

PME 3100 - Mecânica I

Revisão de Álgebra Vetorial

Francisco J. Profito fprofito@usp.br

Objetivos

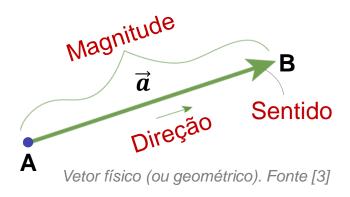
- Revisar conceitos fundamentais de Álgebra Vetorial necessários para a elaboração da Mecânica Newtoniana (ou Mecânica Vetorial)
- Apenas o uso prático desses conceitos serão revisados. Uma apresentação mais detalhada pode ser encontrada em [1].

☐ Grandezas Físicas

- Grandezas escalares: são grandezas físicas representadas por um único número real (escalar) que quantifica a magnitude da grandeza associada. Ex.:
 - Massa: m
 - Tempo: *t*
 - Temperatura: T
 - Energia: *E*
 - Trabalho: W
- Grandezas vetoriais: são grandezas físicas associadas a direções específicas no espaço. Portanto, além da magnitude, a orientação ao longo da qual essas grandezas atuam é necessária para a sua completa representação. Ex.:
 - Força: \overrightarrow{F}
 - Momento: \overrightarrow{M}_{O}
 - Velocidade e aceleração instantâneas: \vec{v}_P e \vec{a}_P
 - Velocidade e aceleração angulares: $\vec{\omega}$ e $\vec{\alpha}$
 - Quantidade de movimento e quantidade de movimento angular: \vec{Q} e \vec{H}_O

□ Vetores

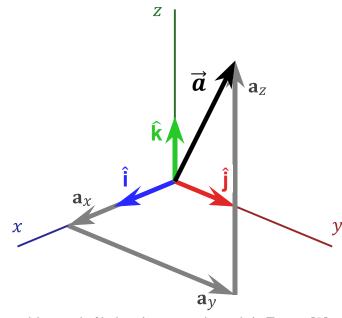
- \blacktriangleright Na Mecânica Newtoniana, eventos físicos ocorrem em um espaço Euclidiano tridimensional de **pontos** \mathcal{E} .
- Vetores são definidos como elementos pertencentes a um espaço vetorial Euclidiano tridimensional \mathcal{V} . Qualquer vetor $\vec{a} \in \mathcal{V}$ pode ser representado de duas formas:
 - Vetor Físico (ou geométrico): segmento de reta orientado que liga dois pontos arbitrários $A, B \in \mathcal{E}$.
 - Possui módulo, direção e sentido;
 - Representação independente do sistema de coordenadas e base de vetores associada.



□ Vetores

- \succ Na Mecânica Newtoniana, eventos físicos ocorrem em um espaço Euclidiano tridimensional de **pontos** \mathcal{E} .
- Vetores são definidos como elementos pertencentes a um espaço **vetorial** Euclidiano tridimensional \mathcal{V} . Qualquer vetor $\vec{a} \in \mathcal{V}$ pode ser **representado** de duas formas:
 - Vetor Algébrico (ou coordenado): expresso por meio de componentes escalares com relação a uma base de vetores específica.
 - Representação dependente do sistema de coordenadas e base de vetores associada;
 - Oconsiderando um sistema de coordenadas cartesiano Oxyz associado a base de vetores ortonormais $(\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}) \in \mathcal{V}$, tem-se:

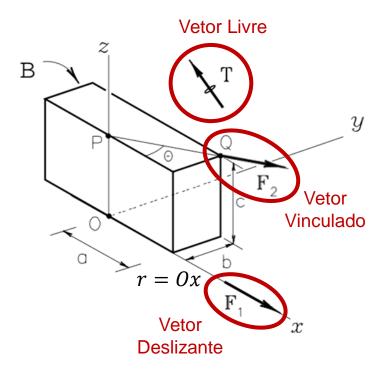
$$\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}} = (a_x, a_y, a_z) \rightarrow [a] = [a_x, a_y, a_z]^T$$



Vetor algébrico (ou coordenado). Fonte [3]

