
The human gastrointestinal tract harbours approxi-
mately 4 × 1013 microorganisms, including bacteria, 
fungi, archaea and virus-like particles, that are sepa-
rated from the largest immune compartment of the 
body by a 10-μm monolayer of intestinal epithelial cells 
(IECs)1,2. To avoid detrimental immune responses and 
to establish mutualistic relationships, the host and the 
gut microbial communities have mutually co-evolved 
and adapted via bidirectional communication that relies 
on microbial recognition and on the production of  
both host and microorganism-derived metabolites and 
peptides3. Efficient crosstalk between the host and the  
gut microbiota leads to a hyporesponsive state towards  
the resident microbiota that sustains homeostasis. 
However, dysregulation of this dialogue can lead to 
microbial imbalance, termed dysbiosis, or to a loss of 
immune tolerance, predisposing the host to inflammation  
and tumorigenesis.

Maintaining tolerance towards the commensal 
gut microbiota depends on constitutive and inducible 
defence mechanisms that cooperate to minimize expo-
sure of the immune cells in the lamina propria to luminal 
antigens4. Constitutive mechanisms, such as the intesti-
nal epithelial barrier, physically impede microorganisms 
from penetrating the host. Inducible mechanisms, which 
involve diverse immune and non-immune cell types, 
participate in strengthening the intestinal epithelial 
barrier function or promoting an immunomodulatory 
environment in the lamina propria. Activation of these 
inducible mechanisms requires microbial sensing and 

recognition by host cells, which is carried out by pattern 
recognition receptors (PRRs)4.

PRRs are germ line-encoded, evolutionarily con-
served receptors that recognize microbial-associated 
molecular patterns (MAMPs), which are molecular 
structures essential for microbial survival, and trigger 
diverse innate immune responses depending on the 
PRR-expressing cell type4. Furthermore, some PRRs 
can also recognize damage-associated molecular pat-
terns, which are released during cellular stress or tissue 
injury, enabling cells to mount efficient repair responses 
to sterile inflammation5,6. Several families of PRRs 
have been described, including the Toll-like receptors 
(TLRs)7,8, nucleotide-binding oligomerization domain 
(NOD)-like receptors9, C-type lectin receptors10, reti-
noic acid-inducible gene I (RIG-I)-like receptors11, 
absence in melanoma 2 (AIM2)-like receptors12, cyclic 
GMP–AMP synthase (cGAS)13 and scavenger receptors 
such as receptor for advanced glycation end-products 
(RAGE)14. Despite recognizing different ligands, these 
receptors share signalling pathways that terminate in the 
activation of pro-inflammatory transcription factors, 
such as nuclear factor-κB (NF-κB) and interferon regu
latory factor 3 (IRF3). Tight regulation of PRR-driven 
responses leads to elimination of the noxious stim-
uli, repair of the damaged structures and restoration 
of homeostasis. However, an excessive or defective 
function of PRRs in the gut can lead to dysregulated 
immune responses that increase susceptibility to infec-
tion, inflammatory diseases, such as Crohn’s disease 
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and ulcerative colitis, or sporadic and colitis-associated 
colorectal cancer (CAC).

PRRs are expressed in most cell types of the gut and 
modulate the cell functions and interactions with neigh-
bouring cells. Owing to space constraints, in this Review 
we strictly focus on how TLR signalling mediates the 
crosstalk between microorganisms and IECs, altering 
epithelial cell functions. In particular, we elaborate on 
the involvement of epithelial TLR-mediated microbial 
recognition in the structural and functional develop-
ment of the intestinal epithelial barrier, as well as in the 
priming of immune cell responses in the gut mucosa. 
Furthermore, we discuss the consequences of dysregu-
lation of epithelial TLR signalling on the generation of 
dysbiosis, inflammation, repair and tumorigenesis.

Epithelial barrier maintains homeostasis
The gastrointestinal tract consists of 30–40 m2 of surface 
that is organized to maximize the area for digestion and 
absorption of dietary nutrients15. In the small intestine, 
finger-like projections called villi protrude to the lumen 
and lie near tubular invaginations that are known as the 
crypts of Lieberkühn. However, the colon, where absorp-
tion is restricted to water, electrolytes and products of 
microbial fermentation, has crypts but no villi16. At the 
base of the crypts, a cycling population of columnar  
stem cells gives rise to the rapidly dividing transit 
amplifying cells, which terminally differentiate into 
diverse epithelial lineages as they move up the crypt17,18. 
Differentiated cells comprise absorptive enterocytes, 
microfold cells and secretory lineages, such as goblet cells,  
enteroendocrine cells, tuft cells and either Paneth  
cells in the small intestine or deep crypt secretory cells in 
the colon18–21 (Fig. 1). All of these cell types collaborate to 
build a functional intestinal epithelial barrier that strati-
fies microorganisms in the lumen, thereby limiting their 
interactions with the host.

Enterocytes are structurally polarized into an apical 
surface facing the intestinal lumen and a basolateral 

surface facing the lamina propria. Polarization is estab-
lished by different families of proteins expressed on the 
lateral surface of IECs that form diverse intercellular 
junctions and regulate cell-to-cell interactions, para-
cellular permeability and transepithelial exchange of 
water and ions22. Tightening of the intestinal epithelial 
barrier is essential to prevent microbial colonization of 
the lamina propria due to a leaky gut, which is observed, 
for instance, in patients with IBD23,24. Absorptive entero-
cytes also express the polymeric immunoglobulin recep-
tor (pIgR) and the transmembrane mucins that form 
the glycocalyx, a 3D matrix rich in carbohydrates that is 
associated with the membrane of IECs. pIgR mediates 
transcytosis of B cell-released IgA from the basolateral 
to the apical surface25, and the glycocalyx reduces contact 
between pathogens and IECs at the apical surface26.

Goblet cells secrete gel-forming glycoproteins 
such as mucin 2 (MUC2) into the lumen of the crypt. 
These glycoproteins unfold and polymerize to gener-
ate the net-like structures that characterize the mucus 
layer26,27. In the small intestine, the mucus that diffuses 
out of the crypt mixes with antimicrobial peptides 
and IgA secreted by Paneth cells, absorptive entero-
cytes, intraepithelial lymphocytes and B cells to form 
a single, loose mucus layer. After mucus secretion, 
physical paths termed goblet cell-associated passages 
form within the mucus-depleted goblet cells, captur-
ing and delivering small soluble luminal antigens to 
dendritic cells (DCs) in the lamina propria28. In the 
colon, where the microbial burden is 103 times higher 
than in the small intestine, a loose outer mucus layer 
reduces microbial physical contact with the firm 
inner mucus layer, which is impenetrable to particles  
>0.5 μm (refs26,29). Thus, the inner mucus layer is rela-
tively sterile compared with the outer mucus layer, and 
it prevents microbial colonization of the colonic crypts.

