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Acquiring Information through Peers†

By Bernard Herskovic and João Ramos*

We develop an endogenous network formation model, in which 
agents form connections to acquire information. Our model fea-
tures complementarity in actions as agents care not only about 
accuracy of their decision-making but also about the actions of 
other agents. In equilibrium, the information structure is a hierar-
chical network, and, under weakly convex cost of forming links, the 
equilibrium network is core-periphery. Although agents are ex ante 
identical, there is ex post heterogeneity in payoffs and actions. 
(JEL D83, D85, Z13)

Social networks permeate economic environments. A pervasive feature of net-
works in economics, and social sciences in general, is its core-periphery structure, 
a small group of densely connected agents (core) linked to a vast majority of 
sparsely connected agents (periphery). Core-periphery networks have been docu-
mented in distinct economic environments, from voting patterns in the US Senate, 
to information acquisition patterns more broadly.1 There are two key distinctions 
between networks in social sciences and networks in other fields like biology or 
physics (e.g., a network of nervous systems or genetic networks). First, social net-
works are endogenous. They are a direct consequence of our choices when build-
ing relationships with one another. Second, in social networks, linkages transmit 
information, shaping individual decisions. For instance, congress members com-
municate with each other to align their votes and, in doing so, they learn about the 
policies in question. To formulate their own forecasting model, financial analysts 
choose whose models to learn from, endogenously forming a network of informa-
tion transmission.

1 See Borgatti and Everett (2000); Galeotti and Goyal (2010); Rombach et al. (2017); Hollifield, Neklyudov, 
and Spatt (2017), and references therein.
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We study how networks are formed and why core-periphery structures are a 
consistent pattern in different economic environments. To this end, we develop an 
endogenous network formation model in which agents acquire information through 
peers. In our model, agents make two decisions. First, they form their social con-
nections, and, second, they choose an action. Each agent receives a signal about 
the state of the world. In addition, agents can, at a cost, form social connections to 
observe the signals received by other agents.

Our main result is that strategic complementarity leads to core-periphery net-
works as an equilibrium outcome. Specifically, when agents care about the correct 
choice in terms of accuracy and about coordinating their actions, we show that any 
strict equilibrium information structure is a hierarchical network. More importantly, 
if the marginal cost of forming connections is weakly increasing, then any strict 
equilibrium information structure is core-periphery.

A hierarchical directed network is characterized by a ladder of informational 
importance. Agents are sorted into tiers, and those in the top are quite influential 
because they have their signal observed by all other agents. Signals from agents in 
the second tier are observed by all members of the tiers below, and so on. This infor-
mation structure determines a hierarchy of signals’ importance and replicates three 
key features of social hierarchies.2 First, although agents are ex ante identical and 
receive equally precise signals, in equilibrium, they endogenously separate them-
selves into tiers. Agents in the same tier exert the same influence and acquire the 
same information, but agents in different tiers have distinct influences over the econ-
omy. Second, the information hierarchy is self-enforcing: as more agents observe an 
agent’s signal, the signal’s influence increases, and so does the incentive to observe 
it. Third, an agent in a higher tier has higher equilibrium payoffs.

A core-periphery network is a particular hierarchical directed network. While a 
hierarchical network allows the existence of multiple social levels, a core-periphery 
network divides agents in two groups: the core and the periphery. Members of the 
periphery observe only the signals of agents in the core, and core agents observe 
each other’s signals. As a result, the signals of core agents endogenously become 
public information and are common knowledge to all agents.

Formally, our model is a two-stage game. There is an unknown state of the world, 
and each agent receives an equally informative signal about it. In the first stage of 
the game, agents can observe, at a cost, any other agent’s signal. The agents’ inter-
connections implied by the decisions of observing each other’s signals constitute a 
directed network which we define as the economy’s information structure. We make 
two assumptions on how information propagates along the network. First, connec-
tions are not reciprocal. The benefit of connecting to an agent is that if agent ​i​ con-
nects to agent ​j​, then agent ​i​ observes agent ​j​’s signal, but agent ​j​ does not observe 
agent ​i​’s signal. Second, there is no retransmission of information. The information 
acquired by an agent through the network is limited to her immediate connections.

