situation where N = Ni (i-=1,
 2, * , p), in which case the tables in this paper are applicable.

 The contour curves in Fig. 3 show the effect of ei and e, on p*u when
 No = Ns-N. In most practical situations, the log-dose levels chosen by
 the experimenter for each drug will cover a wide enough range so that
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 Effect of CorrelcQtion Coefficieent on

 .958 Confidence Coefficienb
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 FIG. 4

 the ei are numerically small, in which case they do not exert much
 influence on the value of pij. In Fig. 4, curves are drawn for degrees of
 freedom equal to 5 and oo showing the actual P attained as a function
 of p in the case of estimating the log-potencies of two drugs (p=2)
 when No = N1 = N2 and the tables are used applicable to p = - and
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 COMPARING SEVERAL TREATMENTS WITH A CONTROL 1113

 P =95%. It may be seen that for a wide range of values of p around
 p2=, P does not differ much from the value 95 %.

 VII. MULTIPLE DECISION PROCEDURES FOR COMPARING

 TREATMENTS WITH A CONTROL

 A multiple decision procedure for selecting the "best" of p+l cate-
 gories when comparing p experimental categories with a control has

 been developed by Paulson [11]. Paulson gives a method for making
 one of the following p + 1 decisions:

 JDo: select the control as best

 |Di: select the i-th category as best (i= 1, 2, *, p)

 If Xo, X1, * * *, X, represent the p+l means, each based on N observa-
 tions, Xo being the control, then Paulson's method consists in picking

 out X* = max (X1, * * *, Xp) and if X*-Xo - > X1,s 2/N the decision D*
 corresponding to Y* is made, whereas if X* - Xo <XosV2/N the de-
 cision Do is made. The constant XA is chosen so that the probability of
 making decision Do, when all p treatments are equivalent to the control,
 is equal to a pre-assigned value P. Clearly, di'= X. must be a solution
 of (4). Thus, Tables la and lb of this paper give the required values of

 X,, for P=.95 and .99.
 In some situations it may be appropriate to consider the following set

 of possible decisions from which a choice is to be made:

 Do: select the control as best

 Di: select the i-th treatment (i = 1, 2* *, p) as the only one better
 than the control

 D,j: select the i-th and j-th treatments (i, j= 1, 2, . .. , p; i j),
 without ordering them, as the only two better than the control

 D1,2,...,,: select all p treatments, without ordering them, as better
 than the control

 The following procedure is proposed for choosing one of the above 2-
 decisions on the basis of the p+ l observed means XO, X, * * , p,, each
 based on N observations, and the independent estimate s of the com-
 mon standard deviation:

 Accept Do if X,- YO <ds\V2/N for all i
 Accept Di if Xi-Xo > dsV 2/N and Xj-Xo <ds /2/N for all j i
 Accept Di1 if X_ -Xo>?dsV2/N, Xj-Xo > dsV\2/N and Xk-XO

 < ds \2/N for all k Hci or j

 \Accept D12.X, if Xi-Xo _ ds-v2/N for all i
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 By choosing d to satisfy (4), we will be assured that the probability of
 accepting Do when all the treatments are equivalent to the control is
 equal to a pre-assigned value P. In fact, d will then be identical with
 Paulson's X1n. Table 1 gives the required values of d for P =.95 and .99.

 It is also possible to determine the size N of sample required to

 achieve a specified, probability of accepting some other decision when
 all the treatments are not equivalent to the control. For example,
 suppose all the treatments are equivalent to the control except one,
 say the first one, which is better than the control. The correct decision

 to make would then be D1. Suppose mO=m2=M3= m .. =mp=ml-8
 Then the probability of making decision D1 can be written

 Pi = Pr (Di |mO=m2 = *... = m = ml-5)

 = Pr (X1-Xo >ds/2/N, X2-Xo
 ____ ~~(19)

 < dsA2/N, *.* X, -Xo < ds8/2/N)

 =Pr (ti > d, t2< dy I t* *t<d)

 where

 ti- xi /O (i =1, 2,*,p)

 We note that t2, *, are Student t-variates, but t1 is a non-central
 t-variate.

 To obtain bounds for Pi, write

 Pi = Pr (ti <d)P t2 <d, *.* *, tp<d) (20)

 > Pr (ti < d) Pr (t2 < d,**, tp < d)

 This inequality follows from Dunnett and Sobel [5]. Since

 P, + P, = Pr(t2 < d, ... ** tp < d), (21)

 it follows that an upper bound for P1 is given by

 P, _ Pr (ti > d) Pr (t2 < d, * * ., tp < d). (22)

 On the other hand, an obvious upper bound on P5 is

 1P1 < Pr (ti < d) (23)

 From (21) and (23), we get the following lower bound for P1,

 P1 > Pr (t2 <d, * * *,tp < d)-Pr(t1 < d). (24)