Paneth cells sustain stemness in the intestinal stem 
cell niche by providing crypt base columnar stem cells 
with essential growth factors30 and participate in bacte-
rial clearance by secreting antimicrobial peptides, such 
as α-defensins, lysozyme C, regenerating islet-derived 
IIIβ (RegIIIβ) and RegIIIγ, and angiogenin 4 (ref.31). 
Other secretory cell types, such as enteroendocrine cells 
and tuft cells, also contribute to mucosal homeostasis. 
Enteroendocrine cells secrete peptides and hormones, 
such as cholecystokinin and serotonin, which induce 
intestinal peristaltic movements that renew the mucus 
layer32. Tuft cells participate in the clearance of parasites 
from the intestinal lumen by synthesizing IL-25 and, 
subsequently, promoting T helper 2 (TH2) cell immune 
responses33. Last, in the specialized epithelium cover-
ing the lymphoid structures of the gut-associated lym-
phoid tissue, microfold cells take up luminal antigens to 
transport them to the subepithelial regions, where they 
are captured and processed by DCs that subsequently 
migrate to the mesenteric lymph nodes to prime T cell 
and B cell responses34,35.

TLRs and microbial recognition
Gnotobiotic models have emphasized the importance 
of the host–microbial crosstalk in the metabolic and 
immune maturation of the gut. Germ-free mice have 

Key points

•	The intestinal epithelium provides a physical and immune barrier between the host 
and the gut microbiota that is dynamically regulated through the production of 
metabolites and the signalling of pattern recognition receptors.

•	Toll-like receptors (TLRs) are microbial-induced proteins that are expressed in most 
epithelial cell lineages and have important antimicrobial functions. Tight regulation 
mechanisms prevent excessive responses towards commensal microorganisms.

•	Activation of TLRs controls crypt dynamics by altering proliferation and apoptosis  
in stem cells and transit amplifying cells. Differentiation into secretory lineages, 
particularly via the NOTCH pathway, occurs in a myeloid differentiation primary 
response protein 88 (MYD88) and TLR4-dependent manner.

•	TLR recognition of microbial motifs enhances the intestinal epithelial barrier function 
by inducing the tightening of intercellular junctions, the secretion of mucus and 
antimicrobial peptides, and the production of reactive oxygen species.

•	Microbial signalling through TLRs participates in intestinal epithelial repair after 
injury by inducing the production of trefoil factor 3, amphiregulin and prostaglandin E2, 
which enhance migration, epithelial cell survival and proliferation, and by promoting 
the restitution of the normal epithelial architecture.

•	Dysregulation of TLR signalling can lead to inefficient clearance of pathobionts and 
alterations in the normal microbial composition. Imbalances in microbial composition 
increase susceptibility to colitis and tumorigenesis.
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several deficiencies in gastrointestinal function com-
pared with conventionally raised, specific pathogen-free 
mice: reduced epithelial paracellular permeability36, 
higher mucus penetrability37, reduced production of 
antimicrobial peptides38,39, reduced IEC proliferation40,41, 
underdeveloped lymphoid structures42, reduced popu
lations of intraepithelial lymphocytes43, T helper 17 
(TH17) cells44, regulatory T cells45 and IgA-producing 
plasma cells46, and slower motility47. Microorganisms 
communicate with the host by producing metabolites, 
such as short-chain fatty acids, aryl hydrocarbon receptor 
ligands and polyamines3, by secreting outer membrane 
vesicles that contain MAMPs and can traverse the epi-
thelial barrier48, or by directly interacting with PRRs4.  
The host’s PRRs recognize carbohydrates, lipoproteins 
and nucleic acids of bacterial, fungal, viral, helminthic and  
self origin, and determine whether the subcellular 
localization of microbial molecules is physiological  
or aberrant5–7,9–11.

TLRs are transmembrane proteins, located in the 
cell membrane and in endosomes, that recognize 
Gram-positive and Gram-negative structures, flagellin, 

single-stranded and double-stranded RNA, unmeth-
ylated CpG DNA and various damage-associated 
molecular patterns7,49,50. Interaction of their extracellu-
lar leucine-rich repeat-containing domains with their  
cognate ligands induces the dimerization of the receptor,  
enabling the intracellular Toll/IL-1 receptor (TIR) domain 
to interact in a homologous manner with different  
cytosolic TIR-containing adapters, including myeloid  
differentiation primary response protein 88 (MYD88) and 
TIR-domain-containing adapter-inducing IFNβ (TRIF; 
also known as TICAM1)51–54. These adapters trigger sig-
nalling pathways that culminate in activation of NF-κB, 
activator protein 1 (AP-1) and IRF3 (refs49,51,53). These 
transcription factors translocate into the nucleus and 
induce the synthesis of pro-inflammatory cytokines, such 
as IL-6, tumour necrosis factor (TNF) and the inactive pre-
cursor pro-IL-1β; induce the synthesis of antiviral type I  
interferons, such as IFNα and IFNβ; and activate anti- 
apoptotic or proliferative pathways49,53,55,56. TLR1–TLR9  
are expressed in different cell types in the gut, includ-
ing IECs57, immune cells58,59 and other stromal60 and 
parenchymal non-immune61 cells. Given that bacterial 
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Fig. 1 | Anatomy of the intestinal immune system. The gastrointestinal 
mucosa is separated from the environment by a single layer of intestinal 
epithelial cells (IECs) that provides a physical and functional barrier. All of the 
lineages of IECs originate from the crypt base columnar stem cells, which 
divide to give rise to more proliferative daughter cells, the transit amplifying 
cells. As the transit amplifying cells proliferate, most daughter IECs move 
upwards to the crypt and differentiate owing to the decreasing gradient  
of growth factors that sustain stemness, which concentrate at the stem  
cell niche. IECs that reach the tip of the crypt (colon) or the villus (small 
intestine) undergo apoptosis and are then shed to the lumen. This entire cycle 
typically lasts 4–5 days. Throughout this migration, IECs differentiate into 
absorptive enterocytes, mucus-producing goblet cells, hormone-secreting 
enteroendocrine cells, antiparasitic tuft cells and Paneth cells (small intestine) 
or deep crypt secretory cells (colon). Paneth cells migrate downwards to the 

base of the crypt to provide stem cells with growth factors. Intermingled with 
IECs, intraepithelial lymphocytes (IELs) produce antimicrobial peptides 
(AMPs) and have cytolytic activity. Beneath the IECs, stromal cells 
(myofibroblasts), B cells and IgA-producing plasma cells, macrophages, 
dendritic cells and T cells dwell in the lamina propria, reinforcing the epithelial 
barrier by sampling luminal contents and maintaining a hyporesponsive state. 
Regional lymphoid structures, such as Peyer’s (small intestine), caecum and 
colon patches, and the solitary isolated lymphoid tissues are overlaid by a 
specialized epithelium, known as follicle-associated epithelium, where 
microfold cells capture antigens and release them into the subepithelial 
dome. In the colon, the presence of a firm inner mucus layer reduces exposure 
to microorganisms. However, the microorganism-associated molecular 
patterns embedded in outer membrane vesicles (OMVs) can eventually reach 
the IECs. Adapted from ref.2, Springer Nature Limited.
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populations outnumber other microorganisms by two 
orders of magnitude1, we focus on the TLRs that special-
ize in bacterial recognition: TLR4, TLR5, TLR9, and TLR2 
and its heterodimerizing partners, TLR1 and TLR6. Their 
principal bacterial ligands are presented in Table 1.

TLR expression is strongly influenced by the presence 
of bacteria. TLR1, TLR2, TLR5 and TLR9 are upregu-
lated in specific pathogen-free mice when compared 
with germ-free mice41,62,63, and expression of TLR1, 
TLR2, TLR4 and TLR5 is highest in the colon, which is 
consistent with increased bacterial burden in the distal 
gastrointestinal tract57,64–66. TLRs are expressed in most 
IEC lineages: stem cells67, absorptive enterocytes65,68–72, 
goblet cells73–75, Paneth cells38,57,76, enteroendocrine 
cells77,78 and microfold cells79,80 (Table 1). TLR-mediated 
recognition of MAMPs triggers lineage-dependent 
responses that regulate IEC proliferation and lineage 
fate, strengthen intestinal epithelial barrier function and 
shape the immune response.

