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1 Introduction

Structure from motion (SfM) photogrammetry provides hyper-scale three-dimensional
(3D) landform models using overlapping images acquired from different perspectives with
standard compact cameras (including smartphone cameras) and geo-referencing informa-
tion. As applied to the remote sensing of geomorphology, it is not so much a single technique,
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but rather a workflow employing multiple algorithms developed from computer vision,
traditional photogrammetry, and more conventional survey techniques (Carrivick et al.,
2016). Recent literature has provided reviews on the importance of SfM in geosciences
(Carrivick et al., 2016; Eltner et al., 2016; Smith et al., 2016) or specific scientific contexts (Man-
cini et al., 2013; Dietrich, 2016; Entwistle et al., 2018). This contribution builds on the existing
literature, to provide a showcase of the technology, relevant to the remote sensing of
geomorphology.

1.1 Brief historical summary and state of the art

The roots of SfM lie in two key fields: photogrammetry and computer vision. When tech-
niques from these fields are combined with both automation and precision, the result is a
comprehensive tool (Pierrot-Deseilligny and Clery, 2011) for geomorphological applications.
Photogrammetry is a relatively old technique (Slama et al., 1980). In this field, the reconstruc-
tion efforts of pioneers in the 1840s initially attempted using a pair of ground cameras separated
by a fixed baseline and followed by applications using cameras for estimating the shape of the
terrain from ground and aerial photographs (Maybank, 1993). With the introduction of aero-
planes and space photography, the development of photogrammetry flourished, with 2D pho-
tographs used to rectify images into appropriate coordinates, or mosaickingmultiple frames to
estimate structures or ground elevation. In a parallel effort, the computer vision community
provided the first early algorithms for 3D scene reconstructions by stereo images (Marr and
Poggio, 1976) or to pioneer work on motion-based reconstruction (Ullman, 1979).

The prime formalisms derived in these two communities provided the most important
foundational theory for the SfM community. However, advances in SfM have been spurred
mostly due to the wide range of modern applications. A search in the academic publications
database Web of Sciences (WoS) for Structure from Motion (made in August 2018) delivered
>3000 records since the early 1980s (Fig. 1), covering as many as 125 fields of study.

Computer science and artificial intelligence is the category with the most counts of that
phrase. Engineering is ranked second, remote sensing is fourth, and geosciences is currently
ranked sixth. This wide range of applications of SfM results in research with different goals,
hence emphasizing multiple ways of addressing SfM problems in space and time. The com-
puter vision field features much older publications than other fields, with the first papers
published in the 1980s (Bolles et al., 1987) introducing a technique for building a 3Ddescription
of a static scene fromadense sequence of images, and the latest (Zhu et al., 2018) discussing new
methods for bundle adjustment (the optimization method needed to simultaneously retrieve
the image pose parameters fromoverlapping images considering corresponding image points).
Notably, the geosciences have only started producing publications incorporating SfM photo-
grammetry in the past decade, butwith improvements in the techniquemoving at an incredible
speed: note that a similar search in 2015 by Carrivick et al. (2016) ranked Geosciences in the
ninth position. In this field, the first work was published (according to WoS) by Heimsath
and Farid (2002). Here, results from three unconstrained photographs characterized hillslope
topography, and yield to an estimated surface with errors of the order of 1m. In comparison,
one of the last papers published in the field at the time of the search (Smith and Warburton,
2018) illustrates that topographic data from SfM photogrammetry (with errors on the scale
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FIG. 1 “Structure from motion” search in academic databases: first 25 results and number of records per discipline (as of August 2018).



of<1mm) inherits enough information to analyze the relationship between geomorphological
process and form, at the microscale (few millimeters).

These few examples show an evolution of SfM photogrammetry in time and topics. In the
computer vision field, the emphasis remains on methods for obtaining information from im-
ages, whereas the evolution of SfM photogrammetry is different in geosciences. Early SfM
photogrammetry studies in geosciences emphasized the accuracy of reconstruction, whereas
modern geosciences applications focus more on the information that can be retrieved from
such analyses.

1.2 Reasons for success in geomorphological surveys

For geomorphological studies, the availability of a high-resolution topographic dataset is
fundamental, particularly so for those systems characterized by a complex morphology. We
find four main reasons for the success of SfM photogrammetry in geomorphology: (i) spatial
accuracy and temporal frequency, (ii) cost; (iii) speed and ease of use. A further reason for
SfM’s success, although it is still in its exploratory phase, is and (iv) the possibility of involv-
ing citizens in science. These points are intrinsically interrelated and build on each other to
determine the success of the technique in geosciences.

In geosciences, SfM photogrammetry is a workflow that is virtually independent of spatial
scale (Carrivick et al., 2016), it allows potentially unlimited temporal frequency (Carrivick
et al., 2016) and can provide point-cloud data comparable in density and accuracy to those
generated by terrestrial and airborne laser scanning at a fraction of the cost (Westoby
et al., 2012). It offers therefore exciting opportunities to characterize surface topography in
unprecedented detail, allowing workers to detect elevation, position, and volumetric or areal
changes that are symptomatic of earth surface processes across spatial (see Section 3) and
temporal (see Section 4) scales.