□ Vetores

- Dependendo da disposição espacial, 3 tipos de vetores podem ser definidos:
 - <u>Vetor Livre</u>: não possui ponto de aplicação, ou seja, o vetor é livre no espaço. Representação: módulo, direção e sentido. \vec{T}
 - <u>Vetor Deslizante</u>: aplicado em qualquer ponto pertencente à sua linha de ação. Esse tipo de vetor pode se mover (deslizar) ao longo de sua linha de ação, mantendo o mesmo efeito físico sobre o corpo ao qual é aplicado. Representação: módulo, direção, sentido, e reta suporte de aplicação. (\vec{F}_1, r)
 - <u>Vetor Vinculado</u>: aplicado em um ponto específico do corpo. Representação: módulo, direção, sentido, e ponto de aplicação. (\vec{F}_2, Q) . Força é um vetor vinculado.
- Todas as operações e manipulações vetoriais são definidas para vetores livres.



Esforços aplicados em um bloco rígido **B**. Vetor livre (\vec{T}) , vetor deslizante (\vec{F}_1) e vetor vinculado (\vec{F}_2) . Fonte [2]

□ Propriedades e Operações Vetoriais

- > As propriedades e operações vetoriais apresentadas a seguir são válidas para:
 - $\forall \vec{a}, \vec{b}, \vec{c} \in \mathcal{V}$ e $\forall \lambda, \mu \in \mathbb{R}$, onde \mathcal{V} é um espaço vetorial Euclidiano tridimensional;
 - \vec{a} , \vec{b} , \vec{c} expressos na mesma base de vetores ortonormais $(\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}) \in \mathcal{V}$, ou seja, $\vec{a} = (a_x, a_y, a_z)$, $\vec{b} = (b_x, b_y, b_z)$ e $\vec{c} = (c_x, c_y, c_z)$
- Propriedades básicas:

$\vec{a} + \vec{b} = \vec{b} + \vec{a}$	Adição é comutativa
$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$	Adição é associativa
$\vec{a} + \vec{0} = \vec{a}$	Adição possui elemento identidade $\vec{0}$
$\vec{a} + (-\vec{a}) = \vec{0}$	Adição possui elemento inverso
$\lambda \vec{a} = \vec{a} \lambda$	Multiplicação é comutativa
$\lambda(\mu \vec{a}) = (\lambda \mu) \vec{a}$	Multiplicação é associativa
$1\vec{a} = \vec{a}$	Multiplicação possui elemento identidade 1
$(\lambda + \mu)(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b} + \mu \vec{a} + \mu \vec{b}$	Propriedades distributiva de adição e multiplicação

□ Propriedades e Operações Vetoriais

Soma, subtração e multiplicação por escalar:

$$\vec{a} + \vec{b} = (a_x + b_x)\hat{\mathbf{i}} + (a_y + b_y)\hat{\mathbf{j}} + (a_z + b_z)\hat{\mathbf{k}}$$

$$\vec{a} - \vec{b} = (a_x - b_x)\hat{\mathbf{i}} + (a_y - b_y)\hat{\mathbf{j}} + (a_z - b_z)\hat{\mathbf{k}}$$

$$\lambda \vec{a} = (\lambda a_x)\hat{\mathbf{i}} + (\lambda a_y)\hat{\mathbf{j}} + (\lambda a_z)\hat{\mathbf{k}}$$

$$a = \|\vec{a}\| = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$\hat{\mathbf{a}} = \frac{\vec{a}}{\|\vec{a}\|} \rightarrow \vec{a} = \|\vec{a}\|\hat{\mathbf{a}}$$

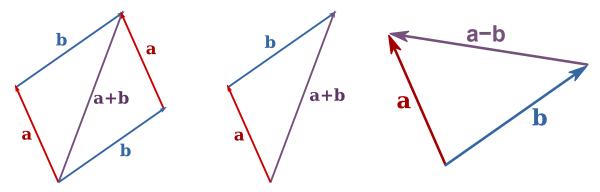
Soma

Subtração

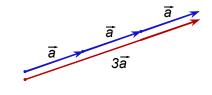
Multiplicação por escalar

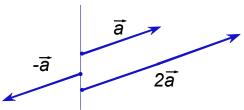
Magnitude

Vetor unitário (versor)

