

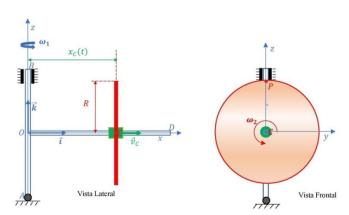
PME 3100 – MECÂNICA I – Prova 2 – 08 de dezembro de 2020 Duração da Prova: 120 minutos (Início: 10:00 – Término: 12:30) **GABARITO**

Questão 1 (3,0 pontos): O mecanismo ilustrado na figura abaixo é constituído por 3 componentes: 1) um suporte ABOD (desenhado em azul) vinculado à articulação A e ao mancal radial B, que gira com velocidade angular constante ω_1 em torno do eixo vertical; 2) uma luva C (desenhada em verde), que desliza ao longo da haste OD do suporte ABOD com velocidade constante v_C , relativa à haste; 3) um disco de raio R, solidário à luva C, que gira em torno da haste

OD com velocidade angular constante ω_2 . O sistema de referência móvel Oxyz é ligado ao suporte ABOD e, no instante mostrado na figura, o ponto P da periferia do disco encontra-se na posição $(x_C, 0, R)$.

Pede-se, então:

- (a) a velocidade \vec{v}_{Cabs} absoluta do ponto C;
- (b) a aceleração \vec{a}_{Cabs} absoluta do ponto C;
- (c) o vetor rotação absoluta $\vec{\omega}$ do disco;
- (d) o vetor aceleração rotacional $\vec{\alpha}$ do disco;
- (e) a velocidade absoluta \vec{v}_{Pahs} do ponto P;
- (f) a aceleração absoluta \vec{a}_{Pabs} do ponto P;



Resolução:

a) [0,5 ponto] Lei de composição de velocidades:

$$\vec{v}_{Cabs} = \vec{v}_{Crel} + \vec{v}_{Carr} = v_C \vec{i} + \omega_1 \vec{k} \wedge (x_C \vec{i}) = v_C \vec{i} + \omega_1 x_C \vec{j}$$

b) [0,5 ponto] Lei de composição de acelerações:

$$\vec{a}_{Cabs} = \vec{a}_{Crel} + \vec{a}_{Carr} + \vec{a}_{Ccomp} = \vec{0} + \omega_1 \vec{k} \wedge [\omega_1 \vec{k} \wedge (x_C \vec{i})] + 2\omega_1 \vec{k} \wedge v_C \vec{i} = -\omega_1^2 x_C \vec{i} + 2\omega_1 v_C \vec{i}$$

- c) [0,5 ponto] Lei de composição de vetores de rotação: $\vec{\omega} = \vec{\omega}_{rel} + \vec{\omega}_{arr} = \omega_2 \vec{\imath} + \omega_1 \vec{k}$
- d) [0,5 ponto] Lei de composição de acelerações rotacionais:

$$\vec{\alpha} = \vec{\alpha}_{rel} + \vec{\alpha}_{arr} + \vec{\alpha}_{comp} = \vec{0} + \vec{0} + \omega_1 \vec{k} \wedge \omega_2 \vec{i} = \omega_1 \omega_2 \vec{j}$$

e) [0,5 ponto] disco:
$$\vec{v}_P = \vec{v}_{Cabs} + \omega_2 \vec{i} \wedge (P - C) = v_C \vec{i} + (\omega_1 x_C - \omega_2 R) \vec{j}$$

f) **[0,5 ponto]** disco:
$$\vec{a}_P = \vec{a}_{Cabs} + \vec{\alpha} \wedge (P - C)\vec{k} + \vec{\omega} \wedge [\vec{\omega} \wedge (P - C)] =$$

$$= -\omega_1^2 x_C \vec{i} + 2\omega_1 v_C \vec{j} + \omega_1 \omega_2 \vec{j} \wedge R\vec{k} + (\omega_2 \vec{i} + \omega_1 \vec{k}) \wedge [(\omega_2 \vec{i} + \omega_1 \vec{k}) \wedge R\vec{k}] =$$

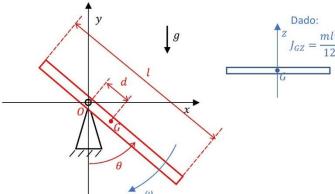
$$= (2\omega_1 \omega_2 R - \omega_1^2 x_C) \vec{i} + 2\omega_1 v_C \vec{j} - \omega_2^2 R\vec{k}$$

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

<u>Ouestão 2 (3,0 pontos)</u>: Uma barra delgada e homogênea, de comprimento ℓ e massa m, é articulada em O a uma distância d do seu centro de massa, estando restrita a mover-se no plano Oxy, conforme ilustrado na figura.