TLRs regulate epithelial crypt dynamics. Regulation 
of crypt dynamics relies on proliferation, apoptosis 
and differentiation, which are strongly influenced by 
microbial metabolites81–83 and epithelial recognition of 
MAMPs. Rakoff-Nahoum et al.84 were the first to report 
that disruption of TLR signalling in MYD88-deficient 
mice elicits increased epithelial proliferation in the 
transit amplifying zone, which was later corroborated 
in TLR1-deficient and TLR9-deficient mice64,85. In addi-
tion, two other studies showed that lipopolysaccharide 
(LPS)-induced activation of TLR4 in intestinal stem cells 
reduced proliferation and enhanced apoptosis in small 
intestine67 and colon86 wild-type organoids. Conversely, 
Tlr4–/– organoids were protected from LPS-induced 
apoptosis. Similar findings were observed in vivo in 

the small intestine crypts of mice raised in conven-
tional housing conditions67 and in the colon crypts of 
germ-free mice monocolonized with select bacterial 
species of the genera Acinetobacter, Stenotrophomonas 
and Delftia86. These reports, which suggest that epithelial 
cycling and stem cell self-renewal are inhibited by TLR 
signalling, have been challenged by other in vivo data in 
mouse models that indicate that overactivation of TLR4 
increases IEC proliferation in both the small intestine 
and the colon87, and that epithelial TLR4 deficiency leads 
to downregulation of proliferating cell nuclear antigen 
(PCNA) in IECs from the small intestine88. These diver-
gent results between different mouse models might 
be caused by differences in microbial communities in 
TLR-deficient and TLR-transgenic mice, highlighting 
the need for a standardized characterization of microbial 
populations in future studies.

Stemness and differentiation in the stem cell niche 
are regulated by several signalling pathways89,90. Of 
these pathways, NOTCH has been identified as a major 
determinant of IEC fate. Activation of NOTCH in mice 
represses the master regulator for secretory differenti-
ation, atonal homologue 1 (ATOH1), directing differ-
entiation towards absorptive lineages91,92; conversely, 
inhibition of NOTCH supports the development of 
secretory IECs88. TLRs have been shown to modulate 
NOTCH activity, but whether they have a stimulatory 
or inhibitory effect is not completely understood. On 
the one hand, a study demonstrated that genetic abla-
tion of TLR4 or the signalling adapter TRIF in IECs was 
associated with increased frequency of goblet cells and 
expression of ATOH1 in vivo in mice88. Furthermore, 
silencing of TLR4 in the TLR4-expressing rat cell line 
IEC-6 induced the production of MUC2, whereas 
overexpression of TLR4 in human Caco-2 cells, which 

Table 1 | Ligands, expression and functions of TLRs in the gut

TLR Bacterial ligands Expression in small 
intestine IECs

Expression in colon IECs Functions Refs

1 Triacyl lipopeptides 
(Pam3CSK4)

Moderate: PCs; microfold 
cells

High: colonocytes;  
EECs; GCs

IL-8, TNF, iNOS expression;  
IEC proliferation; tight junction 
regulation; GC maturation;  
MUC2 secretion

57,64,70,74,75,78, 

80,99,138,218

2 Diacyl and triacyl 
lipopeptides (Pam2CSK4, 
Pam3CSK4); peptidoglycan; 
lipoteichoic acid

Low: enterocytes; PCs; 
microfold cells (A/B)

High: colonocytes (A); 
EECs; GCs

IL-8, TNF, iNOS expression; tight 
junction regulation; MUC2 
secretion; TFF3 secretion; 
microparticle uptake

57,70,72–75,78–80, 

99,138,218

4 Lipopolysaccharide Low: SCs; enterocytes;  
PCs; microfold cells

High: colonocytes;  
EECs; GCs

TNF, iNOS, APRIL , CCL20, CCL28 
expression; IEC proliferation; IEC 
apoptosis; CCK secretion; MUC2 
secretion; GC differentiation;  
PC degranulation

57,65,67,70,74–78, 

80,88,183

5 Flagellin Low: enterocytes;  
GCs; PCs

High: colonocytes (B); GCs IL-8, TNF, iNOS expression;  
CCK secretion; MUC2 secretion; 
PC degranulation; microparticle 
uptake

57,66,69,70,72, 

74–77,127,218

6 Diacyl lipopeptides 
(Pam2CSK4); lipoteichoic acid

Low to none: enterocytes; PCs Low to none: colonocytes Not described 57,70,138,218

9 CpG unmethylated 
oligonucleotides

Low: enterocytes; PCs Low: colonocytes (A/B) IL-8 production; IEC proliferation; 
CCK secretion; PC degranulation

57,70,72,76, 

77,85,218

Only direct evidence of Toll-like receptor (TLR) expression in primary intestinal epithelial cells (IECs) was considered for the preparation of this table. A , apical; 
APRIL , a proliferation-inducing ligand; B, basolateral; CCK , cholecystokinin; CCL , CC-chemokine ligand; EEC, enteroendocrine cell; GC, goblet cell; iNOS, 
inducible nitric oxide synthase; MUC2, mucin 2; PC, Paneth cell; SC, stem cell; TFF3, trefoil factor 3; TNF, tumour necrosis factor.
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typically do not express TLR4, caused a loss of their 
normal MUC2-producing phenotype88. On the other 
hand, experiments in zebrafish models determined that 
the presence of gut microbiota increases the number  
of secretory cells in the gut via MYD88-dependent 
inhibition of NOTCH93. Consistently, different groups 
observed that epithelial TLR4 activation increases the 
proportions of goblet cells in vivo94 and in vitro86, and 
that abrogation of epithelial MYD88 or TLR2 signalling 
leads to a reduction of goblet cells in different mouse 
models73,95. Hypotrophic phenotypes in Tlr2–/– mice were 
associated with a lack of production of the protective 
trefoil factor 3 (TFF3), which is synthesized by goblet 
cells in response to TLR2 stimulation73. Therefore, most 
findings suggest that TLR activation is associated with 
the development and maturation of secretory IECs,  
goblet cells in particular.

A 2018 study elegantly demonstrated that uniaxial 
mechanical stimulation of human intestinal organoids 
engrafted into the mesentery of mice accelerates matu-
ration of the developing miniguts and makes them more 
similar to adult intestinal tissue96. Motility is controlled 
by enteroendocrine cells via the release of hormones 
such as cholecystokinin, which acts in a paracrine or 
endocrine manner on enteric motor neurons or smooth 
muscle cells97. Administration of TLR4, TLR5 and TLR9 
ligands induced the release of cholecystokinin into the 
blood in TLR-sufficient, but not TLR-deficient, mice77, 
suggesting that the gut microbiota might also promote 
IEC differentiation by inducing gastrointestinal motility.