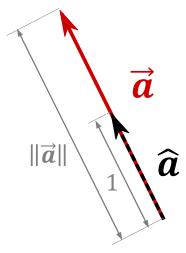


Soma e subtração de vetores. Regra do paralelogramo. Fonte [3]





Multiplicação de vetor por escalar. Fonte [3]



Magnitude e vetor unitário. Fonte [3]

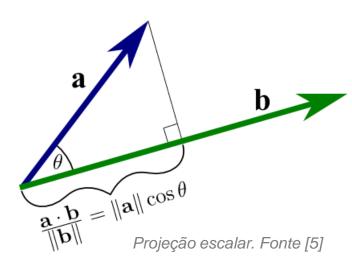
□ Produto Escalar

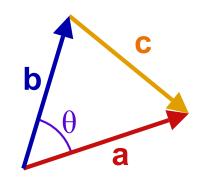
ightharpoonup O produto escalar entre os vetores \vec{a} e \vec{b} é definido por:

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos\theta = a_x b_x + a_y b_y + a_z b_z$$

- > O resultado do produto escalar é um número inteiro (escalar).
- \triangleright Geometricamente, representa o produto da magnitude de um dos vetores (\vec{b}) pela **projeção ortogonal** do outro vetor (\vec{a}) sobre o primeiro.

$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$	Comutativa
$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$	Distributiva
$(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\lambda \vec{b})$	Multiplicação por escalar
$\vec{a} \cdot \vec{b} \ge 0 \rightarrow \vec{a} \cdot \vec{b} = \begin{cases} 0, & \vec{a} = \vec{0} \text{ ou } \vec{b} = \vec{0} \\ 0, & \vec{a}, \vec{b} \ne \vec{0} \text{ e } \vec{a} \perp \vec{b} \\ \ \vec{a}\ \ \vec{b}\ , & \vec{a} \ \vec{b} \end{cases}$	Positividade, paralelismo e ortogonalidade
$\vec{c} \cdot \vec{c} = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) \rightarrow c^2 = a^2 + b^2 - 2ab\cos\theta$	Lei dos cossenos
$ \vec{a} \cdot \vec{b} \leq \vec{a} + \vec{b} $	Inequação de Schwarz
$\vec{x} \cdot \vec{a} = C \rightarrow \vec{x} = \frac{C\vec{a}}{\ \vec{a}\ ^2} + \vec{s} \wedge \vec{a}, \forall \vec{s} \in \mathbb{E}^3 \in \vec{a} \neq \vec{0}$	Equação vetorial





$$c = a - b$$
Lei dos cossenos. Fonte [6]

Produto Vetorial

ightharpoonup O produto vetorial entre os vetores \vec{a} e \vec{b} é definido por:

$$\vec{a} \wedge \vec{b} = (\|\vec{a}\| \|\vec{b}\| \sin\theta)\hat{n}$$

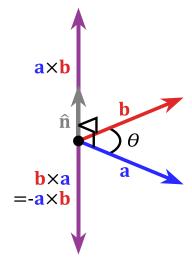
- > O resultado do produto vetorial é um vetor com as seguintes características:
 - Magnitude: $\|\vec{a} \wedge \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \sin\theta$ (área do paralelogramo com lados $\|\vec{a}\| \in \|\vec{b}\|$)
 - Direção: **ortogonal** ao plano definido por $\vec{a} \in \vec{b}$ (\hat{n})
 - Sentido: definido pela regra da mão-direita
- Cálculo:
 - Método algébrico (determinante):

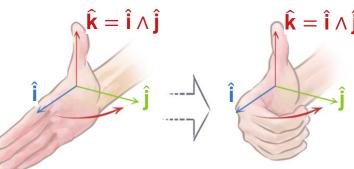
$$\vec{a} \wedge \vec{b} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = (a_y b_z - a_z b_y) \hat{\mathbf{i}} + (a_z b_x - a_x b_z) \hat{\mathbf{j}} + (a_x b_y - a_y b_x) \hat{\mathbf{k}}$$