- (a) Determine o momento de inércia J_{0z} da barra.
- (b) Sabendo que a barra parte da posição angular $\theta_0 = \pi/2$ com velocidade angular inicial ω_0 no sentido horário, determine o menor valor de ω_0 , em módulo, para que a barra não mude o sentido de rotação.

Nota: Adote $g = 10 \text{m/s}^2$



Resolução:

a) [1,0 ponto] Translação de eixos:

$$J_{OZ} = J_{GZ} + md^2 = \frac{ml^2}{12} + md^2 = m\left(\frac{l^2 + 12d^2}{12}\right)$$

b) [2,0 pontos] Trabalho – força peso: $\tau = mgd(\cos\theta - \cos\theta_0)$

Energia cinética: $E_C = \frac{1}{2}J_{Gz}\omega^2 + \frac{1}{2}mv_G^2 = \frac{1}{2}J_{Oz}\omega^2$

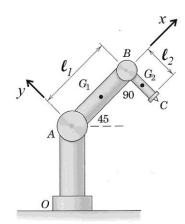
Teorema da Energia Cinética: $\Delta E_C = \tau \Rightarrow \frac{1}{2}J_{0z}(\omega^2 - \omega_0^2) = mgd(\cos\theta - \cos\theta_0) \Rightarrow$ $\Rightarrow \omega^2 = \omega_0^2 + \frac{2mgd(\cos\theta - \cos\theta_0)}{J_{0\omega}}$

Condição para que a barra não mude o sentido de rotação: $\omega = 0$ em $\theta = \pi$; assim:

$$0=\omega_0^2+\tfrac{2mgd(\cos\pi-\cos\theta_0)}{J_{Oz}}\Rightarrow\omega_0=\sqrt{\tfrac{2mgd}{J_{Oz}}}=\sqrt{\tfrac{240d}{l^2+12d^2}}$$

Questão dissertativa (4,0 pontos): A figura abaixo representa um dispositivo robótico movendo-

se num plano vertical, com aceleração da gravidade g. Na extremidade A da coluna fixa OA há um pequeno motor elétrico que aplica um momento (anti-horário) M_A na extremidade A do braço AB, fazendo este braço girar em torno de A com velocidade angular ω_1 e aceleração angular $\dot{\omega}_1$, dados. Na extremidade B do braço AB há outro pequeno motor, que aplica o momento M_B (anti-horário) no braço BC, fazendo-o girar com velocidade angular ω_2 e aceleração angular $\dot{\omega}_2$. A massa do braço AB é m_1 , a do braço BC é m_2 , e ambos podem ser considerados como hastes delgadas homogêneas.



Para a posição mostrada na figura, e usando o sistema de eixos indicado, pede-se:

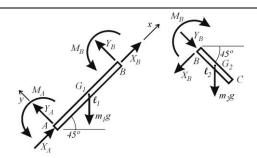
- (a) desenhar os diagramas de corpo livre dos braços AB e BC;
- (b) escrever as equações do Teorema da Resultante (TR) e do Teorema da Quantidade de Movimento Angular (TQMA) para o braço *BC*;

Supondo que o motor em *B* trave a conexão dos braços *AB* e *BC* na posição relativa mostrada, pede-se:

- (c) obter as expressões de ω_2 , $\dot{\omega}_2$, \vec{a}_{G_1} e \vec{a}_{G_2} em função de ω_1 , $\dot{\omega}_1$, das massas e das dimensões dadas na figura;
- (d) determinar o momento exercido pelo braço AB sobre o braço BC.

Resolução:

(a) [1,0 ponto] diagramas:



(b) [1,0 ponto] Braço BC:

$$\underline{\mathbf{TR:}} \ m_{2}\vec{a}_{G_{2}} = m_{2}\left(a_{G_{2}x}\vec{i} + a_{G_{2}y}\vec{j}\right) = \left(-X_{B} - m_{2}g\frac{\sqrt{2}}{2}\right)\vec{i} + \left(-Y_{B} - m_{2}g\frac{\sqrt{2}}{2}\right)\vec{j} \Rightarrow \\
\Rightarrow \begin{cases} m_{2}a_{G_{2}x} = -X_{B} - m_{2}g\frac{\sqrt{2}}{2} & (1) \\ m_{2}a_{G_{2}y} = -Y_{B} - m_{2}g\frac{\sqrt{2}}{2} & (2) \end{cases}$$

