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Axiomatizing Software Test Data Adequacy
ELAINE J. WEYUKER

- Abstract-A test data adequacy criterion is a set of rules used to
determine whether or not sufficient testing has been performed. A gen­
eral axiomatic theory of test data adequacy is developed, and five pre­
viously proposed adequacy criteria are examined to see which of the
axioms are satisfied. It is shown that the axioms are consistent, but that
only two of the criteria satisfy all of the axioms.

Index Terms-Software testing, test data adequacy.

I. INTRODUCTION

ONE of the most .important problems in software en­
gineering is how to determine whether or not a pro­

gram has been tested enough that it can be released to
users with reasonable confidence that it will function "ac­
ceptably." Of course, what is meant by "acceptable" will
vary with the particular application, based on such factors
as criticality of function, anticipated consequences of
malfunction, and expected frequency of use.

In view of its importance, it is surprising that this area
has seen relatively little research activity. Most of the re­
search effort in software testing has involved the devel­
opment of test data selection strategies rather than ade­
quacy criteria. Furthermore, industry standards for
determining test adequacy have been close to nonexistent.
Myers [22] states:

"The completion criteria typically used in practice
are both meaningless and counterproductive. The
two most common criteria are

1) Stop when the scheduled time for testing ex­
pires.

2) Stop when all the test cases execute without
detecting errors. ' ,

We shall call a criterion used to determine whether test­
ing may terminate, an adequacy criterion. Such a crite­
rion represents minimal standards for testing a program,
and as such measures how well the testing process has
been performed. The criterion should relate a test set to
the program, the specification, or both. In addition, it
could also relate the test set to the program's intended
environment or operational profile. More will be said
about this below.
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We consider here only dynamic testing. This means that
the program is run on one or more input vectors, and the
outputs produced are assessed. There are other ways of
validating a program which do not involve running the
program on test cases, including static analysis and for­
mal verification, but our concern here is only with ways
of assessing the adequacy of dynamic testing.

An example of an adequacy criterion is branch ade­
quacy. If a program P is represented by a flowchart, then
a branch is an edge of the flowchart. Test set T is branch
adequate for P, provided for every branch b of P, there is
some t in T which causes b to be traversed. This is an
example of an adequacy criterion which is entirely pro­
gram-based in the sense that it is independent of the spec­
ification (except, of course, for comparing the results pro­
duced by the program for a given input with the intended
results as defined in the specification). Other adequacy
criteria are discussed in Section IV.

We are primarily interested here in adequacy criteria
which are largely program dependent, and will thus gen­
erally omit reference to the specification. In such a case
we may speak of "a program being adequately tested by
a test set." We have chosen to consider program-based
adequacy criteria since most proposed adequacy criteria
are of this type. Such strategies are more easily mecha­
nizable than specification-based ones, as they permit the
program to be treated as a purely syntactic object. This
means that well-understood graph theoretic concepts can
be applied.

Rather than defining a particular criterion for test data
adequacy, we develop a general axiomatic theory of ad­
equacy in this paper. Thus we shall attempt to identify
and abstract essential properties which should hold for any
such criterion.

This work has two primary motivations. Although, as
mentioned above, there has been relatively little research
done to find good, usable, adequacy criteria, some criteria
have been defined [1], [2], [4], [6], [7]. The work in this
paper should help in understanding the strengths and
weaknesses of these previously proposed criteria. In ad­
dition, the axiomatization should guide the definition of
new adequacy criteria.

A question central to the formulation and formalization
of our intuition on adequacy is: What should be the rela­
tionship between an adequately tested program and a cor­
rect program? An initial reaction might be that they should
be intimately connected, perhaps even that an adequately
tested program should be correct. But the purpose of test­
ing is to uncover errors, not to certify correctness, and the
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purpose of an adequacy criterion is to assess how well the
testing process has been performed. For that reason,
knowing somehow that a program is correct, does not
necessarily imply that it has been adequately tested. On
the other hand, if a "good" criterion has been chosen,
and the test set satisfies this criterion for a program P,
then one would expect P to be "close to" correct.

It is also interesting to consider the role of the intended
program environment and operational distribution in the
assessment of adequacy. Consider a text formatting pro­
gram. Suppose that it is delivered for testing with the in­
formation that it is going to be used exclusively by sec­
retaries to produce letters and reports. Suppose now that
exactly the same program were delivered with the infor­
mation that it will be used exclusively by Pascal program­
mers to produce programs. In both cases this information
is not part of the specification. Should an adequacy cri­
terion filter in this information and require different test
sets to adequately test a given program relative to a spec­
ification when the only difference is the expected environ­
ment?

If it were known that secretaries would have no use for
certain features, would it be reasonable to test parts of the
program only lightly or not at all and still say that the
program had been adequately tested? What happens when
the programming manager decides to adopt this "ade­
quately tested" program for programmers' use?

Although one could develop a theory of test data ade­
quacy which depends on the program, specification, test
data, and operational profile, we believe that it is more
reasonable to consider an adequacy criterion as a function
of only the first three. It is the program that is being cer­
tified as adequately tested. From a pragmatic point of
view, this is essential. Features which are "never going
to be used," have a way of becoming used. People who
are "never going to use" a program find uses for it.
When someone starts using a released program in ways
which are consistent with the specification, they should
have a right to expect that all parts of the program have
been adequately tested.

If a program has been tested only for certain intended
environments, this information might be appended to the
specification. Then the program has been tested relative
to this specification (and not necessarily others) and the
user should be informed and treat the untested features as
such.