■ Método geométrico (propriedade distributiva + "regra da mão-direita"):

$$(a_{x}\hat{\mathbf{i}}) \wedge (b_{x}\hat{\mathbf{i}} - b_{y}\hat{\mathbf{j}} + b_{z}\hat{\mathbf{k}}) = (a_{x}b_{x})(\hat{\mathbf{i}} \wedge \hat{\mathbf{i}}) - (a_{x}b_{y})(\hat{\mathbf{i}} \wedge \hat{\mathbf{j}}) + (a_{x}b_{z})(\hat{\mathbf{i}} \wedge \hat{\mathbf{k}})$$

$$= -(a_{x}b_{y})\hat{\mathbf{k}} - (a_{x}b_{z})\hat{\mathbf{j}} = \vec{\mathbf{0}} = \hat{\mathbf{k}} = -\hat{\mathbf{j}}$$





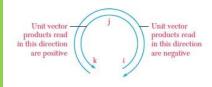
Produto vetorial definido a partir da regra da mãodireita. Fonte [7]

$$\hat{\mathbf{i}} \wedge \hat{\mathbf{i}} = \hat{\mathbf{j}} \wedge \hat{\mathbf{j}} = \hat{\mathbf{k}} \wedge \hat{\mathbf{k}} = \vec{\mathbf{0}}$$

$$\hat{\mathbf{i}} \wedge \hat{\mathbf{j}} = -\hat{\mathbf{j}} \wedge \hat{\mathbf{i}} = \hat{\mathbf{k}}$$

$$\hat{\mathbf{j}} \wedge \hat{\mathbf{k}} = -\hat{\mathbf{k}} \wedge \hat{\mathbf{j}} = \hat{\mathbf{i}}$$

$$\hat{\mathbf{k}} \wedge \hat{\mathbf{i}} = -\hat{\mathbf{i}} \wedge \hat{\mathbf{k}} = \hat{\mathbf{j}}$$



□ Produto Vetorial

Propriedades

$\vec{a} \wedge (\vec{b} + \vec{c}) = \vec{a} \wedge \vec{b} + \vec{a} \wedge \vec{c}$	Distributiva
$\vec{a} \wedge \vec{b} = -(\vec{b} \wedge \vec{a})$	Anti-comutativa
$\vec{a} \wedge (\vec{b} + \vec{c}) \neq (\vec{a} \wedge \vec{b}) \wedge \vec{c}$	Não-associativa
$(\lambda \vec{a}) \wedge \vec{b} = \lambda (\vec{a} \wedge \vec{b}) = \vec{a} \wedge (\lambda \vec{b})$	Multiplicação por escalar
$\vec{a} \wedge \vec{b} = \begin{cases} 0, & \vec{a} = \vec{0} \text{ ou } \vec{b} = \vec{0} \\ 0, & \vec{a}, \vec{b} \neq \vec{0} \text{ e } \vec{a} \parallel \vec{b} \\ \parallel \vec{a} \parallel \parallel \vec{b} \parallel, & \vec{a} \perp \vec{b} \end{cases}$ $\vec{a} \cdot (\vec{a} \wedge \vec{b}) = 0 \text{ e } \vec{b} \cdot (\vec{a} \wedge \vec{b}) = 0$	Paralelismo e ortogonalidade
$\vec{a} \cdot (\vec{b} \wedge \vec{c}) = \vec{b} \cdot (\vec{c} \wedge \vec{a}) = \vec{c} \cdot (\vec{a} \wedge \vec{b}) = \vec{0}$	Produto escalar triplo (volume do paralelepípedo definido por $\vec{a}, \vec{b}, \vec{c}$)
$\overrightarrow{a} \wedge (\overrightarrow{b} \wedge \overrightarrow{c}) = \overrightarrow{b}(\overrightarrow{a} \cdot \overrightarrow{c}) - \overrightarrow{c} \wedge (\overrightarrow{a} \cdot \overrightarrow{b})$	Produto vetorial triplo
$\vec{a} \wedge (\vec{b} \wedge \vec{c}) + \vec{b} \wedge (\vec{c} \wedge \vec{a}) + \vec{c} \wedge (\vec{a} \wedge \vec{b}) = \vec{0}$	Identidade de Jacobi
$\ \vec{a} \wedge \vec{b}\ ^2 = \ \vec{a}\ ^2 \ \vec{b}\ ^2 - (\vec{a} \cdot \vec{b})^2$	Identidade de Lagrange
$\vec{x} \wedge \vec{a} = \vec{b} \rightarrow \vec{x} = \frac{\vec{a} \wedge \vec{b}}{\ \vec{a}\ ^2} + \lambda \vec{a}, \vec{a}, \vec{b} \neq \vec{0} \in \lambda \neq 0$	Equação vetorial