When speaking about the costs of a SfM photogrammetry application, they can vary
depending on sensors, survey design, and ground control points (GCPs)—when present.
SfM photogrammetry sensors are based on consumer-grade cameras, or even smartphones
(Micheletti et al., 2014; Prosdocimi et al., 2016; Sofia et al., 2017), which can be handheld or
mounted on UAV systems. The sensors, mounting systems or cameras can vary substantially
in price and complexity, but the trade-offs between these and the quality of the resulting data
are not well constrained (Cook, 2017). In general, however, the availability of these sensors, and
the opportunity of applying SfM photogrammetry to satellite images (Sofia et al., 2016), histor-
ical photographs or opportunistic sensors (see Sections 4.1 and 4.2), has drastically reduced the
costs of surveys with respect to airborne or terrestrial laser scanners or GNSS. Geo-referencing
forms a fundamental part of topographic surveys and, for SfM photogrammetry work, dense
deployments of carefully measured GCPs are usually used, which can represent a substantial
proportion of the overall survey effort (James et al., 2017a). However, new applications are also
evaluating the opportunity of directly referenced surveys (see Section 2.3).

The availability of free or low-cost fully automated photogrammetric software, of cameras
of any level (from reflex to smartphones), and the recent increase of drones also in the private
and public sectors (News organizations, journalists, and private citizens have employed
UAVs to provide glimpses of natural disaster, for example), allows just about anyone to
generate 3D models for various purposes (Remondino et al., 2017). Processing of the data,
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in fact, does not necessarily need proprietary software, e.g., (AgiSoft, 2010), but numerous
open-source photogrammetric (OSP) software, e.g., OpenMVG (https://github.com/
openMVG/openMVG), OpenDroneMap (https://github.com/OpenDroneMap), MicMac
(http://logiciels.ign.fr/?Micmac), VisualSFM (Wu, 2011, 2013), SF3M (Castillo et al., 2015),
and 3D data processing tools, e.g., CloudCompare (Girardeau-Montaut, 2015) or MeshLab
(Cignoni et al., 2008) among others, are emerging.

Geographic research is nowadays a data-rich environment, where themost recent advance is
not just the resolution of the data, but the variety and the rapidity with which we can capture
georeferenced data (Miller and Goodchild, 2015). Citizen science can improve research, but it
suffers from necessitating specialized training and simplified methodologies that reduce re-
search output (Raoult et al., 2016). The ease of the use of SfM photogrammetry with a range
of sensors can enable the opportunity of participatory and opportunistic crowdsourced sens-
ing, facilitating the involvement of crowd communication. It is important to underline, how-
ever, that this comes to a hidden cost: the majorities of image-based users are often unaware
of strengths and weaknesses of the used methodology and software, employing it much like
a black-box where they can drop photographs in one end and retrieve a (hopefully) completed
3D model on the other end. It is fundamental, therefore, to provide geospatial tools integrated
with appropriately designed instructional materials (Sofia et al., 2017).

2 Method

The workflow of SfM photogrammetry can be put in a nutshell as follows (e.g., James and
Robson, 2012; Smith and Vericat, 2015; Eltner et al., 2016; Schonberger and Frahm, 2016): In
the first step features are detected in each image and matched between overlapping frames
(e.g., using the SIFT algorithm from Lowe, 2004). These homologous image points are used in
a second step to reconstruct the image network geometry in an iterative bundle adjustment
(e.g., Snavely et al., 2006). During this phase, intrinsic camera parameters, describing the in-
terior camera geometry (focal length and principle point plus additional distortion parame-
ters), and extrinsic parameters, describing the position (three shifts) and orientation (three
rotations) at which images have been captured, are estimated. Furthermore, 3D object coor-
dinates in an arbitrary coordinate system are calculated from the 2D image coordinates of the
homologous image points, creating a sparse point cloud.With the knowledge about the image
network geometry, it is possible to retrieve a dense point cloud, which comprises the calcu-
lation of a corresponding 3D point for almost each image pixel. For a summary of dense
matching algorithms, we refer to Remondino et al. (2014). The resulting 3D point cloud
can be geo-referenced during the adjustment, and the additional information can be consid-
ered to optimize intrinsic and extrinsic camera parameters, or afterwards with a similarity
transformation, thus having no further potential for improvement of the adjustment.

Although algorithmic advances and software tools make the application of SfM photo-
grammetry simple in its usage for topographic reconstruction, basic knowledge about pho-
togrammetric principles are still required for a robust accuracy assessment (e.g., Carbonneau
and Dietrich, 2017) to avoid potential bias in the 3D model leading to misinterpretation of
geomorphological forms and processes. The increased awareness in this regard is highlighted
by increased interest in proper parameter settings and their effect on the final model as illus-
trated in the next section.
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2.1 Choosing suitable settings to comply with the application at hand

Various influences occur on the quality of the final 3D reconstructed surface model using
SfM photogrammetry (James et al., 2019). Careful considerations are necessary during both
data acquisition and processing. Different impacts on model quality, trade-offs, and guide-
lines to achieve most suitable surface models in geo-scientific applications are discussed in
detail by Eltner et al. (2016) and Smith et al. (2016). Thus, this section builds on those reviews,
and summarizes in detail key elements and the related recent literature, providing sugges-
tions to improve SfM photogrammetry models.

2.1.1 Image quality

Image quality is considered to be of great importance because SfM photogrammetry relies
on the successful detection and matching of image features, which is one of the main tasks of
photogrammetry (Gruen, 2012). Because image quality significantly influences these first
steps, making sharp and well-exposed images are the basis for accurate further data
processing (O’Connor et al., 2017). Thus, in order to obtain reliable 3Dmodels, it is important
to start by choosing the right camera and the most suitable configuration for optimized image
capture (Mosbrucker et al., 2017). It is important to note that each parameter setting can im-
prove image quality, and the optimal choice is a trade-off between camera settings that con-
sider the application at hand (Mosbrucker et al., 2017; O’Connor et al., 2017). The main points
for an optimal image quality (highlighted by Mosbrucker et al., 2017 and O’Connor et al.,
2017) are summarized here:

– Images should be captured in RAW format rather than JPEG, due to significantly higher
bit-depth, e.g., 12–16-bit vs 8-bit image information, respectively.