II. DEFINITIONS

We assume a structured programming language in
which programs are single-entry/single-exit. We also as­
sume there is at least one input variable, and that all input
statements appear at the start of the program, and all out­
put statements appear at the end. It thus makes sense to
speak of composing programs. For programs P and Q
using the same set of identifiers, we write P; Q to mean
the program formed by replacing P's unique exit and out­
put statements by Q with Q's input statements deleted.

We assume for convenience that the language contains
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a dummy statement, continue, which is an abbreviation
for an assignment statement of the form: VAR ~ VAR
where the same identifier occurs on the left and right sides.
We also assume the language contains a finite number of
identifiers ranging over the integers and a finite number
of constants representing particular integers. Finally, we
assume that all numbers encountered as input or output
values can be represented by corresponding constants of
the language. Thus, although a function may be defined
over an infinite set, we will only be able to represent a
finite number of these using constants of the language,
and thus all test cases should be chosen from this finite
set.

The specification S is a partial function. It defines what
a program should compute. The domain ofS is the set of
all values for which S is defined. Values not included in
the domain are considered' 'don't care" conditions.

The domain of a program is the set of all values for
which the program is defined. A program can be unde­
fined for an input either because it abnormally terminates
(yielding an error message for example) or because it en­
ters a loop and fails to halt. By definition, therefore, a
program halts on every element of its domain, although
one cannot, in general, determine the set of values for
which the program halts, or the function being computed
by the program. Due to these problems; and the fact that
the specification defines what should be computed, we
take the position that test cases are selected from the spec­
ification's domain. There is not much point in testing a
program on an input if any output (or no output) is ac­
ceptable, as is the case for points outside the specifica­
tion's domain.

For program P, we let P(x) denote the result of P exe­
cuting on input vector x. If x is in the specification's do­
main, then we let Sex) denote the value which a program
intended to fulfill S should produce on input x. For x not
in the domain of S, we shall say that Sex) is undefined. If
T is a set of input vectors and P a program, we let peT)
denote the set of output vectors produced by P on each
member of T. If P and Q are programs, we write P == Q
(P is equivalent to Q) if and only if P(x) = Q(x) for every
element x. In particular, if P == Q, then for each x, P(x)
is defined if and only if Q(x) is defined, and hence P and
Q have the same domain.

We need to have a way of indicating that a program
fulfills a specification. Thus, we introduce a notion of cor­
rectness. We shall say a program P is correct for a spec­
ificationS if P(x) = Sex) for every element in the domain
of S. Note that it is perfectly reasonable for two programs
to be correct for S without being equivalent, since they
may behave differently outside the domain of S.

In Section IV, we will need a notion of size of a pro­
gram. As in [4], we define the size of P (denoted IPI) to
be the maximum of:

1) The number of arithmetic operations in P plus the
number of +--: 's.

2) The number of occurrences of predicates in P.
We also define Iq I, where q is an assignment statement,
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to be one plus the number of arithmetic operations in q.
Note that with this definition, there are only finitely many
different programs P such that IPI < n, for each positive
integer n, since we have only finitely many identifiers and
constants.

There have been many other proposals for measures of
the size of a program [3], [7], [8], [11], [13], [14], [16],
[19], [20], [21], [27]. Our definition in [4] was chosen to
facilitate upper and lower bound calculations. Other more
familiar choices would have yielded similar, but less
arithmetically neat, results. Since our only use of size in
the current paper is in the definition of the adequacy cri­
teria presented in [4], we shall use that definition.

In Section III we will need notions of what it means for
two programs to be close to one another. Such a notion
could refer to either syntactic or semantic closeness, or
some combination of the two. We shall say that two pro­
grams P and Q are almost the same if P = Q and P can
be transformed into Q by applying exactly one instance
of the following changes to P:

1) Replace relational operator rl in a predicate in P with
relational operator r2.

2) Replace constant CI in a predicate in P with constant
C2·

3) Replace constant CI in an assignment statement in P
with constant C2.

4) Replace arithmetic operator al in an assignment
statement in P with arithmetic operator a2.
. Two different programs which are almost the same are

the same size, have the same form, and compute the same
function in essentially the same way, using the same var­
iables.

An obvious question is: Which of these permitted
changes are likely to preserve equivalence? One would
not expect replacing a "<" by an "=" to preserve
equivalence. Replacing a "<" by a ":5" on the other
hand, might preserve equivalence if, for example, the
boundary value is treated the same on both outcomes of
the predicate. Similarly, replacing a constant "0" by
"159" would be unlikely to preserve equivalence, but re­
placing "0" by "1" might if the constant were used to
control a loop which was computing a running sum.

A notion of closeness which is somewhat less restric­
tive than "almost the same" permits several changes to
the program of the type permitted by rules 1-4, provided
these changes do not alter the semantics of the program.
We shall say that P and Q are very close provided P = Q
and P can be transformed into Q by applying the above
change rules 1-4 any number of times. Like programs
which are almost the same, two very close programs are
the same size, have the same form, and compute the same
function using the same variables in the same roles, but
now there may be somewhat more substantial differences
in the way the computation is performed. In both cases
syntactic data flow characteristics are maintained.

An example of "very close" programs might involve a
program P which includes a loop executed k times. This
is governed by two constants CI and C2 such that C2 - CI

= k. Program Q is identical to P except that CI is replaced
by constant Z, and C2 by d2 • If d2 - d, = k, P and Qcould
well be equivalent and hence "very close."

We shall say that P and Q are the same shape if P can
be transformed into Q by applying the above change rules
1-4 any number of times. Whereas the notions "almost
the same" and "very close" require that the two pro­
grams be both semantically and syntactically related, the
present notion requires only syntactic closeness. Note that
all three notions are reflexive and symmetric and that
"very close" and "the same shape" are transitive rela­
tions.