TLR signalling strengthens the epithelial barrier. As 
previously discussed, the appropriate functioning of the 
intestinal epithelial barrier depends on the barrier integ-
rity, the density of the mucus layer and the production of 
antimicrobial peptides and IgA. Early studies suggested 
an important role for TLRs in the regulation of permea-
bility during infection: MYD88-deficient mice exhibited 
impaired permeability and increased microbial burden 
in the mucosa after Citrobacter rodentium-induced 
colitis98. Furthermore, Cario et al.99 demonstrated that 
Myd88–/– and Tlr2–/– mice were characterized by early 
tight junction disruption at day 5 after dextran sulfate 
sodium exposure that rendered them more susceptible to 
colitis than wild-type mice. The underlying mechanism 
involved the TLR2-induced translocation of the pro-
teins zona occludens 1 (ZO1) and occludin to the tight  
junction, thereby increasing transepithelial resistance 
in vitro and in vivo99–101. Consistent with these findings, 
later studies reported that Myd88–/– and Tlr1–/– mice also 
have increased permeability to small molecules, reduced 
transmucosal resistance and increased bacterial trans-
location to the liver, spleen, blood64 and mesenteric 
lymph nodes102, confirming that TLR1–TLR2 signalling 
sustains epithelial integrity through the tightening of 
intercellular junctions. Conversely, activation of epi-
thelial TLR4 causes loss of barrier integrity and a leaky 
gut in both mouse models and human IEC lines94,103,104  
through a mechanism that involves upregulation of myo-
sin light chain kinase (MLCK), a protein that induces the 
tight junctions to open by promoting the contraction 
of actin–myosin filaments104. Overall, these findings 

indicate that different TLRs are involved in the control 
of the intercellular junctions, either enhancing or dis-
rupting intestinal epithelial barrier integrity depending  
on the bacterial challenge.

The production and density of mucus are largely 
dependent on the presence of bacteria and the pro-
duction of MUC2 (ref.37). Indeed, the colonic crypts of 
MUC2-deficient mice are colonized by bacteria, which 
has been associated with the development of colitis and 
tumours105. Work by Birchenough et al.75 elegantly iden-
tified a subpopulation of colonic sentinel goblet cells in 
mice that recognize TLR1–TLR2, TLR4 and TLR5 lig-
ands and elicit calcium signals that transmit through 
gap junctions to other goblet cells to provoke MUC2 
secretion. Furthermore, they showed that bacteria reach-
ing the upper parts of the intestinal crypts are expelled 
from these locations after stimulation of sentinel goblet 
cells with LPS, demonstrating a dynamic mechanism to 
restrain bacterial colonization through TLR activation. 
The disruption of this mechanism might explain why the 
mucus layers of Tlr5–/– and epithelial TLR5-deficient mice 
are substantially more colonized by commensal micro
organisms, leading to the eventual development of spon-
taneous colitis106–108. Similarly, TLR1 is also involved in the 
production of MUC2, as TLR1-deficient mice are charac-
terized by large areas of the colon with reduced expression 
of this mucin64. Taken together, these studies illustrate how 
TLRs have important roles in goblet cell physiology and in 
healthy structural development of the mucus layers (Fig. 2).

Functional development of the mucus layers depends 
on the production of antimicrobial peptides and IgA. 
The relevance of TLRs in the synthesis of antimicrobial 
peptides was demonstrated by Vaishnava et al.38, who 
reported that Paneth cells from Myd88–/– mice have 
reduced production of the defensin cryptdin 2 and 
the lectins RegIIIβ and RegIIIγ. Subsequent studies in 
diverse mouse models have corroborated the strong 
dependence of defensins, RegIIIβ and RegIIIγ on TLR 
activation39,72,102,109. Indeed, it has been shown that 
mice with chronic deficiency of MYD88 develop ileitis 
with increased bacterial translocation into the lymph 
nodes owing to the >3-fold depletion in the expres-
sion of antimicrobial peptides95. Equally importantly,  
the uptake and transcytosis of secreted IgA from the 
lamina propria and into the lumen is carried out by 
enterocytes and relies on pIgR110, whose expression is 
MYD88-dependent102. Stimulation of primary intestinal 
epithelial monolayers with LPS or heat-killed Escherichia 
coli in vitro upregulates pIgR and induces transcytosis of 
IgA in a pIgR-dependent manner111,112, demonstrating 
that IgA transcytosis is dependent on TLR-mediated 
recognition of the gut microbiota.

Findings from the past decade suggest that IECs 
prevent microbial colonization of the mucosa and 
reduce bacterial signalling113, invasiveness114, moti
lity115 and virulence116 through the release of reactive 
oxygen species (ROS). Indeed, Grasberger et al.117 have 
demonstrated that ablation of NADPH oxidase dual  
oxidase 2 (DUOX2) renders mice more susceptible to 
colonization of the stomach mucosa in a Helicobacter 
felis infection model. DUOX2 missense mutations have 
been associated with an increased risk of Crohn’s disease 
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in two Ashkenazi Jewish families with more than 800 
and 200 members118 and with very early-onset IBD in two 
cohorts of 59 and 150 patients114. In all cases, DUOX2 var-
iants caused reduced production of ROS114,118,119, which led 
to decreased resistance to infection in cells expressing such 
variants114. Given that TLR ligands upregulate the tran-
scription of NADPH oxidase-associated genes57,120 and 
induce epithelial release of ROS in a DUOX2-mediated 
manner120, it is possible to speculate that IECs might con-
trol bacterial invasion of the mucosa through the release 
of ROS into the lumen upon TLR activation, thereby  
reinforcing intestinal epithelial barrier function.

Epithelial TLRs shape immune responses. The role  
of TLRs in mammals was initially described by  
Medzhitov et al.49 by cloning a constitutively active TLR4 
transgene into a human monocytic cell line. They deter-
mined that activation of TLR4 induced IL-1, IL-6 and IL-8 

expression, defining the primary functions of the TLR 
family. Building on this study, different groups addressed 
epithelial activation of NF-κB, mitogen-activated pro-
tein kinase (MAPK) and production of cytokines upon 
TLR challenge. These initial investigations established 
that LPS challenge induces the activation of NF-κB and 
MAPK as well as the release of IL-8 in non-polarized 
human epithelial cell lines70,121. Further reports have 
corroborated the notion that human cell lines that  
are stimulated with LPS, lipoteichoic acid, flagellin or 
more complex structures, such as bacterial outer mem-
brane vesicles, also express IL-6, IL-10, CXC-chemokine 
ligand 8 (CXCL8), CC-chemokine ligand 2 (CCL2) and 
cyclooxygenase 2 (COX2)70,122–126. A 2018 study has shown 
that TLR activation also upregulates the expression of 
TNF, NADPH oxidase family-related genes and induci-
ble nitric oxide synthase (iNOS) in intestinal and colonic 
organoids prepared from primary mouse IECs57.
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These in vitro observations suggest that, upon micro-
bial challenge, IECs might induce the chemoattraction of 
immune cells to the lamina propria and prime their sub-
sequent responses. In support of this hypothesis, in vivo 
studies in mice have demonstrated that administration 
of TLR ligands increases the uptake and transporta-
tion of 0.2-µm microspheres by the follicle-associated 
epithelium, which leads to increased homing of DCs 
to the lamina propria79,127. In the small intestine, 
TLR-induced secretion of mucus could also have a 
role in antigen uptake by creating antigen-transporting 
paths through the goblet cells, thereby facilitating the 
interaction between luminal contents and subepithelial 
DCs28,75. In addition to promoting cell migration, IECs 
secrete soluble factors and mediators that alter the prim-
ing properties of DCs and the differentiation of T cells. 
Flagellated bacteria increase the epithelial release of 
thymic stromal lymphopoietin (TSLP), a cytokine 
that promotes tolerogenic phenotypes in DCs128. In 
co-culture models, mouse DCs conditioned with super-
natants of bacterial-challenged human IECs released 
IL-10, which ultimately led to polarization of naive CD4+ 
cells into TH2 effector cells. By contrast, unconditioned 
DCs directly challenged with flagellated bacteria, even 
in the presence of IECs, produced higher levels of both 
IL-10 and IL-12, leading to induction of TH1 and TH2 cell 
responses in naive T cells128,129.