– Cameraswith larger sensors should be favored because they enable a higher signal to noise
ratio, as pixels are generally larger and thus more light can be captured.

– The dynamic range of the camera is the camera’s ability to resolve the brightest (saturation
level) and darkest (minimum level of detection) signals, which depends on the resolution
of the analogue to digital signal converter. This range should be set as high as possible, to
allow to capture the entire range of luminance of an observed scene.

– Regarding lenses, a good trade-off between overlap and distortion effects has to be chosen.
For instance, wider angled lenses allow for higher image overlap, but mostly also depict
higher radial distortions.

– For close-range applications, depth-of-field has to be considered, and therefore aperture
should be chosen correspondingly.

– Furthermore, exposure settings are important, which can be evaluated using the exposure
triangle with ISO, aperture and shutter speed at each corner. ISO should be chosen as low
as possible because less noise and a higher dynamic range are the consequences. Shutter
speed should also be as low as possible to avoid blur due to motion but still receive enough
light at the sensor. These settings change with different lenses, object distances, and
moving objects.

– Finally, it should be noted that images with high quality are also achievable with compact
cameras if fixed lenses and large sensors are considered, which is important considering
pay-load aspects in UAV applications.
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A detailed description of the data and its processing enables a comprehensive assessment
of 3D model retrieval. Thus, for better evaluation and comparability of image quality, data
including metadata about settings during image acquisition should be made available in
an open access repository (O’Connor et al., 2017). This could complement the documentation
spreadsheet introduced by Eltner et al. (2016) that aims to record data-acquisition settings
during the field campaigns and parameter setting during subsequent data processing.

2.1.2 Ground sampling distance

The distance between the camera and the area of interest influences the accuracy and res-
olution of the reconstructed surface model, revealing an inverse relationship between dis-
tance and model accuracy (Smith and Vericat, 2015; Eltner et al., 2016). However, instead
of referring to this distance value alone, Mosbrucker et al. (2017) suggest also considering
ground sampling distance (GSD), which describes the ratio between the distance in image
space to the distance in object space. Different cameras with different focal length and differ-
ent sensors (and thus pixel pitch) lead to different GSDs, evenwhen objects are captured from
the same distance.

2.1.3 Image network geometry

The orientation and position from which images are taken is a key aspect of a reliable 3D
reconstruction. Images should have a high overlap from different perspectives. The distances
between images (which is called the base) should be big enough to avoid glancing ray inter-
sections due to very small parallax angles. At the same time, images should not be taken too
far apart to avoid changes in the image content appearance so great that no homologous
points are detected. Each point for which a 3D model is to be retrieved should be seen in
at least three images. Themore images the better due to increasing redundancy in imagemea-
surements. Furthermore, the image network geometry should comprise convergent images, if
possible, to avoid systematic errors such as domes (James and Robson, 2014). Other advice
regarding an ideal geometry to avoid unfavorable error propagation include capturing the
area of interest from different distances (Micheletti et al., 2014) and cross-flight stripes in
the case of UAV imagery (Gerke and Przybilla, 2016).

2.1.4 Camera parameter choice during bundle adjustment

Decidingwhich parameters are to be considered during bundle adjustment, andwithwhat
weights, is essential for a robust model reconstruction from overlapping images. James et al.
(2017a) demonstrated that estimating too many camera model parameters during bundle ad-
justment can lead to over-parameterization and thus errors in the final model. For instance, in
many applications, two radial distortion parameters are sufficient although more values
could be implemented. Remondino et al. (2012) previously discussed the relevance of choos-
ing the correct number of parameters. They observed dome effects for SfM software tools that
estimated the interior camera geometry for each image and suggested using only one interior
cameramodel if one camera has been utilized to capture the images. Similar conclusions were
also supported by Rosnell and Honkavaara (2012). A potential approach to check for over-
parameterization is to consult correlation values between estimated camera parameters: they
should be low. Furthermore, the significance of each estimated parameter can be consulted to
check for over-fitting (James et al., 2017b).
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2.1.5 Referencing: GCP weights and distribution

The precision and distribution of referencing and control data, i.e., ground control points
(GCPs) and checkpoints (CPs, that are GCPs not implemented during the bundle adjustment),
respectively, are important to guarantee and control the quality of the final scaled model. The
weights of the precision of image measurements of GCPs and tie points have to be chosen
accordingly, to avoid model errors due to over-fitting at the GCPs. Furthermore, reprojection
errors at the CPs should not be much higher than at the GCPs (James et al., 2017a).

Generally, GCPs should be surrounding the area of interest. Also, they need to be well dis-
tributed. Aminimum of four GCPs is necessary for increased accuracies, with errors in height
increasing with increasing distance to GCPs (Tonkin and Midgley, 2016). Recent advances in
direct geo-referencing, where models are referenced directly considering the orientation and
position fromwhich cameraswere triggered, indicate that GCPsmight become less important
in future applications in geomorphology (see Section 2.3).