A test set is a set of input vectors. We require that a
program halt on every member of a test set. Of course it
is not decidable whether or not a given program actually
does halt on a given input [5], [26] and there are certainly
programs that are not intended to halt on some or all in­
puts. Still, we can pick some large fixed bound and stip­
ulate that if an input causes a program to run longer than
this amount of time (or execute more than this number of
statements), it is not a suitable test case. Such an exces­
sive running time may also signal a problem and indicate
that the code should be carefully scrutinized.

In Section III we develop an axiomatic theory of pro­
gram-based adequacy notions. Our purpose is to identify
characteristics which should hold for any program-based
adequacy criterion. We also introduce properties which
we consider desirable, but not essential, for adequacy cri­
teria. In Section IV we consider five previously defined
adequacy criteria, and in each case consider which axioms
and properties are satisfied.

III. AN AXIOMATIC THEORY OF TEST DATA ADEQUACY

We shall use the following notation in the sequel. P, Q
denote programs, S denotes a specification, and T, T', T,
i = 1, 2, · · · denote test sets.

Axiomatic theories have traditionally been used in two
complementary ways. On the one hand they serve to make
underlying assumptions explicit. For example, Euclid
introduced the axiomatic method to make explicit the
assumptions underlying our geometric intuition, and
Peano's postulates make explicit the assumptions needed
to derive the properties of the natural numbers. On the
other hand, axiomatic theories enable one to derive the
properties common to a collection of different structures.
Thus the axioms for groups can be used to derive prop­
erties common to all groups. The axiomatic theory we de­
velop is mainly in the spirit of the first use, although our
axioms also serve to demarcate the sets of possible ade­
quacy criteria satisfying subsets of our axioms.

An adequacy criterion tells us whether or not it is rea­
sonable to terminate testing. If the adequacy criterion is
applied to a program, specification, and test set, and we
determine that the criterion has not been fulfilled, then it
implies that we have not sufficiently tested the program.
If there were programs for which no adequate test set ex­
isted using a given criterion, then when we determined
that the criterion had not been fulfilled by a test set, we
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would not know whether the problem was that testing was
not comprehensive enough, or the program was simply
not adequately testable.

In Section IV we shall see that this is precisely the sit­
uation for branch testing. If a program has unexecutable
branches (an undecidable property [26]) then no amount
of testing can cause every branch to be exercised. There­
fore, when we find out that a given test set exercised 80
percent of the branches, we do not know whether we
should continue trying to find test cases to exercise the
remaining 20 percent of the branches, or stop testing be­
cause 100 percent of the executable branches have been
exercised. Thus, the first and most important property of
an adequacy criterion is applicability.

Axiom 1: (Applicability). For every program, there ex­
, ists an adequate test set.

Due to our requirement that there be only finitely many
representable points even when the domain is infinite,
Axiom 1 can be rephrased as follows:

Axiom 1: For every program, there exists a finite ade­
quate test set.

Of course, requiring that an adequate test set be finite
certainly does not guarantee that one can generate all the
required test cases. An interesting possible refinement of
this axiom would require that for every program there ex­
ist some "reasonably sized" adequate test set. This might
be defined in terms of the program's size or complexity.
We shall not pursue this idea further here, and leave it as
an interesting op'en problem.

We shall say that a program has been exhaustively tested
if it has been tested on all representable points of the spec­
ification's domain. Such a test set, called an exhaustive
test set, should be adequate no matter what criterion is
used. But, of course, an important point of testing is to
be able to select a subset of the domain which in some
sense stands in for the entire domain. Programs intended
to fulfill specifications with very small (finite) domains,
however, might well require exhaustive testing using any
reasonable criterion. In fact one only needs to be able to
do nonexhaustive testing when the domain is large. The
extreme case is a domain of size one. In this case the only
alternative to exhaustive testing is no testing at all, surely
an unacceptable solution. Thus, although a criterion may
well require exhaustive testing in some cases, one which
always requires exhaustive testing is unacceptable. For­
malizing this we have the following:

Axiom 2: (Nonexhaustive Applicability). There is a
program P and test set T such that P is adequately tested
by T, and T is not an exhaustive test set.

It is easy to argue that our next axiom is a reasonable
one on intuitive grounds. Since an adequacy criterion rep­
resents a minimum degree of testing sufficiency, surely if
a program has been adequately tested, running it on some
additional ("unnecessary") tests should not make it in­
adequately tested.

Axiom 3: (Monotonicity). If Tis adequate for P, and T
~ T' then T' is adequate for P.

We shall call the requirement that pet) = Set) for every
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t In T, the correctness condition. A certification that T
adequately tests P implies that it has been tested enough
that it is reasonable to terminate testing. Ideally, as long
as errors are being uncovered, testing should not end, and
thus it might be argued that an adequacy criterion should
only be invoked after P agrees with the specification on
all of T. In that case, a certification of adequacy implies
that the correctness condition holds. In practice, however,
noncritical errors are sometimes ignored, and programs
with known errors are sometimes released. Therefore the
adequacy criterion might reasonably be invoked even
though pet) =1= Set) for some t in T. Furthermore, if one
of the requirements of an adequacy criterion is the cor­
rectness condition, then unless the criterion guarantees
the correctness of the program, this requirement implies
that the criterion does not satisfy the monotonicity axiom.
That is:

Theorem: If a test data adequacy criterion is monotonic
and implies the correctness condition, then the existence
of any adequate test set for p implies that P is correct.

Proof: Let Tbe adequate for P. Assume the criterion
is monotonic and implies the correctness condition, and
there is a t such that pet) =1= S(t). Since the criterion is
monotonic, T U {t} is adequate for P. But this contra­
dicts the requirement that P be correct on every element
in the test set. D

We also have the following immediate corollary:
Corollary: If a test data adequacy criterion is mono­

tonic and implies the correctness condition, then no in­
correct program can be adequately tested, and hence the
applicability axiom does not hold.