Similarly, the production of serum amyloid A (SAA) 
by IECs is MYD88-dependent and can be stimulated 
by segmented filamentous bacteria130,131. As SAA medi-
ates the differentiation of T cells into TH17 cell pheno-
types in vitro, epithelial secretion of this protein could 
be involved in microbial-induced maturation of the 
immune system44,131. Maturation of TH17 cells is also reg-
ulated by the intestinal redox status131. Given that TLR 
signalling and segmented filamentous bacteria induce 
the expression of NADPH oxidases and iNOS in vitro 
and in vivo57,120,131,132, we speculate that TLRs might be 
involved in TH17 cell polarization by inducing ROS and 
reactive nitrogen species (RNS).

Epithelial TLR activation not only has a role in the 
transcytosis of IgA from the lamina propria to the intes-
tinal lumen via upregulation of pIgR, but also triggers 
class switch recombination and IgA secretion by B cells 
in a T cell-independent fashion. Caco-2 monolayers that 
were stimulated with LPS and flagellin at their apical pole 
released a proliferation-inducing ligand (APRIL) and 
TSLP into the cell culture media133. APRIL cooperated 
with TLR ligands to promote IgA class switching in B cells 
and the release of IgA, whereas TSLP in turn induced the 
expression and release of APRIL by DCs133. These findings 
were later confirmed in a mouse model in which constitu-
tively active TLR4 in the epithelium caused increased lev-
els of IgA and APRIL, as well as an increased abundance  
of IgA-producing B cells, in the lamina propria.

Regulation of TLRs limits immune responses and inflam-
mation. Taken together, these observations suggest that 
epithelial TLRs control several aspects related to the 
microbial-induced maturation of host defence, ranging 
from the conformation and tightening of the epithe-
lial barrier to the appropriate shaping of the adaptive 

immune responses. Given the importance of these 
functions, a tight TLR-regulating system is necessary to 
maintain gut homeostasis and avoid disproportionate 
reactions of the host towards the gut microbiota. IECs 
can modulate TLR signalling at different levels, such 
as by restricting access to ligands or by inactivating  
downstream signalling cascades134,135.

IECs reduce the number of interactions between 
TLRs and their cognate ligands by maintaining a low 
expression of TLRs and cooperating molecules. For 
instance, different human cell lines not only express low 
levels of TLR2, TLR4 and the TLR4-cooperating protein 
myeloid differentiation factor 2 (MD-2) but, upon api-
cal stimulation, also engulf and relocate the TLRs into 
cytoplasmic compartments, presumably lysosomes, to 
limit TLR activation70,136–138. Furthermore, TLR signal-
ling in IECs is markedly dependent on cell polarization. 
Activation of epithelial TLR5 induces the release of IL-8 
only when basolateral stimulation occurs, implying that 
flagellin must translocate to the lamina propria to trigger 
TLR5-mediated responses69. Similarly, apical challenge 
of TLR9 with CpG oligonucleotides elicits the stabiliza-
tion of the NF-κB repressor IκB (inhibitor of NF-κB), 
rendering IECs hyporesponsive to apical interaction 
with TLR9 ligands72. Sequestration and modification 
of microbial motifs are additional strategies to prevent 
the recognition of ligands. In the gut, lamina propria 
mononuclear cells release soluble forms of the TLR2 
ectodomain, especially during inflammation139. Soluble 
TLR2 reduces the production of IL-8 in Caco-2 cells 
challenged with the triacyl lipopeptide Pam3CSK4 and 
might therefore be involved in modulation of immune 
responses140. Alkaline phosphatase dephosphorylates the 
immunogenic component of LPS, lipid A, reducing its 
potency to stimulate TLR4 (ref.141). Induction of alkaline 
phosphatase release in Caco-2 cells reduced LPS-elicited 
NF-κB activation of reporter cells in co-culture, suggest-
ing that IECs can also use this mechanism to moderate 
microbial challenge142.

Following ligand recognition and the production of 
inflammatory mediators, IECs can also self-limit their 
responses by upregulating the expression of molecules 
that inhibit TLR downstream signalling pathways70,122,126; 
Table 2 summarizes the molecules known to have such 
roles in the gastrointestinal epithelium. These mod-
ulators can interact with TLRs directly, as is the case 
with the single immunoglobulin IL-1 receptor-related 
molecule (SIGIRR), or indirectly, as with signalling 
complexes that terminate in the activation of NF-κB 
and AP-1. Engagement of SIGIRR, the Toll-interacting 
protein (TOLLIP) or peroxisome proliferator-activated 
receptor-γ (PPARγ) with their target proteins led to 
attenuated production of IL-8 in response to bacterial 
components in vitro70,122. In vivo, epithelial ablation of 
TLR-regulating molecules, such as TNFAIP3, PPARγ, 
TOLLIP or SIGIRR, did not induce disease phenotypes in  
untreated mice, but instead increased susceptibility to 
cytokine-induced apoptosis143,144, dysbiosis145,146, colitis147 
and tumorigenesis148 upon induction of experimental 
models of colitis and infection (Table 2). Similarly, total 
depletion of IL-1 receptor-associated kinase 3 (IRAK3) 
and MAPK phosphatase 1 (MPK1) in all tissues caused 
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enhanced immune responses towards the resident micro-
biota in a spontaneous model of colitis, accelerating  
the onset of inflammation149,150.

Overall, the fact that selective deletion of TLR mod-
ulators in steady-state conditions does not lead to dis-
ease phenotypes suggests that stratification of the gut 
microbiota and the combination of diverse regulatory 
mechanisms are efficient at sustaining epithelial immune 
tolerance towards the resident microbiota. In this state, 
IECs recognize microbial components and respond by 
promoting epithelial barrier functions and producing low 
levels of cytokines, chemokines and inflammatory medi-
ators that maintain immune cells of the lamina propria 
in a state of surveillance. However, upon colonization of 
the intestinal epithelium by adherent microorganisms or 
pathobionts, epithelial and immune TLRs drive robust 
antimicrobial pro-inflammatory responses to clear the 
noxious stimuli. In this demanding situation, epithe-
lial expression of TLR regulatory molecules prevents 
excessive detrimental effects caused by uncontrolled 
TLR activation, thereby accelerating the resolution  
of inflammation and a return to homeostasis.