2.1.6 Exterior influences

Surface properties, e.g., texture, and illumination conditions influence feature detection
and matching significantly. Overcast conditions are preferred to strong shadows. Regarding
surface properties, on the one hand, surface texture has to be sufficient, e.g., snow is less suit-
able due to potentially missing contrast, but on the other hand, it should not be too
complex, e.g., vegetation, whose appearance changes distinctively within shortest distances
and minimal changes of perspectives. Recent studies, however, have shown that it is possible
to reconstruct single blades of grass if the number of images is high enough (Kr€ohnert
et al., 2018).

2.2 Accuracy considerations in geomorphological applications

Due to themany parameters that influence the accuracy of the final 3Dmodel derived from
the SfM-photogrammetry approach, error reliability is not as high as, for instance, point
clouds derived from terrestrial laser scanning (TLS). Therefore, the need for robust error
modeling is important when using SfM photogrammetry, especially considering the variety
of applications in geomorphology at varying spatiotemporal scales. When performing error
modeling, distinctions should be made between error reproducibility, i.e., error behavior un-
der different conditions, and error repeatability, i.e., error behavior under the same condi-
tions (Goetz et al., 2018). Furthermore, it is important to distinguish between constraining
3D accuracies due to internal and external causes (James et al., 2017b). Internal precision is
influenced by image network geometry and tie-point measurements, whereas external pre-
cision relies on actual geo-referencing. Recent studies have focused on modeling of error be-
havior of SfM-photogrammetry data to improve data quality in geomorphic studies (James
et al., 2017a,b; Wasklewicz et al., 2017).

SfM photogrammetry is not as rigorous in regards to the precision weights when
compared to traditional photogrammetry, and therefore improvements to the accuracy of
the final SfM-DEM (digital elevation model) are still possible if photogrammetric principles
beneath SfMphotogrammetry are considered (James et al., 2017a). James et al. (2017a) provide
a workflow to consider and minimize errors when using SfM photogrammetry, which they
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illustrate with significantly improved error to distance ratios for two case studies. Thereby,
the weight consideration of reference accuracy of GCPs in object space, as well as image mea-
surement accuracy of tie points andGCPs in image space are important to avoid falsely fitting
during bundle adjustment (James et al., 2017a).

Errors are spatially highly correlated when using SfM photogrammetry (James et al.,
2017b), which is in contrast to other high-resolution topography methods such as TLS, where
spatially independent, error behavior is assumed (e.g., Abellán et al., 2009; Kromer et al.,
2015). Thus, rather than using one level of detection (LoD) applied to the entire DEM of dif-
ference for multitemporal change detection, consideration of spatial correlation is important
(James et al., 2017b). James et al. (2017b) use Monte Carlo simulation to calculate precision
maps, which they combinedwith an adoptedM3C2 algorithm,which already considers a var-
iable LoD depending on the complexity of the terrain (Lague et al., 2013) to estimate a spa-
tially correlated error of the SfM-photogrammetry point cloud. However, it should be noted
that precision maps are not able to detect systematic errors such as domes (e.g., Eltner and
Schneider, 2015) and thus independent reference data, e.g., CPs, are needed for a robust ac-
curacy estimation (James et al., 2017b).

2.3 Direct geo-referencing (DG) for flexible UAV applications

Recent advances in the field of devices, combinedwith advances in the retrieval of accurate
sensor orientation and position of the camera during image acquisition, have the potential to
enable SfM-photogrammetry applications based on UAV imagery that does not require
GCPs. This could potentially revolutionize collection of SfM-photogrammetry data in remote
or dangerous areas, or areas under very frequent observation. Here we discuss the potential
for direct geo-referencing (DG) for aerial platforms.

Benassi et al. (2017) divided geo-referencing into indirect sensor orientation (InSO), direct
sensor orientation (DSO), and integrated sensor orientation (ISO). InSO, or indirect geo-
referencing (IG), uses tie points, GCPs and bundle adjustment to reference the data, and po-
tentiality also considers camera self-calibration. DSO uses solely camera orientation/position
estimates, which complicates reliable camera self-calibration, resulting in potential systematic
errors due to unresolved image block deformations. ISO considers camera position and ori-
entation as well as tie-points to perform bundle adjustment. Furthermore, a few GCPs might
be consideredwhen using ISO, which can be important if self-calibration is also performed. In
this study, we refer to DG as a method that incorporates both DSO and ISO. In general, DG
refers to the direct implementation of estimated orientation and position information of the
central projection center of the camera during image capturing to reference image-based re-
construction products (Pfeifer et al., 2012).

Utilizing UAV data with DG has great advantages because access to changing or danger-
ous environments for the purpose of including GCPs will not be needed. Inclusion of GCPs is
still one of the main limitations for flexible UAV applications (e.g., Carbonneau and Dietrich,
2017; Forlani et al., 2018). Furthermore, IG implies high demands regarding the GCP distri-
bution (e.g., James et al., 2017a; Tonkin and Midgley, 2016), because low-cost position and
orientation estimation devices, as well as low-cost cameras, demand robust GCP networks
for reliable adjustment during 3D reconstruction (Gerke and Przybilla, 2016).
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Most current low-cost UAVs are equipped with GNSS devices that do not enable real-time
kinematic processing (RTK) or postprocessing kinematic (PPK) to correct the GNSS signal
leading to accuracies of the final 3D model in meter-ranges (Turner et al., 2014) or
dm-ranges (Gerke and Przybilla, 2016; Hugenholtz et al., 2016; St€ocker et al., 2017). However,
if RTK- or PPK-GNSS is possible, this will result in a high potential for DG of UAV data (Bláha
et al., 2012) and cm-ranges can be achieved (Fig. 2). Furthermore, using RTK- or PPK-GNSS
can help to decrease image block deformations significantly (Gerke and Przybilla, 2016), and
thus systematic errors such as domes in the 3Dmodel (James et al., 2017b)might bemitigated.
Generally, an integrated GNSS and IMU (inertial measurement unit capturing angular
changes and accelerations) approach is used in support of DG to allow for precise flight-
trajectory reconstruction. This provides knowledge about the position, attitude, and velocity
of the UAV during image capturing (Chiang et al., 2012; Pfeifer et al., 2012; Eling et al., 2015).
Due to the weight constraints of UAVs, microelectromechanical systems (MEMS) are utilized
as low-cost IMUs (Pfeifer et al., 2012).