It is this theorem, and our conviction that monotonicity
is of central importance, that led us to conclude that the
correctness condition should not be included in a notion
of adequacy. However, an adequacy criterion would not
normally be applied until the tester believed that testing
was complete; this implies that the program is correct on
the test set or the errors are below some level of critical­
ity. Hence, one can expect that the correctness condition
will generally hold when an adequacy criterion is in­
voked.

Since the correctness condition is not required for ad­
equacy, if P has been adequately tested by Tusing a mono­
tonic adequacy criterion, and peT) = SeT), then even if
new test data T' is added including some points on which
the program is not correct, the new set T U T' is adequate
for P. In practice, when the presence of an error is de­
tected by the test data in T', the program would be re­
turned for debugging, and retested before being certified
as adequately tested and released.

Another fundamental property of dynamic test data ad­
equacy criteria is that a program cannot be deemed ade­
quately tested if it has not been tested at all. As we stressed
above, adequacy is a measure of how well the dynamic
testing process has been performed, not the program's
correctness. Note that we have assumed that every pro­
gram has at least one input variable. Otherwise, it might
be reasonably argued that the empty set is an adequate test
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set for inputless programs. Therefore we propose the fol­
lowing:

Axiom 4: (Inadequate Empty Set). The empty set is not
adequate for any program.

This does not imply that other ways of validating pro­
grams do not exist. For example, a program could be for­
mally proved correct using verification techniques. It
should then be known to be correct, however, pragmatic
experience warns us that this is frequently not true [10],
[12], and thus dynamic testing might be performed in ad­
dition. But even when some other validation technique
has been perfectly applied, if a program has not been dy­
namically tested, it should not, in our view, be deemed
adequately tested.

We next consider the question of how the semantic
closeness of two programs should affect the way they are
tested. Since we are studying program-based adequacy
criteria, and by definition such criteria depend primarily
on the implementation, the fact that two programs com­
pute the same function should not necessarily imply that
they require the same test data for adequate testing. Of
course, we do not want to say that no two equivalent pro­
grams can be adequately tested by the same test set. That
would be inconsistent with monotonicity. Thus we pro­
pose the following axiom:

Axiom 5: (Antiextensionality). There are programs P
and Q such that P == Q, T is adequate for P, but T is not
adequate for Q.

Having decided that semantic closeness (equivalence)
is not enough to ensure that two programs require the same
test data, we now consider syntactically close programs.
Two programs have the same shape provided one can be
transformed into the other using a set of four simple
change rules. Viewed as graphs, such programs have the
same structure and the same syntactic data flow charac­
teristics, but there is no necessary relationship between
the functions computed by the two programs or the paths
traversed by a test set. Clearly, we should not expect such
programs to necessarily require the same test data for ad­
equacy, even if we restrict attention to program-based ad­
equacy criteria. That is, the syntactic closeness of two
programs is also not sufficient to demand that they require
the same test data.

Again, in view of the monotonicity axiom, one does not
want to say that whenever two programs are the same
shape but not equivalent they should require different test
data for adequacy. But there should certainly be some pair
of programs which, although they are the same shape, re­
quire different adequate test sets.

Axiom 6: (General Multiple Change). There are pro­
grams P and Q which are the same shape, and a test set
T such that T is adequate for P, but T is not adequate for
Q.

The next property we introduce is superficially analo­
gous to the monotonicity axiom. Monotonicity required
that if a test set T is adequate for a given P, then a superset
of T should certainly be adequate. Similar intuition might
lead one to feel that if Q is a "subprogram" of P, then T

should be adequate for Q. Of course, we do not really
mean that T should be adequate for Q, but rather that the
values that the elements of T are transformed into on "en­
trance" to Q should be adequate for Q.

We have to be careful about specifying just what we
mean by a "subprogram" or else there may be multiple
entry points to Q. Also, although a statement may look
like an entry point syntactically, it may in fact never be
executable as the first statement of the subprogram.

To deal with these problems, we introduce the notion
of a component. A component of P is any contiguous se­
quence of statements of P. By definition, a component is
single-entrant, and represents a (contiguous) subcompu­
tation within P.

Given a way to divide a program into its component
pieces, a natural question arises: Should it follow that if
a program has been adequately tested, each of the pieces
that make up the program have been adequately tested?
That is, if T is adequate for P, and Q is a component of
P, and T' is the set of all vectors of values that variables
can assume on entrance to Q for some input of T, then
should T' be adequate for Q? Of course, it is not decid­
able whether or not Q can actually ever be executed within
P, but since by assumption P halts on every element of
T, T' can be effectively obtained. Although an initial re­
action might be that such a property should hold, deeper
consideration causes us to reject such a decomposition
property as an axiom. The core of the problem is that
although P may appear to be more "complicated" than
Q, in the sense that it physically contains Q, it may ac­
tually be simpler in some other (semantic) sense. This is
particularly important if Q is unexecutable in P.

In particular, let T be adequate for P and T' be the set
of all vectors of values that variables can assume on en­
trance to Q for some input of T. Since Q is unexecutable
in P, it follows that T' is the empty set. Therefore, if P's
adequate testing implied Q's adequate testing, then the
empty set would be deemed adequate for testing Q. Hence
the adequacy criterion would not satisfy Axiom 4 (Inad­
equate Empty Set Axiom). In addition, since we have ar­
gued that every program should be adequately testable
(Applicability Axiom) and there is no algorithm to decide
of an arbitrary program whether or not it contains unex­
ecutable code [26], this "decomposition property" should
not hold.