TLRs, dysbiosis and injury
TLR dysregulation promotes dysbiosis and susceptibility 
to inflammation. The equilibrium established between 
commensal microorganisms, the epithelial barrier 
and the immune system can be broken in the pres-
ence of pathogenic microorganisms or when microbial 

recognition and processing defects occur in epithelial 
or immune cells. Disruption of microbial–host cross-
talk precipitates the onset of inflammation, as seen in 
patients with IBD151. IBD involves pathologies that are 
characterized by relapsing inflammation of the gastro-
intestinal tract and has been associated with imbalances 
in the resident bacterial populations, defects in the intes-
tinal epithelial barrier and aberrant immune responses 
to the gut microbiota151–154. Genome-wide association 
analyses have identified more than 200 loci of suscep-
tibility for Crohn’s disease, including the PRR NOD2 
(refs155–157). As NOD2 is necessary to recruit ATG16L1 to 
the membrane and initiate the formation of the phago-
some, NOD2-mediated susceptibility to Crohn’s disease 
is related to a defect in microbial processing9,158,159. The 
resultant impaired autophagy causes inefficient clear-
ance of engulfed bacteria158,159, antigen presentation159 
and regulatory T cell priming160 by DCs in patients with 
Crohn’s disease, which translates into a deficient inhi-
bition of the effector immune responses against the gut 
microbiota and triggers the onset of inflammation. TLR9 
polymorphisms have been associated with mutations in 
NOD2 and IL-23, both of which are Crohn’s disease sus-
ceptibility genes, and could therefore be involved in the 
development of IBD161. Conversely, TLR1, TLR2, TLR4 
and TLR6 polymorphisms have not been linked to the 
development of IBD; however, they are more frequent in 
patients with IBD than in the healthy population162 and 
are correlated with more extensive and severe forms of 

Table 2 | Modulators of TLR signalling in the gut

Molecule Mechanism of action Expression and functional evidence in the gut Refs

SIGIRR Interacts with TLR4, TLR5 and TLR9 via its TIR 
domain; hampers subsequent recruitment of 
downstream adapters MYD88, IRAK and TRAF6

Highly expressed in human colon cell lines; Sigirr–/– mice show 
microbial-dependent hyperproliferation of IECs, increased antimicrobial 
activity in IECs, hypersensitivity to colitis, increased susceptibility to 
infection with pathobionts, such as Citrobacter rodentium and Salmonella 
enterica serovar Typhimurium, and increased susceptibility to CAC; 
transgenic expression of SIGIRR in IECs reverts Sigirr–/– phenotypes

146,148,219,220

IRAK3 Inhibits phosphorylation of IRAK , preventing  
its dissociation from MYD88

Expressed in tumorigenic IECs; induced in regular IECs upon 
stimulation with TLR2/TLR4 ligand and WNT; Irak3–/– mice show 
increased susceptibility to colitis (myeloid compartment) but reduced 
tumorigenesis (tumour IEC compartment)

149,217,221,222

TOLLIP Inhibits phosphorylation of IRAK , preventing  
its dissociation from MYD88

Predominant expression in IECs; downregulated in samples of patients 
with CD, UC, colon adenoma and carcinoma; overexpression in IECs 
reduces activation of ERK and secretion of IL-8 in response to TLR2/TLR4 
ligands; Tollip–/– mice are more susceptible to colitis owing to defects  
in epithelial compartment

70,147,223–225

TNFAIP3 Disrupts the ubiquitin-dependent interaction 
between TRAF6 and TAK1

Epithelial Tnfaip3–/– mice are more susceptible to experimental colitis 
and increased cytokine-induced apoptosis of IECs; epithelial and 
myeloid Tnfaip3–/– mice develop spontaneous ileitis and colitis with 
epithelial apoptosis and hyperproliferation that progresses to CAC

143,144,226

MKP1 Dephosphorylates MAPK p38 Induced in IECs by TLR4, TLR5 and TLR9 ligands; reduces MAPK 
activation; Mkp1–/–Il10–/– mice show accelerated development of colitis, 
increased epithelial proliferation and overactivation of MAPK

150,227

PPARγ Reduces nuclear localization of NF-κB subunits; 
inhibits phosphorylation of MAPKs ERK and p38

Downregulated in samples of patients with CD, UC and CRC; human 
IEC lines treated with PPARγ ligands show reduced COX2 and IL-8 
expression upon TLR4 stimulation with LPS; epithelial Pparg–/– mice show 
increased expression of iNOS in IECs, production of nitrate, dysbiosis  
and susceptibility to colitis

126,145,224, 

225,228,229

Only molecules with a proven function in intestinal epithelial cells (IECs) were considered for the preparation of this table. CAC, colitis-associated cancer ; CD, 
Crohn’s disease; COX2, cyclooxygenase 2; CRC, colorectal cancer ; ERK , extracellular-signal-regulated kinase; iNOS, inducible nitric oxide synthase; IRAK , IL-1 
receptor-associated kinase; LPS, lipopolysaccharide; MAPK , mitogen-activated protein kinase; MKP1, MAPK phosphatase 1; MYD88, myeloid differentiation 
primary response 88; NF-κB, nuclear factor-κB; PPARγ, peroxisome proliferator-activated receptor-γ; SIGIRR , single immunoglobulin IL-1 receptor-related 
molecule; TAK1, TGFβ-activated kinase 1; TIR , Toll/IL-1 receptor ; TLR , Toll-like receptor ; TNFAIP3, TNFα-induced protein 3; TOLLIP, Toll-interacting protein; 
TRAF6, TNF receptor-associated factor 6; UC, ulcerative colitis.
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the disease, such as pancolitis73,163. Studies have reported 
increased epithelial expression of TLR4 in patients with 
IBD, suggesting that this receptor might be involved in 
the pathogenesis of these diseases164,165.

Dysbiosis, a hallmark of patients with IBD, is typ-
ically characterized by reduced microbial diversity, 
increased abundance of facultative anaerobes (such 
as the phylum Proteobacteria) and reduced abun-
dance of obligate anaerobes (especially of the phylum 
Firmicutes) when compared with a healthy, balanced 
microbial community166–169. The gut microbiota and  
dysbiosis are key contributors to the initiation of gastro
intestinal inflammation170. IL-10-deficient mice  
develop spontaneous colitis when raised in specific 
pathogen-free, but not germ-free, conditions171,172, and 
humanization of IL-10-deficient gnotobiotic mice with 
gut microbiota from patients with IBD results in faster 
development of colitis than humanization with gut 
microbiota from healthy individuals173. Interestingly, 
IL-10-deficient mice backcrossed to Myd88–/– mice do 
not develop colitis174, suggesting that TLRs also par-
ticipate in dysbiosis-mediated onset of inflammation. 
Although it is still unclear how dysbiosis begins, cur-
rent hypotheses suggest that atypical conditions, such 
as metabolic and immune defects in IECs or the pres-
ence of pathobionts, increase the availability of oxygen 
or ROS and RNS in the gut lumen (reviewed previ-
ously175,176). In this paradigm, facultative anaerobes can 
outcompete obligate anaerobes by using microbial and 
epithelial products, such as tetrathionate177, nitrate178 
or formate179, to perform anaerobic and aerobic respi-
ration, resulting in the imbalance of microbial popu
lations. In turn, the overgrowth of facultative anaerobes 
can exacerbate inflammation180, providing additional 
ROS and RNS that perpetuate dysbiosis (Fig.  3a). 
Dysregulated TLR signalling can dampen pathobiont 
clearance, contributing to dysbiosis. Chassaing et al.181 
demonstrated that monocolonization of germ-free 
Tlr5–/– mice with flagellated or non-flagellated Crohn’s 
disease-associated adherent-invasive E. coli followed  
by conventional housing led to the development of a  
distinct gut microbiota and subsequent chronic colitis  
in Tlr5–/– mice receiving the flagellated strain, unlike 
those receiving the non-flagellated strain. Similarly, 
Kamdar et al.182 demonstrated that Tlr1–/– mice that 
survive Yersinia enterocolitica infection subsequently 
develop dysbiosis characterized by an increased abun-
dance of δ-Proteobacteria compared with their wild-type 
littermates. δ-Proteobacteria thrive by taking advantage 
of the tetrathionate respiration pathway used by Yersinia 
species to outgrow other bacteria. Subsequent transfer-
ence of the Tlr1–/– dysbiotic gut microbiota rendered 
antibiotic-depleted recipient wild-type mice more sus-
ceptible to chemically induced colitis than recipient mice  
engrafted with the microbiota of wild-type donor  
mice post infection182. In both models, dysbiosis per-
sisted even after elimination of the pathobiont, indicating 
that a single microorganism can prime a defective intes-
tinal epithelium to modify the microbial ecosystem and  
perpetuate microbial composition imbalance.