2.3.1 Achievable accuracies

Errors of the SfM-photogrammetry result reach about 0.1% of flying height for low-cost
GNSS devices with no kinematic processing (Carbonneau and Dietrich, 2017). However,
the picture is different for RTK- or PPK-GNSS applications. To evaluate the accuracies of
the final 3D model, studies using DG with RTK- or PPK-GNSS have been compared. It has
to be noted that different studies utilize different parameters, e.g., some use lever arm and

FIG. 2 Error estimates (standard deviation or RMSE) of case studies using direct geo-referencing or integrated sen-
sor orientation (considering 1 to a maximum of 4 GCPs) are related to round sampling distance (GSD) considering
case studies by Rehak et al. (2013); St€ocker et al. (2017); Eling et al. (2015);Mian et al. (2015); Rehak and Skaloud (2016);
Forlani et al. (2018); Benassi et al. (2017); Gabrlik et al. (2018); andGerke and Przybilla (2016). If GCP and noGCPwere
evaluated within one study, solely, the case for GCP included is illustrated.
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boresight corrections and others do not consider their influence. Error ranges are high, i.e.,
between 2 and 20cm, and errors increase with increasing GSD (Fig. 2).

Furthermore, these studies reveal that error improves significantly if camera calibration is
performed with self-calibration instead of a pre-/postcalibration (e.g., from 55.3 to 4.1cm in
Gabrlik et al., 2018). Also, GCP consideration is important because the studies show that if at
least one GCP can be implemented, the error decreases strongly (e.g., from 10 to 3cm in
Forlani et al., 2018). Beside absolute error, relative error (ratio between measured error
and object distance, Eltner et al., 2016) is diverse for all studies, aswell. Average ratio amounts
are 1:1300 with a standard deviation of 700.

2.3.2 Guidelines for DG applications

If direct DG is performed, several aspects have to be accounted for:

– Pre- or postflight camera calibration should be considered if no GCPs are possible because
residuals of the self-calibration of the interior camera geometry propagates into the final 3D
model in object space, which can be compensated for by exterior orientation when GCPs
are used in the bundle block adjustment (Gerke and Przybilla, 2016; Forlani et al., 2018).
Also, systematic errors are absorbed by exterior camera orientations and positions and thus
estimated positions and orientations do not coincide anymore with actual physical image
network geometry during image capturing, which, however, does not matter if the focus is
on the final accuracy of object points (Cramer et al., 2000).

– If possible, at least one GCP should be included, which is relevant for estimating interior
camera geometry during self-calibration, allowing for almost identical results to IG
applications (Benassi et al., 2017; Forlani et al., 2018; Gabrlik et al., 2018). Using manymore
GCPs compared to just one indicates no further improvement of the final 3Dmodel (Gerke
and Przybilla, 2016).

– Specific flight patterns should be chosen, especially if camera self-calibration is aimed for,
to avoid unfavorable parameter correlation, i.e., use cross-flights, especially if the terrain
comprises no large height shifts (Gerke and Przybilla, 2016), fly at different heights, and/or
capture convergent images (James et al., 2017a).

– The importance of weights given to the parameters of exterior orientation has to be
considered. Orientation estimates of the sensor are still not sufficient for high weights on
angles and hence achieve best results if high weights are assigned to the position but low
weights on attitude during bundle adjustment (St€ocker et al., 2017). Furthermore, the
choice of a set of parameters has an impact on height accuracy, and using the parameter
weights can lead to different accuracies with different software, potentially due to different
consideration of weights of observations (Benassi et al., 2017).

– Offsets between projection center of the camera and the position of the GNSS receiver [i.e.,
lever arm, and orientation of the IMU, i.e., boresight (angular misalignments)] need to
be estimated (Chiang et al., 2012). Furthermore, synchronization issues between the
camera shutter release and GNSS/IMU signal logging have to be considered (Gabrlik
et al., 2018).

Ultimately, the best practice for flexible and accurate direct referencing of UAV data is the
combination of traditional aerial triangulation and implementation of directly measured,
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sensor-position information. Thereby for highest accuracies, position estimates are used as
approximation values during adjustment, in combination with tie points and very few GCPs,
if the terrain allows for it (Chiang et al., 2012). Estimates of camera position mitigate block
deformation issues (Gerke and Przybilla, 2016) and support tie-point detection in areas of
unfavorable texture (St€ocker et al., 2017), whereas GCPs can be further used as checkpoints
to enable reliable error estimates.

3 Reconstructing processes across space

Accurate, precise, and rapid acquisition of topographic data is fundamental to many sub-
disciplines of physical geography (Smith et al., 2016). Conceptually, the patterns of earth sur-
face processes detected in any topographic dataset are a function of scale. The scale of a study
can relate to the overall area encompassed by an investigation (extent) or the size of the in-
dividual units of observation (process resolution, which we define as grain). In SfM-
photogrammetry applications in geomorphology, several fundamentally different extents
and grains concerning processes are known, but the boundaries or thresholds among them
may be fuzzy.