But unexecutable components are not the only reason
why we do not want this type of decomposition property
to hold in general, despite its intuitive appeal. Let the
domain of a component Q be the set of all vectors of val­
ues that the variables may take on at entrance to Q for any
element in P'« domain. The problem is that Q's domain
may be very small (and is in general indeterminable), so
even exhaustive testing of P may mean that Q is only
lightly tested for its function. The extreme case of this is
the problem cited above in which Q is unexecutable in P,
and hence its domain is the empty set.

To make this somewhat more concrete, consider the ex­
ample of a program which has as a component a sorting
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then x ~ -x
else x ~ 1 - x
end
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routine. Whenever the routine is entered, however, the
data are already sorted, and hence the component can only
be tested within the context of the larger program on al­
ready sorted data. Now surely we would not consider al­
ready sorted data alone, an adequate test set for a sort
routine, even though its domain within the larger program
contains only such data. With this discussion in mind, we
propose the following axiom:

Axiom 7: (Antidecomposition). There exists a program
P and component Q such that T is adequate for P, T' is
the set of vectors of values that variables can assume on
entrance to Q for some t of T, and T' is not adequate for
Q.

Now what if each of the pieces of a program have been
adequately tested? Should the entire program be consid­
ered adequately tested? That is, if T is adequate for P and
P(T) is adequate for Q, should Tbe deemed adequate for
P;Q?

A first reaction might be that this seems intuitively rea­
sonable, but of little practical value. After all, how often
can one expect the outputs produced on an adequate test
set for one program to be adequate for another indepen­
dent program. One might therefore suggest the following
intuitively stronger composition property: If T1 is ade­
quate for P and T2 is a test set such that P(T2) = T where
T is adequate for Q, then T1 U T2 is adequate for P; Q.

However, it can be shown that for monotonic adequacy
criteria, these two composition properties are the same.
The problem with these properties is that they do not take
into account the added complexity and interactions which
may result when two programs are composed. A tradi­
tional way to test programs has been in a "bottom-up"
fashion. The lowest level modules are tested first, and
successively combined to form larger and larger pieces
until the entire program is tested. Acceptance of the com­
position properties as axioms would be analogous to say­
ing that it is sufficient to stop testing once the lowest level
modules have been tested, with no testing required for
their integration. This is clearly not reasonable. Thus we
propose our final axiom:

Axiom 8: (Anticomposition). There exist programs P
and Q such that T is adequate for P and P(T) is adequate
for Q, but T is not adequate for P; Q.

We close this section by considering proposals for no­
tions of two programs being both syntactically and se­
mantically close. If P and Q perform the same computa­
tion in "substantially the same way," one could argue
that they should require the same test data. We first use
the notion of "almost the same" as a way of defining
closeness. One might therefore consider the following
property.

Equivalent Single Change Property: If T is adequate
for P, and Q is almost the same as P, then T is adequate
for Q.

A somewhat less restricted notion of closeness is based
on our definition of "very close. "

Equivalent Multiple Change Property: If T is adequate
for P, and Q is very close to P, then T is adequate for Q.
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Since it is not clear that either of these proposals is the
most appropriate way to capture the idea of syntactic and
semantic closeness, we feel they should not determine
whether or not an adequacy criterion is acceptable. Also
note that antiextensionality, the general multiple change
axiom, and these two equivalent change properties are not
independent. Axiom 5 states that semantically close pro­
grams should not necessarily be tested the same way. Ax­
iom 6 states the same for syntactic closeness. The two
equivalent change properties, however, state that pro­
grams which are both semantically and syntactically close
should require the same test data. Thus we have that the
failure of either Axioms 5 or 6 implies that the equivalent
multiple change property, and hence the equivalent single
change property, holds. Of course it also follows then that
one way to guarantee that Axioms 5 and 6 hold is to de­
vise a criterion for which the equivalent change properties
fail.

We introduce one final notion of syntactic and semantic
closeness. If Q is a component of P and P == Q, then Q
might be considered a simpler implementation of the com­
putation performed by P in a much more real sense. It
thus might be reasonable to argue that an adequate test set
for P should necessarily be adequate for Q.

Equivalent Component Property: If Q is a component
of P and Q == P, then if T is adequate for P, T is adequate
for Q.

IV. A SURVEY OF PROGRAM-BASED ADEQUACY

CRITERIA

Having proposed a set of axioms, we now investigate
to what extent various program-based adequacy criteria
satisfy our theory. The first adequacy criterion we con­
sider is path adequacy: If P is a program represented by
a flowchart, a path in P is a finite sequence of nodes (nl,
· ·0· , nk) k ~ 2 such that there is an edge from n, to
n, + 1 for i = 1, 2, · · · , k - 1 in the flowchart repre­
senting P. Our definition of path is a purely syntactic one.
We assume there is a path from the entry statement to
every statement of the program. We say that T is path
adequate for P if for every path p of P, there is some t in
T which causes p to be traversed. It is easy to show that
path adequacy implies branch adequacy, which implies
statement adequacy (for every statement q of P, there is
some t in T which causes q to be executed).

The applicability axiom fails for path adequacy, as there
can be no adequate test set for any program which con­
tains an unexecutable path. In contrast, the nonexhaustive
applicability axiom, monotonicity, and the inadequate
empty set axiom clearly hold for path adequacy.

The equivalent single change property, and hence the
equivalent multiple change property, does not hold for
path adequacy. Consider the PI and P2:

PI: input x
if x :5 1
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if x = - 1 then x +- 1
else x +- x + 1
end

output x

P2: input x
if x :::; 0 then x +- -x

else x +- 1 - x
end

Let T = {10, II}. Tis path adequate for P3. P3(T) =

{O, I}, and is path adequate for P4. However, T is not
path adequate for P3;P4 since, for example, no input of
T takes the then exit of the predicatex < 11 followed by
the else exit of the predicate x = O. In fact, that is an
unexecutable path in the sense that there can be no set of
test data which causes it to be traversed.