 The difference between the bounds given by (22) and (24) is
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 Pr (t1 <d) * [1- Pr(t2 d, * * *, tp, <d)] which will be small in the region of
 interest where P1 is fairly large. In Fig. 5, the two bounds for Pi are

 plotted as functions of V(N/2) 6/l- for d.f. = oo, p = 2 and 9, and where
 d is chosen in each case so that P=.95. To compute the probability
 involving t2, - * *, t,, in (22) and (24), tables of the multivariate nor-
 mal distribution computed by the Bureau of Standards [10] were used.
 If it were desired to compute the bounds on P1 for a finite number of

 degrees of freedom, the probability involving t2, * * *, t, could be com-
 puted by numerical integration on the Bureau of Standards tables.
 However, since in most practical situations the number of degrees of
 freedom will be large, it may be sufficient to assume d.f. = oo and use
 the Bureau of Standards tables directly.

 Using Fig. 5, it is possible to determine the required value of N cor-

 responding to any given values of b/l- and P1. The following table shows
 the value of V\N6/- corresponding to p = 1(1)9 to achieve Pi= .80 for
 P=.95 and d.f.= oo.

 p V/N6/'

 1 3.52

 2 4.05

 3 4.30

 4 4.46

 5 4.58

 6 4.67

 7 4.74

 8 4.81
 9 4.86

 For example, suppose that the experimenter has p =5 treatments to
 compare with a control. Table la will provide the value of d to give a
 probability of P =.95 that none of the treatments will be declared su-
 perior to the control when, in fact, all are equivalent to the control. If,
 in addition, the experimenter wants to achieve a probability of
 P1= .80 of correctly selecting a superior treatment, if there is one which
 is, say, one standard deviation better than the control, the above table

 shows that \VN6/- =4.58 whence N = 21 on substituting b/o-= 1. Thus
 21 observations should be taken on each of the treatments and on the

 control. This will provide (p+ 1) (N-1) = 120 degrees of freedom for
 estimating the variance, so that d = 2.26 from table la. While the table
 used above to determine N is based on d.f. = oo, the result should not be
 much different for d.f. = 120. The experimenter would then take 21 ob-
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 COMPARING SEVERAL TREATMENTS WITH A CONTROL 1117

 servations in each group, observe XO and Xi (i= 1, 2, *, 5), calcu-
 late 82 from equation (1), and declare any treatment superior to the

 control which gives a mean Xi greater than Xo+2.26sV/2/21.

 TABLE la*

 TABLE OF t FOR ONE-SIDED COMPARISONS BETWEEN p TREAT-
 MENT MIEANS AND A CONTROL FOR A JOINT

 CONFIDENCE COEFFICIENT OF P =95%

 P, NUMBER OF TREATMENT MEANS (EXCLUDING THE CONTROL)

 d.f. 1 2 3 4 5 6 7 8 9

 5 2.02 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30
 6 1.94 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12
 7 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01

 8 1.86 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92

 9 1.83 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86

 10 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81
 11 1.80 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77
 12 1.78 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74
 13 1.77 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71
 14 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69

 15 1.75 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67
 16 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65
 17 1.74 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64

 18 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62
 19 1.73 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61

 20 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60
 24 1.71 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57

 30 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54
 40 1.68 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51

 60 1.67 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48

 120 1.66 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45

 inf. 1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42

 * Table la gives a solution di'=t to equation (4) in the text for P =.95 for the case pi, =1/2.
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 TABLE lb*

 TABLE OF t FOR ONE-SIDED COMPARISONS BETWEEN p TREAT-
 MENT MEANS AND A CONTROL FOR A JOINT

 CONFIDENCE COEFFICIENT OF P =99%

 p, NUMBER OF TREATMENT MEANS (EXCLUDING THE CONTROL)

 d.f. 1 2 3 4 5 6 7 8 9

 5 3.37 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03
 6 3.14 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59
 7 3.00 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30
 8 2.90 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09
 9 2.82 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94

 10 2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83
 11 2.72 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74
 12 2.68 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67
 13 2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61
 14 2.62 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56

 15 2.60 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52

 16 2.58 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48
 17 2.57 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45
 18 2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42
 19 2.54 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40

 20 2.53 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38
 24 2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31
 30 2.46 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24
 40 2.42 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18
 60 2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12

 120 2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06
 inf. 2.33 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00

 * Table lb gives a solution di'=t to equation (4) in the text for P =.99 for the case pi= 1/2.
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 TABLE 2a*

 TABLE OF t FOR TWO-SIDED COMPARISONS BETWEEN p TREAT-
 MENT MEANS AND A CONTROL FOR A JOINT

 CONFIDENCE COEFFICIENT OF P=95%

 P, NUMBER OF TREATMENT MEANS (EXCLUDING THE CONTROL)

 d.f. 1 2 3 4 5 6 7 8 9

 5 2.57 3.03 3.39 3.66 3.88 4.06 4.22 4.36 4.49
 6 2.45 2.86 3.18 3.41 3.60 3.75 3.88 4.00 4.11