At the smaller grain, for example, the rigorous modeling and quantification of soil-water
erosion processes require detailed information about the topography of the land surface with
appropriate resolution and accuracy. Thanks to SfM photogrammetry, this microscale grain
can be assessed at multiple extents (hillslope, plot, and micro-plot scale; see Fig. 3), allowing
quantification of detailed physical changes of soils and their influence on surface morphology
even at submillimeter resolution (Kaiser et al., 2018). Among the challenges of SfMphotogram-
metry in this type of analyses, we can mention the establishment of a common and sufficient
reference system for the different DEMs considered, determination of errors in the generation
of DEMs, selection of appropriate criteria to obtain reliable changes, error propagation, and
validation of the procedure by comparing the results with actual sediments collected during
the experiment (Gessesse et al., 2010; H€ansel et al., 2016; Glendell et al., 2017; Prosdocimi et al.,
2017; Balaguer-Puig et al., 2017a,b; Eltner et al., 2018; Tarolli et al., 2019). A further problem is
that many geoscience processes associated with soil surface microtopography occur on natu-
rally vegetated surfaces, but few guidelines exist for the acquisition and treatment of SfM pho-
togrammetry data on vegetated surfaces (Nouwakpo et al., 2015).

Increasing the grain, remote sensing in fluvial geomorphology using SfM photogrammetry
has increased significantly in last 5 years (Entwistle et al., 2018), with many recent advances
in, for example, river restoration (Marteau et al., 2017; Woodget and Austrums, 2017). From
the smallest to the largest scale, SfM photogrammetry has been proven useful in laboratory
flumes (Morgan et al., 2017), for grain size measurements (Micheletti et al., 2014; Bertin and
Friedrich, 2016; Pearson et al., 2017), for erosion assessment (Prosdocimi et al., 2016;
Hemmelder et al., 2018; Jugie et al., 2018) or river ice quantification at embankment level
(Alfredsen et al., 2018), and to study riverbed evolution (Lane et al., 2003; Javernick et al.,
2014; Dietrich, 2016; Cook, 2017). Recently, a further “grain” investigated in science has been
underwater bathymetry reconstruction, with the pioneerworks byWoodget et al. (2015, 2017)
and Dietrich (2017). SfM photogrammetry in subaerial studies can provide consistent results
if systematic errors due to refraction impact are accounted for (Mulsow et al., 2018). Partama
et al. (2018) found that using coregistered image sequences or video frames to mitigate the
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effects of waves and water reflections could increase the size of reconstructed areas under
difficult observation conditions. This method has the potential to significantly boost SfM-
photogrammetry applications for bathymetric measurements. Overall, monitoring changes
on stream channels with SfM photogrammetry gives a more complete spatial perspective
than the traditional method of cross sections when quantifying small-scale geomorphic
change.

FIG. 3 Surface reconstruction across scales from UAV imagery (1cm resolution) illustrated for a hillslope. (A) At
hillslope scale, topographic features such as slope aremeasurable. (B) At the next scale traces for tillage (across-slope)
and local potential accumulation spots become obvious. (C) At the last scale single aggregates, and, e.g., their rele-
vance for roughness, can be evaluated.
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Larger grains include gravitational processes, for example landslides, whose monitoring
requires a continued assessment of the extent, the rate of displacement, surface topography,
and detection of fissure structures that could be related to the processes. SfM photogramme-
try in this field provides accurate, high-resolution topographicmodels that are fundamentally
important for a detailed mapping both in mountain (Lucieer et al., 2014; Chidburee et al.,
2016; Yu et al., 2017) or coastal environments (Genchi et al., 2015; Esposito et al., 2017a,b;
Westoby et al., 2018). For these environments, SfM photogrammetry overcomes both the high
economic costs of topographic data collection and the data-collection limits caused by the re-
moteness of field sites, which render other cheaper, portable surveying platforms (i.e., terres-
trial laser scanning or GPS) impractical.

In addition, SfM photogrammetry has an advanced understanding of the dynamics of
glaciers and rock glaciers (Piermattei et al., 2015; Ryan et al., 2015; Ely et al., 2017; Girod
et al., 2017; Watson et al., 2017; Fugazza et al., 2018). Knowledge of changes in the extent,
mass, and surface velocity of these grains contributes to a better understanding of the dy-
namic processes occurring in cold, high-mountain environments, and serves as an important
contribution to climate monitoring.

4 Reconstructing processes in time

The high flexibility of SfM photogrammetry allows for repeated data acquisition and there-
fore multi-temporal earth surface observations with varying frequencies. In addition, the
method can be applied to already existing image information enabling the reconstruction
of past forms.

4.1 Past and real-time reconstruction

Recent works have highlighted the possibility of using archival photographs to reconstruct
landscapes (Bakker and Lane, 2017), landscape processes and vegetation (Frankl et al., 2015;
Gomez et al., 2015; Ishiguro et al., 2016), glaciers (Tonkin et al., 2016; Mertes et al., 2017;
Midgley and Tonkin, 2017;M€olg and Bolch, 2017; Vargo et al., 2017), coastal changes (Warrick
et al., 2017), and volcanic environments (Gomez, 2014; Gomez and Wassmer, 2015). In all
these fields, the results provided a series of elevation models that demonstrated the potential
for acquiring detailed and precise elevation data from any historical aerial imagery, provided,
imagery is of the necessary scale to capture the features of interest. Reprocessing of these
archives leads to point clouds with a significantly improved point density when processed
with recently developed dense matching algorithms (M€olg and Bolch, 2017).