Finally, the equivalent component property does not
hold.

if x = - 1 then x +- 1
else x +- x + 1
end

output x

PI is adequately path tested by the set {O, 1, 2, 3}. In
contrast, P2, which is almost the same as PI, is not ad­
equately path tested by {O, 1,2, 3} as the path formed by
taking the true exit from both decisions is not traversed.
In fact, the situation is even worse than that. P2 cannot
be adequately path tested by any test set, since there can
be no input which will cause the true exit to be taken from
both decisions.

This example brings out an interesting point. It might
seem that the change properties require too much. Pro­
grams which perform the same computation in essentially
the same way, as made precise in Section II, should cer­
tainly require test sets which are very close, but maybe
not the same. Perhaps if Q is very close to P and can be
formed by applying the change rules k times, we should
only require that there be points t I, · · . ,tk and tk + I, · · · ,

t 2k such that if Tis adequate for P, then (T - {t l , • • • ,

tk}) U {tk+ b·· · , t 2k} is adequate for Q. That is, for
each change made to P to form Q, one point in the ade­
quate test set may be changed. We have just seen, how­
ever, that there are cases for which no amount of modi­
fication of an adequate test set for P will make it path
adequate for Q which is almost the same as P. P2 is also
an example which shows that the applicability axiom is
not satisfied for path adequacy.

The failure to satisfy these change properties shows that
the antiextensionality axiom and the general multiple
change axiom hold. Furthermore, the antidecomposition
axiom does not hold. Notice that if a program P contains
unexecutable paths, there is no path adequate test set for
P. Even exhaustive testing is not adequate in such a case.

Anticomposition does hold. Consider the following
programs:

P3: input x
if x < 11 then x+-O

else x +- 1
end

output x

P4: input x
if x = 0 then x+-O

else x +- 1
end

output x

P5: input x
x +- -x
if x ~ 0 then if x > 3 then continue

else continue
end

else continue
end

x+-O
output x

P6: input x
if.r ~ 0 then if x > 3 then continue

else continue
end

else continue
end

x+-Q
output x

P6 is a component of P5 and P5 == P6. The test set T
= {-4, 0, I} causes every path of P5 to be executed,
but the first continue statement of P6 (i.e., the one cor­
responding to the predicate "x > 3" being true) is never
executed as a result of running P6 on T.

Similar arguments and examples demonstrate that, ex­
cept for the anticomposition axiom, exactly the same set
of axioms and properties hold for branch and statement
adequacy, as hold for path adequacy. A straightforward
argument shows that the anticomposition axiom does not
hold for statement and branch adequacy. These results are
summarized in Section V.

Since these control flow criteria are widely used [17],
it is important to understand the implications of these re­
sults. The most serious problem is the failure of the ap­
plicability axiom to hold, implying that there are pro­
grams which are not adequately testable. But if one of the
criteria is applied and a determination is made that some
elements of a program have never been executed by a
given set of test data, this could either mean that addi­
tional (or more carefully selected) test data are required,
or that the unexecuted portion of the program is not exe­
cutable. Since there can be no algorithm to decide for an
arbitrary program whether or not it contains unexecutable
code, or whether a particular statement, branch, or path
is executable [26], one cannot in general hope to deter­
mine which situation prevails.

Mutation analysis [1], [2], [6] is an adequacy criterion
which is substantially different from the control flow cri­
teria considered above. Given a program P, specification
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S, and a test set T such that P is correct on every member
of T, a set of alternative programs known as mutations or
mutants of P is produced. Each mutant Pi is formed by
modifying a single statement of P in some predefined way,
similar to the transformations permitted by our definition
of "almost the same." Each mutant is then run on every
element of T, and T is said to be mutation adequate for P
provided that for every inequivalent mutant Pi of P, there
is a t in T such that Pi (t) =1= P( t). A similar idea was pro­
posed and implemented by Hamlet, and is described in
[15] .

Unlike the other adequacy criteria mentioned so far,
mutation adequacy is not monotonic because it requires
that the correctness condition hold. If this condition were
removed from the requirements, however, mutation ade­
quacy would be monotonic. Again, due to the correctness
condition, the applicability axiom does not hold for mu­
tation adequacy. Certainly it is true that a mutation system
can produce only finitely many mutants, and therefore a
finite set always suffices to distinguish a program from its
inequivalent mutants. But, if P is incorrect at point t, and
P' is a mutant which differs from P only at t, then no test
set is mutation adequate for P. Since the correctness con­
dition does not play any fundamental role in mutation ad­
equacy, however, and if it were removed both of these
axioms would be satisfied, we will consider that mutation
adequacy satisfies these two axioms for comparison pur­
poses and list them as such in the table of Section V.

Mutation adequacy, like all the other program-based
adequacy criteria discussed, clearly satisfies the inade­
quate empty set axiom. It is also clearly antiextensional.
Two programs which perform the same computation in
substantially different ways will surely have different sets
of mutations and require different sets of test data to dis­
tinguish the program from the mutants in general. It is
less obvious, however, that two programs which are
equivalent and perform the computation in essentially the
same way may also require different test data. Consider,
however, the following equivalent programs P7 and P8
which return the index of the first occurrence of a maxi­
mal element in an integer vector A of length at least 2.
They appear in [6]' and have been rewritten to conform
more closely to the syntax of our programming language.
We have selected this example since all the necessary de­
tails of mutation testing P 7 are described in [6].