 7 2.36 2.75 3.04 3.24 3.41 3.54 3.66 3.76 3.86
 8 2.31 2.67 2.94 3.13 3.28 3.40 3.51 3.60 3.68
 9 2.26 2.61 2.86 3.04 3.18 3.29 3.39 3.48 3.55

 10 2.23 2.57 2.81 2.97 3.11 3.21 3.31 3.39 3.46
 11 2.20 2.53 2.76 2.92 3.05 3.15 3.24 3.31 3.38
 12 2.18 2.50 2.72 2.88 3.00 3.10 3.18 3.25 3.32
 13 2.16 2.48 2.69 2.84 2.96 3.06 3.14 3.21 3.27
 14 2.14 2.46 2.67 2.81 2.93 3.02 3.10 3.17 3.23

 15 2.13 2.44 2.64 2.79 2.90 2.99 3.07 3.13 3.19
 16 2.12 2.42 2.63 2.77 2.88 2.96 3.04 3.10 3.16
 17 2.11 2.41 2.61 2.75 2.85 2.94 3.01 3.08 3.13
 18 2.10 2.40 2.59 2.73 2.84 2.92 2.99 3.05 3.11
 19 2.09 2.39 2.58 2.72 2.82 2.90 2.97 3.04 3.09

 20 2.09 2.38 2.57 2.70 2.81 2.89 2.96 3.02 3.07
 24 2.06 2.35 2.53 2.66 2.76 2.84 2.91 2.96 3.01
 30 2.04 2.32 2.50 2.62 2.72 2.79 2.86 2.91 2.96
 40 2.02 2.29 2.47 2.58 2.67 2.75 2.81 2.86 2.90
 60 2.00 2.27 2.43 2.55 2.63 2.70 2.76 2.81 2.85

 120 1.98 2.24 2.40 2.51 2.59 2.66 2.71 2.76 2.80
 inf. 1.96 2.21 2.37 2.47 2.55 2.62 2.67 2.71 2.75

 * Table 2a gives a solution di" =t which makes the right-hand side of inequality (11) in the text
 equal to .95 for the case p =1/2. This may be used as an approximate solution to equation (5) in the
 text for P -.95 for the case Pij =1/2.
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 TABLE 2b*

 TABLE OF t FOR TWO-SIDED COMPARISONS BETWEEN p TREAT-
 MENT MEANS AND A CONTROL FOR A JOINT

 CONFIDENCE COEFFICIENT OF P=99%

 p, NUMBER OF TREATMENT MEANS (EXCLUDING THE CONTROL)

 d.f. 1 2 3 4 5 6 7 8 9

 5 4.03 4.63 5.09 5.44 5.73 5.97 6.18 6.36 6.53
 6 3.71 4.22 4.60 4.88 5.11 5.30 5.47 5.61 5.74

 7 3.50 3.95 4.28 4.52 4.71 4.87 5.01 5.13 5.24
 8 3.36 3.77 4.06 4.27 4.44 4.58 4.70 4.81 4.90
 9 3.25 3.63 3.90 4.09 4.24 4.37 4.48 4.57 4.65

 10 3.17 3.53 3.78 3.95 4.10 4.21 4.31 4.40 4.47

 11 3.11 3.45 3.68 3.85 3.98 4.09 4.18 4.26 4.33
 12 3.05 3.39 3.61 3.76 3.89 3.99 4.08 4.15 4.22

 13 3.01 3.33 3.54 3.69 3.81 3.91 3.99 4.06 4.13

 14 2.98 3.29 3.49 3.64 3.75 3.84 3.92 3.99 4.05

 15 2.95 3.25 3.45 3.59 3.70 3.79 3.86 3.93 3.99

 16 2.92 3.22 3.41 3.55 3.65 3.74 3.82 3.88 3.93
 17 2.90 3.19 3.38 3.51 3.62 3.70 3.77 3.83 3.89
 18 2.88 3.17 3.35 3.48 3.58 3.67 3.74 3.80 3.85

 19 2.86 3.15 3.33 3.46 3.55 3.64 3.70 3.76 3.81

 20 2.85 3.13 3.31 3.43 3.53 3.61 3.67 3.73 3.78
 24 2.80 3.07 3.24 3.36 3.45 3.52 3.58 3.64 3.69
 30 2.75 3.01 3.17 3.28 3.37 3.44 3.50 3.55 3.59
 40 2.70 2.95 3.10 3.21 3.29 3.36 3.41 3.46 3.50

 60 2.66 2.90 3.04 3.14 3.22 3.28 3.33 3.38 3.42

 120 2.62 2.84 2.98 3.08 3.15 3.21 3.25 3.30 3.33

 inf. 2.58 2.79 2.92 3.01 3.08 3.14 3.18 3.22 3.25

 * Table 2b gives a solution di" =t which makes the right-hand side of inequality (11) in the text
 equal to .99 for the case p = 1/2. This may be used as an approximate solution to equation (5) in the
 text for P =.99 for the case pij = 1/2.
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