However, this literature also highlights the limitations of SfM photogrammetry applied to
historical images. Whereas the ease of use gives SfM photogrammetry its major strength, the
lack of transparency can make it difficult for non-specialist users to estimate the quality and
accuracy of content derived from such materials (Brutto and Meli, 2012; Remondino et al.,
2012), which is essential if workers are to evaluate the performance of 3D models derived
from historical images. Furthermore, users need to consider that when analogue materials
are digitized on nonphotogrammetric scanning platforms (Lane et al., 2010; Wheaton
et al., 2010), nonsystematic geometric errors can be induced during the data-capture process,
leading to subsequent problems when imagery is used in analytical applications (Verhoeven,
2011; Verhoeven et al., 2013; Sevara, 2016). The analysis of the evolution in 3D landforms
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based on historical images presents further difficulties because the pixel resolution of the
early photographs is much lower than the recent ones. Volume and surface calculationsmust,
therefore, be conducted carefully. Nevertheless, SfM-photogrammetry analysis can produce
high-quality topographic datasets that are particularly useful in very active geomorphic
areas, such as rivers, shores, glaciers, and volcanic environments, and when no, or only poor
topographical data exists.

A further advance in SfM photogrammetry is currently offered by the availability of easily
accessible rich imagery of large parts of the Earth’s surface undermany different viewing con-
ditions, in terms of user-taken photographs or webcam services (Snavely et al., 2008, 2010;
Sofia, 2020). This database of images presents enormous opportunities, both in research on
computer vision and for practical applications in environmental research, especially for
the reconstruction of extreme events (i.e., flash floods, landslides) for the purpose of rapidly
obtaining critical “damage footprint” snapshots soon after the event. In the context of extreme
events, for example, disaster-management systems such as the Copernicus Emergency Man-
agement Service (EMS) are currently not able to provide information products until up to
48–72h after a disaster event has occurred, and planning topographic surveys requires time
as well. In contrast, user-generated data such as social media posts or crowdsourced data are
continuously produced and can be produced almost immediately because users actively par-
ticipate throughout an event and share related information (Havas et al., 2017). This imagery
has been considered only recently in the geosciences (Sylvest et al., 2014; Ratner et al., 2015;
Haas et al., 2016; Raoult et al., 2016; Shaad et al., 2016; Guerin et al., 2017; Kobayashi et al.,
2017; Sofia et al., 2017; Voumard et al., 2017; Chudý et al., 2018; Lewis and Park, 2018), but
this type of application remains a major challenge for the scientific community.

One major drawback of internet-based or crowdsourced imagery is that these massive com-
munity photo collections are almost completely unstructured,making it difficult to use them for
SfMapplications (Snavelyet al., 2010).Also, thesephotographsmightnothavebeencreated spe-
cifically for documentation purposes, and so the focus of these images is generally not on the
object to be evaluated. The image repositories must, therefore, be subjected to a preprocessing
analysis of their photogrammetric usability. Inmany cases,with internet-based imagery, no ref-
erence information exists (e.g.,GPS location of individual frames orGCPs at the area of interest).
In addition, SfM-photogrammetry derived point clouds performbestwith high-quality images,
rather than from video frames or low-quality images (Westoby et al., 2012).

Despite these shortcomings, the above examples show how the resulting 3Dmodels can be
sufficiently detailed to permit basic analysis such as identification of features, or estimation of
erosion volumes, for example. As an example, Fig. 4 shows the Oso landslide (WA) (Aaron
et al., 2017; Stark et al., 2017), and a 3D reconstruction of the same landslide obtained using
free software [VisualSFM and Meshlab] and a YouTube UAV-video (Martin, 2016) from
which 200 frames have been obtained.

Challenges remain for the integration of this type of topography with 3D modeling, espe-
cially in the context of scaling of these technologies to provide coverage for larger areas. Data
collection is commonly the most expensive and arduous task in many scientific disciplines,
particularly those that involve fieldwork. This literature demonstrates that even without an
extensive, time-consuming search, many images suitable for extracting scientific data already
exist from crowdsourcing or internet-based services. Furthermore, internet searches can be
both focused and guided if a clear path to obtaining the imagery exists. Although the estimated
data might not be as accurate as a surveying campaign, the process could be simpler, faster,
and less expensive, particularly if the areas are difficult to access.
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4.2 Time-lapse imagery for 4D change detection

The application of time-lapse imagery from multiple perspectives to perform 4D change
detection has great potential for geomorphological studies because geomorphic processes
might be observed in real-time. For TLS, time series of point clouds have already been utilized
to observe rockfalls (Williams et al., 2018) and landslides (Kromer et al., 2017) with temporal
resolutions of 1h for a duration 10 months and 30min for 6 weeks, respectively. However, in
the field of image-based approaches, case studies are still limited. The available literature has
highlighted examples related to lava flows (James and Robson, 2014), geological experiments
in the laboratory (Galland et al., 2016), soil erosion (Eltner et al., 2017), and glacier ice-margin
dynamics (Mallalieu et al., 2017). For these examples, the time resolution has varied from 1 to
10min, and the timeframe of analysis ranges from <1h (James and Robson, 2014) to 90min
(Eltner et al., 2017) to over 1 year (Mallalieu et al., 2017). This type of analysis is possible with
different numbers of cameras [<5 cameras (Eltner et al., 2017; James and Robson, 2014), up to
15 (Mallalieu et al., 2017)] and results in very high precision datasets [0.1mm (Galland et al.,
2016) up to >10mm (Eltner et al., 2017)].