□ Derivada no Tempo de Vetores

Para $\forall \vec{a}(t), \vec{b}(t) \in \mathcal{V}$ e $\forall \lambda(t) \in \mathbb{R}$, as seguintes propriedades para a derivada no tempo de vetores são válidas:

$$\frac{d}{dt}(\lambda \vec{a}) = \frac{d\lambda}{dt}\vec{a} + \lambda \frac{d\vec{a}}{dt} = \dot{\lambda}\vec{a} + \lambda \dot{\vec{a}}$$

$$\frac{d}{dt}(\vec{a} \cdot \vec{b}) = \frac{d\vec{a}}{dt} \cdot \vec{b} + \vec{a} \cdot \frac{d\vec{b}}{dt} = \dot{\vec{a}} \cdot \vec{b} + \vec{a} \cdot \dot{\vec{b}}$$
Regra do produto
$$\frac{d}{dt}(\vec{a} \wedge \vec{b}) = \frac{d\vec{a}}{dt} \wedge \vec{b} + \vec{a} \wedge \frac{d\vec{b}}{dt} = \dot{\vec{a}} \wedge \vec{b} + \vec{a} \wedge \dot{\vec{b}}$$

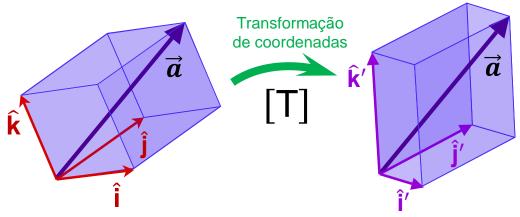
$$\frac{d\vec{a}}{dt} = (\dot{a}_x\hat{\mathbf{i}} + \dot{a}_y\hat{\mathbf{j}} + \dot{a}_z\hat{\mathbf{k}}) + (a_x\dot{\hat{\mathbf{i}}} + a_y\dot{\hat{\mathbf{j}}} + a_z\dot{\hat{\mathbf{k}}})$$

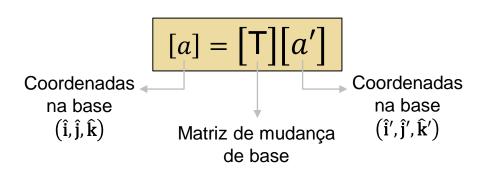
Atenção para a possibilidade de **diferenciação dos versores**.

Mais detalhes serão apresentados no tópico Cinemática do Corpo Rígido.

☐ Transformação de Coordenadas e Invariância de Vetores

- Vetores são elementos matemáticos invariantes ao sistema de coordenadas e a base de vetores associada utilizados para a sua representação.
- Esta característica está relacionada com a **natureza tensorial dos vetores**. De fato, grandezas escalares e vetoriais são casos especiais de tensores de ordem 0 e 1, respectivamente.
- Um mesmo vetor pode ser expresso em diferentes bases de vetores (sistemas de coordenadas). Neste caso, as componentes escalares do vetor serão em geral distintas e dependentes da base escolhida.
- As componentes de um vetor \vec{a} expresso em **duas bases distintas** $(\hat{i}, \hat{j}, \hat{k})$ e $(\hat{i}', \hat{j}', \hat{k}')$ são correlacionadas pela transformação de coordenadas resumida a seguir:





Transformação de coordenadas de vetores. Fonte [4]

□ Referências

- [1] Camargo, I., Boulos, P., **Geometria Analítica: Um Tratamento Vetorial**, 3ª edição, Ed. Prentice Hall, 2005.
- [2] Tenenbaum, R. A. Fundamentals of Appiled Dynamics, Springer-Verlag New York, Inc. 2004.
- [3] https://en.wikipedia.org/wiki/Euclidean_vector
- [4] https://en.wikipedia.org/wiki/Change_of_basis
- [5] https://mathinsight.org/image/dot_product_projection
- [6] https://en.wikipedia.org/wiki/Dot_product
- [7] https://en.wikipedia.org/wiki/Cross_product