Aberrant TLR activation might also contribute to 
dysbiosis via the release of antimicrobial peptides, ROS 

and RNS. TLR4 signalling in IECs increases the expres-
sion of iNOS183 and NADPH oxidases57, which produce 
nitric oxide and ROS. The reaction between nitric oxide 
and superoxide forms peroxynitrite, which can decom-
pose to nitrate, thereby providing facultative anaerobes 
with terminal electron acceptors for anaerobic respi-
ration176,178. Indeed, epithelial TLR4 overactivation not 
only induced dysbiosis but also increased susceptibility 
to colitis in transgenic mice that was transmissible by 
coprophagia to co-housed wild-type mice94.

TLR-associated dysbiosis has also been associated 
with metabolic disorders. In mice, deletion of epithelial 
TLR4 and TLR5 signalling induced microbial alterations 
that promoted the development of metabolic syndrome, 
which was transmissible to wild-type germ-free mice by 
transplanting the gut microbiota108,184. Furthermore, the 
metabolic syndrome in Tlr4–/– mice was abolished by 
broad-spectrum antibiotic treatment and co-housing 
with conventionally raised wild-type mice185. Of note, 
the specific composition of the gut microbiota in each 
animal research facility might play a crucial part in the 
development of disease. Indeed, whereas the same group 
observed similar disease phenotypes in two strains  
of mice — total Tlr5–/– mice and epithelial-specific 
Tlr5–/– mice — generated using different breeding 
strategies108,184, two other groups could not reproduce 
the development of colitis and metabolic syndrome in 
total Tlr5–/– mice186. These controversial results raise 
additional concerns about the need for standardization  
of the housing conditions in murine cohorts when stud-
ying the interactions between the microbiome and the 
host187. However, all of these models exemplify how 
excessive or defective epithelial TLR signalling promotes 
the expansion of the gut microbiota, which can in turn 
transmit disease phenotypes, highlighting the role of  
the intestinal epithelium in generating dysbiosis even  
in the absence of pathobionts.

Epithelial repair after inflammation. Even though the 
gut microbiota precipitates the onset of colitis in sponta-
neous models, chemically induced models of inflamma-
tion have demonstrated that it also has essential roles in 
the wound healing process. Indeed, both germ-free and 
antibiotic-treated mice are highly susceptible to chemi-
cally induced colitis and show high mortality rates when 
compared with conventionally raised mice84,188. Similarly, 
MYD88, TLR2, TLR4, TLR5 and TLR9-deficient mice 
are more susceptible to chemically induced colitis owing 
to defects in intestinal epithelial permeability, reduced 
proliferation, increased apoptosis and delayed differ
entiation of IECs, which ultimately cause inefficient 
epithelial restitution84,85,99,108. On the basis of such obser-
vations, several studies evaluated the use of TLR ligands 
as therapeutic tools to ameliorate colitis and accelerate 
the recovery process in experimental models (reviewed 
previously189). Most of these studies concluded that TLR 
activation ameliorates colitis by promoting the produc-
tion of cytoprotective factors and modulatory cytokines 
in mesenchymal stem cells and immune cells that migrate 
to subepithelial locations adjacent to the wound84,99,190–193.

Intestinal epithelial restitution occurs in three phases: 
barrier re-establishment, wound channel formation and 
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crypt regeneration194. Barrier re-establishment consists 
of an initial re-epithelization of the wound by an IEC 
monolayer. This phase depends on the production of 
proliferative, anti-apoptotic and pro-migratory factors, 
such as prostaglandin E2 (PGE2) and TFF3 (Fig. 3a). 
Mesenchymal stem cells, IECs and macrophages can 
produce PGE2 and TFF3 in vitro upon TLR2 or TLR4 
stimulation73,194,195. Moreover, studies demonstrated 

in vivo that PGE2 and TFF3 are necessary to rescue 
the hypoproliferative and pro-apoptotic phenotypes 
of Tlr4–/– and Tlr2–/– mice, respectively, after chem-
ical colitis73,195. PGE2 can signal through its recep-
tor, EP4, to induce non-canonical activation of the 
WNT–β-catenin196 and epidermal growth factor recep-
tor (EGFR)165,195signalling pathways, whereas TFF3 
acts preferentially via the MAPK–EGFR pathway197.  
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Fig. 3 | TLRs participate in the generation of dysbiosis, epithelial 
restitution, and initiation and progression of tumorigenesis.  
a | Activation of Toll-like receptors (TLRs) promotes dysbiosis and epithelial 
repair after injury. During inflammation, facultative anaerobes can 
outcompete obligate anaerobes by using derivatives of reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) released by host cells to 
perform anaerobic respiration, leading to dysbiosis. Restitution of the 
intestinal epithelial barrier requires re-epithelialization of injured areas, 
which encompasses epithelial proliferation and migration over the wound 
bed. Activation of TLRs in enterocytes, goblet cells, macrophages and 
mesenchymal stem cells (MSCs) induces the expression of trefoil factor 3 
(TFF3), amphiregulin (AR) and cyclooxygenase 2 (COX2), which in turn 
synthesizes prostaglandin E2 (PGE2). These factors activate the epidermal 
growth factor receptor (EGFR) and WNT–β-catenin signalling pathways, 
promoting proliferation of enterocytes in the crypts adjacent to the wound. 

In later phases of repair, the release and subsequent activation of latent 
transforming growth factor-β (TGFβ) by the αvβ8 integrin in dendritic cells 
promotes crypt fission and regeneration of the epithelial architecture. 
Macrophages and polymorphonuclear (PMN) cells migrating to the wound 
bed produce cytokines, vascular endothelial growth factor (VEGF) and 
matrix metalloproteinases (MMPs) that participate in neovascularization 
and stromal remodelling. b | Dysregulated TLR signalling is involved in 
initiation and progression of tumorigenesis. Epithelial activating 
transcription factor 6 (ATF6) or TLR4 can initiate tumorigenesis by inducing 
defects in mucus production or activating proliferative pathways in stem 
cells (Fig. 4). Subsequent microbial colonization of the lamina propria 
promotes infiltration by myeloid-derived suppressor cells (MDSCs) and 
lymphoid cells. MDSCs and effector T cells produce ROS, RNS, MMPs, VEGF, 
PGE2, IL-23 and IL-17 , which enhance tumour progression. TNF, tumour 
necrosis factor.
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The wound channel formation phase is characterized 
by the activation of the two main proliferative pathways 
in the gastrointestinal tract, the WNT–β-catenin and 
EGFR pathways, in the stem cells of the intestinal crypts 
flanking the wound to completely cover the exposed 
mucosal surface. This phase can also be potentiated  
by TLR-mediated recognition of microorganisms:  
studies have shown that TLR4 can trigger the induc-
tion of non-canonical phosphoinositide 3-phosphate  
(PI3K)–AKT–β-catenin signalling87 and the transcrip-
tion of the EGFR ligands epiregulin and amphireg
ulin165,195,198,199. Ungaro et al.198 also reported that chemical  
blockade of TLR4 during the recovery phase of exper-
imental colitis in mice reduced the induction of COX2 
and the production of PGE2 and amphiregulin, leading 
to defective epithelial restitution due to diminished pro-
liferation. Last, the crypt regeneration phase is defined by 
the division of the proliferating wound channels through 
crypt fission to restore the number of intestinal crypts. 
Major drivers of differentiation, such as transforming 
growth factor-β (TGFβ), control the formation of clefts 
and the downregulation of mitotic phenotypes during 
this stage200. Work from different groups in mouse DCs 