4.2.1 Guidelines for time-lapse SfM photogrammetry

Several requirements and constraints limit the application of time-lapse SfM photogram-
metry, which we list below. These constraints have thus far limited widespread adoption of
the technique, but laboratory studies, where external parameters can be more easily
constrained, demonstrate its enormous potential. The requirements and constraints of
time-lapse SfM photogrammetry are:

FIG. 4 3D reconstruction of the Oso landslide (WA). (A) Google Earth view (Map data: Google, LandSat/
Copernicus) of the landslide; (B) point-cloud processed in VisualSFM and aligned video frames; (C) mesh reconstruc-
tion in MeshLab with a texture based on the RGB colors of the point cloud.
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– The interior camera geometry of the time-lapse cameras must be considered. Although
Galland et al. (2016) were able to perform self-calibration in their study under presumably
stable light conditions in the laboratory and very high overlap due to the close-range
application, Eltner et al. (2017) performed camera calibration for each camera after the
experiments. Due to less convergence and thus overlap of the images and due to changing
luminance conditions, potential less measurement redundancy (observations from solely
three cameras) caused less reliable estimation of camera parameters. This can lead to errors
in the surface models, else might be mitigated with a fixed and pre-calibrated interior
geometry. Another potential solutionmight be the implementation of a significantly higher
number of cameras observing the same area. Also, Mallalieu et al. (2017) performed
precamera calibration for their long-term observation. However, another issue comes into
play that needs consideration: temporal stability of the interior geometry, especially due to
strong changing temperatures over the year.

– Camera synchronization is another important issue if rapid changes are to be observed.
Interior camera clocks or real-time clocks (RTC) can be used for synchronized triggering.
But Mallalieu et al. (2017) measured a temporal drift of up to 30min during long-term
observations. Possible approaches for synchronization with subsecond accuracy is the use
of a wired solution or applying radio transmission. However, the former method limits the
distance between cameras, which might be unfavorable for large-range applications, and
the latter method entails the risk of random failure of signal transmission. Another
possibility is the use of GPS time, which is very precise but needs a higher power supply.

– Time-lapse imagery leads to a vast amount of images that need to be processed for each
time interval. Thus, automation of the processing workflow is a requirement for sufficient
data handling, among other prerequisites. Furthermore, the tool used to perform SfM
photogrammetry must allow for script control of data processing, such as the python
interface of PhotoScan (as illustrated by Eltner et al., 2017), or for general open-access
options for programming, as it is the case with MicMac (as illustrated by Galland et al.,
2016). For multitemporal change detection and analysis, the resulting point clouds need
automated processing, as well.

– Application of time-lapse SfM photogrammetry in the field requires information about
environmental conditions such as sun path, local topography, and prevailing weather
conditions: these have impacts on image quality due to shadows, glare, and high-contrast
images (Mallalieu et al., 2017). Furthermore, temporally stable GCPs are needed to capture
changes of the intrinsic, as well as extrinsic camera parameters (e.g., Schwalbe and Maas,
2017). If the region of interest is at a larger distance, other targets than artificial GCPs are
necessary due to the limited maximal size of GCPs. For instance, Mallalieu et al. (2017) and
James et al. (2016) use natural features in the landscape to orient the cameras. However,
their disadvantage is generally lower contrast and thus less precise data registration
because measurements with sub-pixel accuracy, which can be obtained using artificial
GCPs, are not possible. The introduction of time-SIFT by Feurer and Vinatier (2018) to
automatically estimate cameras of multitemporal datasets in a single bundle adjustment,
mainly relying on image observations, might be a future approach to deal with unstable
camera geometries. In field applications, camera positions are mostly restricted by the
topography and thus area access. However, if possible, the camera network geometry
should be realized with convergent, high overlapping imagery, and sufficient perspective
changes. Field-testing of the 3D reconstruction from the chosen camera positions is advised
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prior cameras are permanently installed to ensure their placement is sufficient for a high-
quality 3D model. Finally, for long-term observations, the cameras need sufficient power
supplies, and the camera system has to be robust enough to withstand the environmental
conditionsat the fieldsite.Ensuring thecameranetwork is robustcouldpotentially require the
placement of redundant cameras to compensate for potential failure (Mallalieu et al., 2017).

5 Final remarks

Recent technological advances are revolutionizing geomorphology (Viles, 2016). Among
them, image-based surface reconstruction using SFM is an established method: many case
studies have demonstrated its suitability and performance across various spatiotemporal
scales. Thus, in the future, the focus should be on retrieving geomorphological information
to help understand forms and processes from (potentially still to develop) SfM derivatives.

Methodological advances are expected in the field of geo-referencing to further increase
the flexibility of (multitemporal) topographic data retrieval. Increasing temporal resolution
at unprecedented scales is also expected due to advances in the area of time-lapse photogram-
metry. Furthermore, workflows for adequate deployment of preexisting and freely available
large image repositories for geomorphic studies is another field for progress. Awareness
regarding rigorous error estimation and parameter choices to improve models remains
another important aspect for future applications.

SfM photogrammetry is a flexible, low-cost, and easy-to-use technique widely applied in
the geosciences beyond the field of geomorphology because it enables democratic partici-
pation in research. Therefore, future studies should consider implementing this technique,
including a sufficient understanding of the approach and suitable guidance to enable a fast
involvement of end-users and researchers.
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