TQMA:
$$\vec{H}_{G_2} = J_{G_2} \omega_2 \vec{k} = \frac{m_2 l_2^2}{12} \omega_2 \vec{k} \Rightarrow \dot{\vec{H}}_{G_2} = \frac{m_2 l_2^2}{12} \dot{\omega}_2 \vec{k} = \vec{M}_{G_2} = \left(X_B \frac{l_2}{2} - M_B \right) \vec{k} \Rightarrow \frac{m_2 l_2^2}{12} \dot{\omega}_2 = X_B \frac{l_2}{2} - M_B$$
 (3)

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

(c) [1,0 ponto] Relações cinemáticas:

- articulação *B* travada:
$$\omega_1 = \omega_2 = \omega$$
 (4) e $\dot{\omega}_1 = \dot{\omega}_2 = \dot{\omega}$ (5)

- braço
$$AB$$
: $\vec{a}_{G_1} = a_{G_1x}\vec{i} + a_{G_1y}\vec{j} = \vec{a}_A + \dot{\vec{\omega}} \wedge (G_1 - A) + \vec{\omega} \wedge [\vec{\omega} \wedge (G_1 - A)] =$

$$= \vec{0} + \dot{\omega}\vec{k} \wedge \frac{l_1}{2}\vec{i} + \omega^2\vec{k} \wedge [\vec{k} \wedge \frac{l_1}{2}\vec{i}] = \frac{l_1}{2}(-\omega^2\vec{i} + \dot{\omega}\vec{j}) \Rightarrow$$

$$\Rightarrow \vec{a}_{G_1} = a_{G_1 x} \vec{i} + a_{G_1 y} \vec{j} = \frac{l_1}{2} (-\omega^2 \vec{i} + \dot{\omega} \vec{j}) \Rightarrow \begin{cases} a_{G_1 x} = -\frac{l_1}{2} \omega^2 & (6) \\ a_{G_1 y} = \frac{l_1}{2} \dot{\omega} & (7) \end{cases}$$

e
$$\vec{a}_B = \vec{a}_A + \dot{\vec{\omega}} \wedge (B - A) + \vec{\omega} \wedge [\vec{\omega} \wedge (B - A)] = l_1(-\omega^2 \vec{i} + \dot{\omega} \vec{j})$$

- braço BC:
$$\vec{a}_{G_2} = a_{G_2x}\vec{i} + a_{G_2y}\vec{j} = \vec{a}_B + \dot{\vec{\omega}} \wedge (G_2 - B) + \vec{\omega} \wedge [\vec{\omega} \wedge (G_2 - B)] =$$

$$= l_1(-\omega^2\vec{i} + \dot{\omega}\vec{j}) + \dot{\omega}\vec{k} \wedge \left(-\frac{l_2}{2}\vec{j}\right) + \omega^2\vec{k} \wedge \left[\vec{k} \wedge \left(-\frac{l_2}{2}\vec{j}\right)\right] =$$

$$= \left(\dot{\omega}\frac{l_2}{2} - \omega^2l_1\right)\vec{i} + \left(\dot{\omega}l_1 + \omega^2\frac{l_2}{2}\right)\vec{j} \Rightarrow$$

$$\Rightarrow \vec{a}_{G_2} = a_{G_2x}\vec{i} + a_{G_2y}\vec{j} = \left(\dot{\omega}\frac{l_2}{2} - \omega^2 l_1\right)\vec{i} + \left(\dot{\omega}l_1 + \omega^2\frac{l_2}{2}\right)\vec{j} \Rightarrow \begin{cases} a_{G_2x} = \dot{\omega}\frac{l_2}{2} - \omega^2 l_1 & (8) \\ a_{G_2y} = \dot{\omega}l_1 + \omega^2\frac{l_2}{2} & (9) \end{cases}$$

(d) [1,0 ponto]

de (1) e (8):
$$-X_B - m_2 g \frac{\sqrt{2}}{2} = m_2 \left(\dot{\omega} \frac{l_2}{2} - \omega^2 l_1 \right) \Rightarrow X_B = -m_2 \left(\dot{\omega} \frac{l_2}{2} - \omega^2 l_1 + g \frac{\sqrt{2}}{2} \right)$$

Substituindo
$$X_B$$
 em (3): $\frac{m_2 l_2^2}{12} \dot{\omega} = -m_2 \frac{l_2}{2} \left(\dot{\omega} \frac{l_2}{2} - \omega^2 l_1 + g \frac{\sqrt{2}}{2} \right) - M_B \Rightarrow$

$$\Rightarrow M_B = \frac{m_2 l_2}{2} \left(l_1 \omega^2 - \frac{2l_2}{3} \dot{\omega} - g \frac{\sqrt{2}}{2} \right)$$