P7: input I, N, R, A(N)
R~1

I~2

while I ~ N do if A(I) > A(R) then R ~ I
else continue
end

I~I+

end
output R

P8: input I, N, R, A(N)
R~1

I ~ 1
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while I -s N do if A(I) > A(R) then R ~ I
else continue
end

I~I+

end
output R

In [6], the authors outline the argument that the test set
T = {(I 2 3), (1 3 2), (3 1 2), (1 2 2)} constitutes a
mutation adequate test set iotP'l . (Technically, the test
data should also include values for variables other than
the elements of A. These are omitted to simplify notation
and focus attention on the characteristics of the test data
which are important to us.) However, T is not mutation
adequate for P8. Consider P9, a mutant of P8:

P9: input I, N, R, A(N)
R~2

I ~ 1
while I ~ N do if A(I) > A(R) then R ~ I

else continue
end

I~I+l

end
output R

Even though this program is not equivalent to P8 (for
example (2 2 1) distinguishes the two programs), they
produce the same output on every input in T. This ex­
ample thus serves to show that mutation adequacy does'
not satisfy the equivalent change properties. As men­
tioned above, T is mutation adequate for P7, and P7 is
almost the same as P8, yet T is not mutation adequate for
P8. The failure of mutation adequacy to satisfy these
properties guarantees that the general multiple change and
antiextensionality axioms hold. The example also shows
that the nonexhaustive applicability axiom holds since T
is a nonexhaustive mutation adequate test set for P7.

Since it is possible to have a mutation adequate test set
for a program containing unexecutable code, and the
empty set is not mutation adequate for such a program,
the antidecomposition axiom holds. The anticomposition
axiom also holds for mutation adequacy. To see this, let
P and Q be programs and T a test set such that T is mu­
tation adequate for P and peT) is mutation adequate for
Q. Let P' be an inequivalent mutant of P. Since T is mu­
tation adequate for P, there must be a t in T such that P( t)
=1= P'(t). Let Q be such that Q(P(T)) = Q(P'(T)) but
such that P; Q is not equivalent to P'; Q. In that case,
even though T is mutation adequate for P, and thus dis­
tinguishes P from every inequivalent mutant, and peT) is
mutation adequate for Q, and thus distinguishes Q from
every inequivalent mutant, T does not distinguish P; Q
from the inequivalent mutant P'; Q.

In contrast, the equivalent component property does not
hold for mutation adequacy. If Q is a component of P and
P == Q but Q is not executable in P, then any mutant of
P which involves a change within Q, yields a program
which is equivalent to P. But this change to Q (when Q
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is. considered an independent program) could obviously
yield a program which is inequivalent to Q but not distin­
guished from Q by T.

The class of changes to a program that are made in or­
der to create the set of mutants is closely related to the
class of changes permitted by our definition of "almost
the same," and in fact provided the basis for our decision
about which changes should be permitted. All of our
changes are examples of mutations. We rejected the re­
placement of one identifier by another, which is permitted
in forming a mutant, since such a change would alter the
data flow characteristics of the program, and there is evi­
dence [24], [25], [9], [23], [18] that such characteristics
are important for testing. Since a mutant of P is formed
by making a single modification of P, we differentiated
between single changes and multiple changes.

In [4] we introduced the notion of size adequacy. We
say that a test set T is size adequate for a program P if for
every program P' which is not equivalent to P, but for
which P'(T) = peT), we have IP' I > IP I. Since we
cannot hope for a test set to distinguish a program from
all inequivalent programs, the above might be considered
a reasonable approximation to the ideal. However, we
showed that:

Theorem: If P is a nonminimal program, then no test
set T can be size adequate for P unless T is exhaustive.

Thus, using size adequacy as the criterion, the only
programs which can be adequately tested with less than
an exhaustive test set are programs which are in a sense
'~optimal:" This is a serious weakness of size adequacy
SInce an Important part of the intelligent selection of test
data involves choosing a subset of the domain which in
some sense stands in for the entire domain during testing.
The difficulty arises from the possibility of constructing
programs in which an equivalent of P is "embedded."
This led us to introduce [4] the last adequacy criterion
which we consider. In Section III we defined a component
of a program. We now introduce a second less restrictive
notion of what it means for one program to be a part of
another. The definition of a component required that the
statements be physically adjacent to one another. The no­
tion of "reduction" removes this requirement. We first
introduce seven simplification rules. Each one represents
a way that statements may be deleted (or omitted) from
the program.

(1) Replace some assignment statement bycontinue,
(2) Replace: if PRED then P

else Q
end
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by P.
(3) Replace:

by Q.
(4) Replace:

by P.

if PRED then P
else Q
end

if PRED then Pend
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(5) Replace: if PRED then Pend
by continue.

(6) Replace: while PRED do Pend
by P.

(7) Replace: while PRED do Pend
by continue.

Program M reduces to program N if N can be obtained
from M by applying these reduction rules, 0 or more
times. We say that P is embedded in Q if Q reduces to
some program which is equivalent to P. Clearly, if M ==
N then M is embedded in Nand N is embedded in M. The
converse of this statement is not true. Also, if M == N
then M is embedded in P if and only if N is embedded in
P. Finally, a program P is self-embedded if there is a pro­
gram Q such that P reduces to Q, Q == P, and Q is not
identical to P. It is easy to see that every component of a
program P is embedded in P.Of course the semantic re­
~ationship between a program and one of its components
IS generally much clearer than that of an arbitrary program
which is embedded in another.

We say a finite test set T is modified size adequate for
a program P if for each program P' such that P is not
embedded in P', but for which P'(T) = Pt'T), we have
IP' I > IP I· Thus, instead of requiring that T be suffi­
cient to distinguish P from all programs which are no
longer than P, we require that T distinguish P from a very
large nonpathological subset.