has demonstrated that TLR2-mediated recognition 
of polysaccharide A from Bacteroides fragilis not only 
induces the production of TGFβ by regulatory T cells201 
but also induces the expression of αvβ8 integrin, which 
converts latent TGFβ into its active form202.

Notably, the epithelial and vascular growth 
factor-enriched microenvironment that is generated 
during epithelial restitution is similar to that occur-
ring during tumorigenesis. Therefore, in the context of 
relapsing inflammation, inefficient wound healing could 
lead to the accumulation of mutations in mitotic cells 
and the formation of tumours. It has been reported that 
Myd88–/– mice with CAC showed an early response to 
inflammation characterized by enhanced induction of 
the β-catenin, EGFR and signal transducer and acti
vator of transcription 3 (STAT3) signalling pathways and 
increased DNA damage, leading to the premature forma-
tion of neoplastic lesions203. Similarly, in germ-free mice, 
the induction of CAC caused delayed inflammation and 
epithelial repair, leading to the early development of 
colorectal adenomas. Such a phenotype could be rescued 
by LPS administration or bacterial colonization204.

Microbial signalling in tumorigenesis. Sporadic 
colorectal cancer (CRC) is the third most commonly 
diagnosed cancer in the United States205 and is usually 
caused by mutations in oncogenes, such as the gene that 
encodes adenomatous polyposis coli (APC), that con-
trol major proliferative pathways206. Rakoff-Nahoum 
and Medzhitov207 demonstrated a major role for TLR 
signalling in CRC progression by crossing ApcMin/+ to 
MYD88-deficient mice. These mice had reduced num-
bers of tumours when compared with ApcMin/+ mice, 
which was associated with a downregulation of genes 
involved in inflammation and epithelial repair, such as 
those encoding IL-1β, IL-6, COX2, matrix metallopro-
teinase 7 (MMP7) and MMP10, and insulin-like growth 
factor 1 (IGF1). In addition, subsequent studies reported 
that abrogation of MYD88, TLR2, TLR4 and TLR9 sig-
nalling in myeloid cells in mice reduced the number of 
tumours owing to a decreased activation of STAT3 and 
downregulation of IL-23 and IL-17 (refs208,209) (Fig. 3b).

Evidence of a role for epithelial TLR signalling in the 
initiation of CRC came from mice with constitutively 
active epithelial TLR4, which developed carcinomas in 
the distal colon upon administration of the mutagenic 
agent azoxymethane, unlike their wild-type littermates. 
The mechanism proposed involved TLR4-mediated 
non-canonical activation of β-catenin87. Furthermore, 
these mice also have spontaneous duodenal adeno-
mas that are completely abrogated in germ-free con-
ditions (J.F.B. and M.T.A., unpublished observations), 
suggesting that TLR4-mediated alteration of bacterial 
populations might be an additional driver of intes-
tinal tumorigenesis. A 2018 study also highlighted 
the involvement of TLR signalling in the formation 
of spontaneous adenomas in the colons of transgenic  
nATF6IEC mice210. Of note, the development of adenomas 
depended on the dysbiosis generated by epithelial acti-
vation of activating transcription factor 6 (ATF6), which 
was transmissible to germ-free mice. Almost 80% of 
nATF6IEC mice backcrossed to Myd88–/–Ticam1–/– double 
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knockout mice did not develop tumours and displayed 
reduced activation of epithelial STAT3 when com-
pared with their nATF6IEC littermates210, indicating  
that TLR-regulated activation of the Janus kinase 
(JAK)–STAT pathway might be another mechanism that  
initiates CRC (Fig. 4).

Patients with IBD are at increased risk of develop-
ing CRC compared with the general population, with 
increased incidence rates ranging from 0.8-fold to 
3.2-fold211–213. CAC is thought to occur after recurrent 
episodes of inflammation and repair in proliferating 
IECs that are continuously exposed to cytokines and 
ROS206. Patients with ulcerative colitis and CRC have 
increased expression of TLR4 in IECs87,214. Epithelial 
TLR4 expression is associated with the initiation  
of CAC: whereas TLR4-deficient mice are protected from 
CAC165, epithelial overactivation of TLR4 increases sus-
ceptibility to CAC215. RNA sequencing data from cancer 
stem cells of mice undergoing a CAC model suggest that 
the mechanisms underlying TLR4-driven tumorigenesis 
involve not only direct non-canonical β-catenin signal-
ling87 but also the activation of the JAK–STAT pathway 
and increased chemoattraction of tumour-supportive 
cells, such as myeloid-derived suppressor cells (J.F.B. 
and M.T.A., unpublished observations). Additional 
mechanisms that have been proposed for epithelial 
TLR-dependent promotion of tumorigenesis include the 
ROS-mediated activation of NF-κB in gastric cancer216 
and the induction of the TLR inhibitor IRAK3, which 
has been shown to interact with and stabilize STAT3 to 
avoid proteasomal degradation217 (Fig. 4).

Conclusions
A growing amount of evidence demonstrates that the gut 
microbiota are not passive bystanders in the gastrointes-
tinal tract but instead actively participate in establishing 
homeostasis and in precipitating disease. TLRs regulate 
host–microbiota interactions and have fundamental 
roles in maintaining a healthy epithelial barrier at differ-
ent levels, ranging from the genesis and differentiation 
of the epithelial lineages to the control of permeability, 
antimicrobial peptide production and mucus secretion 
into the lumen. In the presence of pathobionts, epithelial 
TLRs trigger antimicrobial responses that prevent subse-
quent microbial imbalances and induce the expression of 
regulatory molecules that prevent uncontrolled inflam-
mation. Once inflammation occurs, TLRs accelerate epi-
thelial restitution. However, prolonged dysregulation in 
TLR signalling, especially during relapsing inflammation, 
can lead to the induction of dysbiosis and the activation 
of proliferative and anti-apoptotic signalling pathways, 
which might be usurped by mutated cancer stem cells and 
grow out of control. The potential use of therapeutic strat-
egies that target epithelial TLRs to prevent or minimize 
dysbiosis and inflammation is still attractive. However, 
strengthening our knowledge of the crosstalk between 
epithelial TLRs, commensal microbiota and opportunist 
pathobionts will be essential to define the mechanisms 
causing microbial imbalances that participate in trigger-
ing and perpetuating inflammation, as well as in initiating 
and inducing the progression of tumorigenesis.
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