We have shown [4] that modified size adequacy essen­
tially subsumes branch adequacy and mutation adequacy.
In particular we have shown the following:

Theorem: If P is not self-embedded, and T is a modi­
fied size adequate test set for P, then T is branch adequate
for P.

Theorem: If P is not embedded in any of its inequiva­
lent mutants and T is modified size adequate for P, then
T is mutation adequate for P.

It is obvious that modified size adequacy is monotonic
and satisfies the inadequate empty set axiom. The anti­
decomposition axiom holds since there can be modified
size adequate test sets for programs containing unexecut­
able code for which the empty set would not be modified
size adequate. The applicability axiom holds since ex­
haustive testing will distinguish any pair of programs
which differ on some point of the specification's domain.

To see that the equivalent multiple changes property,
and hence the equivalent single change property, hold for
modified size adequacy, one need first recognize that the
permitted changes are all size preserving. That is, if P and
Q are the same shape, then IP I = IQ I. If P is very close
to Q, then p. == Q, and hence embedded in exactly the
same programs. Thus, if P' is a program which is no
longer than P, and such that P is not embedded in P' P'
is no longer than Q, and Q is not embedded in Pl. Fur­
thermore, pet) = P' (t) if and only if Q(t) = P' (r), since
P == Q. Thus, T is modified size adequate for P if and
only if it is modified size adequate for Q.
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If P == Q, IQ I < IPI, and T is adequate for P,

then T is adequate for Q.

end
output x

IPl31 = 4 = IPI2; PIli and P12; PII(t) = PI3(t) for

We next check the general multiple change axiom.
Consider PIO and PI I :

PIO: input x
if x = 100 then x ~ I

else x ~ 4
end yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

no

yes

yes

yes

yes

hranCh+rath I mutation I modified size I

n~ =-+~--:s~r~~~1
yes yes I yes I yes

yes I
yes

::: II

yes

yes l yes

no :::

~ no ~_ -.J~_

TABLE I

yes

no

yes

yes

yes

yes

statement

non-exhaustive applicability

monotonicity

inadequate empty set

anticornposition

antiextensionality

general multiple change

equivalent multiple change

antidecomposition

equivalent single change

v. SUMMARY

We have developed an axiomatization of software test
data adequacy for program-based adequacy criteria. The
first four axioms stated that every program must be test­
able, that an adequacy criterion must be satisfiable in a
nontrivial way, and that a program which has not been
tested at all should not be deemed adequately tested. Also,
once a program has been adequately tested no amount of
additional test data can transform it into an inadequately
tested program.

Four axioms were in a sense "negative" axioms. They
said that programs which are closely related either syn­
tactically or semantically but not both, may well require
different test data. Also, the fact that each of the pieces
of a program has been adequately tested, does not nec­
essarily imply that the entire program has been adequately
tested. Finally, and less intuitively obvious, even though
a program has been adequately tested, it does not neces­
sarily follow that each of its components has been tested.
This is due in part to the fact that programs may contain
unexecutable code.

Having developed this system of axioms, we consid­
ered five previously defined adequacy criteria to see which
of the axioms each satisfied. We found that the two most
widely used (statement and branch adequacy) satisfied
only five of the axioms. Only two of the criteria satisfied
all eight of the axioms, and only one of these criteria ful­
filled the three desirable properties as well. Table I sum­
marizes these results.

every t in T. However,PI2; PI I is not equivalent to PI3
since, for example, P12; PII(3) = 4 while PI3(3) = 3.
Note that neither P12; PI I nor Pl3 is embedded in the
other. Therefore, Tis not modified size adequate for P12;
PII.

The above example also serves to show that modified
size adequacy is antiextensional. P12; PI 1 == PI I , the
set {O, I, 2, 4} is modified size adequate for P II, but as
mentioned above, it is not modified size adequate for P12;
Pll.

then x ~ I
else x ~ 4
end

output x

PII: input x
if x < 2

To see that the anticomposition axiom holds for modi­
fied size adequacy, consider P12 and PI 1 of the previous
example:

P12: input x
if x < I then x ~ 0

else continue
end

output x

Since the continue statement is an abbreviation for a
statement of the form VAR ~ VAR, each such statement
adds one to the count. Therefore, IPIli = 2 = IPI21·
The set T = {-I, 0, I, 2, 4} is modified size adequate
for P12, and PI2(T) == {O, 1,2, 4} is modified size ad­
equate for PI I. However, T is not modified size adequate
for P12; PII. To see this, consider P13:

P13: input x
if x < 2 then x ~ I

else if x = 2 then x ~ 2 * x
else continue
end

output x

PIG and PI I are the same shape and clearly inequiva­
lent. The test set T = {O, I, 2, 4} is modified size ade­
quate for PI I but not for PIO, which requires that any
modified size adequate test set include values around 100.
(See [4] for a definition of critical points and a proof of
this statement.) Since T is a nonexhaustive test set which
is modified size adequate for PI I , it follows that the non­
exhaustive applicability axiom is satisfied. The equivalent
component property holds since if P == Q, P is not
embedded in R if and only if Q is not embedded in R, and
R(T) = peT) if and only if R(T) = Q(T). Also, if Q is a
component of P, IQI < IPI, so IR I > IP I implies IR I
> IQI· In fact, the same arguments work to show that
the following stronger statement is true:
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At this point, we have a consistent set of axioms, as
evidenced by the fact that modified size adequacy and mu­
tation adequacy satisfy all of the axioms . We propose to
continue developing this theory, and attempt to classify
adequacy criteria according to the axioms they satisfy.
Hopefully this work will also encourage others to identify
essential characteristics of adequacy criteria and propose
additional axioms.
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