2 See Magee and Galinsky (2008) for a definition and examples of social hierarchy. The equilibrium hierarchy 
of influence matches several empirical findings on information propagation, including the law of the few and how 
information propagates in social media. For instance, see Galeotti and Goyal (2010); Kumar, Novak, and Tomkins 
(2010); Goel, Watts, and Goldstein (2012); Bakshy et al. (2011).
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In the second stage, each agent simultaneously chooses an action, using the infor-
mation obtained through the network. An agent wants to choose an action close 
both to the unknown state of the world and to the average action of the economy. 
This beauty contest element of the payoff generates complementarity and has two 
immediate effects on the incentives in the network formation game. First, infor-
mation is not perfectly substitutable. All agents’ signals have the same precision, 
but some agents’ signals are more informative about the average action, depending 
on the agent’s position in the network. Second, there is strategic complementar-
ity between agents’ actions, which implies that agents rely more on signals from 
more influential peers.3 The influence of an agent’s signal, how correlated it is with 
the average action, is endogenous and measures the agent’s centrality and impor-
tance in the network. Such influence goes beyond her immediate connections, even 
though our model does not feature retransmission of information through an agent’s 
connections. Formally, the influence of a particular agent’s signal in equilibrium is 
expressed recursively. It depends not only on how many agents observe her signal 
but also on the influence of other agents.

To characterize the network structure common to all equilibria, we define two 
key monotonicity properties that drive the information acquisition process. The first 
states that an agent would rather observe a signal that more agents observe. An 
individual’s endogenous status at the top of the hierarchy makes her signal more 
observed and, thus, more influential and informative about the average action of 
the economy. The second monotonicity property states that such an agent has less 
incentives to observe signals. The intuition is that her own signal is more informa-
tive about the average action, disincentivizing the acquisition of additional informa-
tion. We show that any strict Nash equilibrium of the game satisfies both properties.

An important implication of these two monotonicity properties is that every strict 
Nash equilibrium of this game produces a directed hierarchical network. Our anal-
ysis is more general than the information acquisition framework because our main 
result relies on these two monotonicity properties rather than on the specifics of 
our information acquisition game. Our main theorem shows that any network that 
satisfies both properties above is a hierarchical directed network. As a corollary, all 
strict Nash equilibria of our game produce a hierarchical directed network as the 
information structure.

We show that, if the marginal cost of observing a signal is weakly increasing 
in the number of observed signals, then any strict Nash equilibrium features a 
core-periphery network. We define a third property stating that, if an agent observes 
the signal of two other agents, then these two agents observe each other’s signals 
as well. We show that, in our model, if the marginal cost of acquiring informa-
tion is increasing, then any strict equilibrium satisfies this third property. Our main 
result (Theorem 2) shows that any network that satisfies the three properties is a 
core-periphery network. As a corollary, if the marginal cost of observing a signal is 
weakly increasing, then any strict Nash equilibrium of this game is a core-periphery 
network.

3 See Bulow, Geanakoplos, and Klemperer (1985) for a definition of strategic complementarity.
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The rest of the paper is organized as follows. In the next two subsections, we 
provide examples of information acquisition through peers and discuss our contri-
bution to the literature. In Section I, we present and solve the model. In Section II, 
we characterize hierarchical and core-periphery networks and show that any equi-
librium information structure has these architectures. Finally, Section III concludes.

A. Examples

Several real-world examples highlight the importance of acquiring information 
through peers in settings where agents would like to coordinate their actions. In this 
subsection, we describe a couple of examples in more detail.

First, we consider sell-side analysts forecasting an economic outcome such as 
earnings, GDP, inflation, unemployment, etc. Analysts would like to provide an 
accurate forecast, but they also have career concerns and would like to conform to 
the consensus in their evaluations.4 Analysts’ private signal about the state of the 
economy is an outcome of their own forecasting model, however they can also learn 
and replicate the forecasting models of other analysts. For instance, some analysts 
may have a more quantitative approach while others may base their forecasts on 
other methods. By forming connections with one another, analysts learn each oth-
ers’ models and approach to forecasting, effectively acquiring each others’ signal 
about the state of the economy. Aligned with our model, analysts choose to acquire 
information from each other, endogenously forming an information structure.

As a second example, we consider political party members. A political party 
activist would like to support the best policy, while balancing the need for the party 
to display unity. Partisans have access to different sources of information about pol-
icies’ impact. Although a partisan may prefer a particular source, she would rather 
focus on the same sources as other party members in order to coordinate and display 
unity. To map this example to our model, a partisan’s action is her support to a par-
ticular policy and a partisan’s signal is the information from her preferred source. 
Thus, an equilibrium information structure specifies which sources each partisan 
decides to follow.

The information acquisition process is slightly different in these examples. In the 
first, analysts learn each others’ forecasting models, literally acquiring information 
produced by other analysts. In the second, partisans acquire signals from information 
sources other than their preferred ones, because other partisans are acquiring them as 
well. In both interpretations, an agent observes a signal to obtain information regard-
ing what her peers know. Although these are different examples of learning from 
peers, our framework is insightful to study their equilibrium information structures.

B. Related Literature

We study information acquisition from peers in a beauty contest setting.5 A cen-
tral contribution of our paper is to bridge distinct-yet-related literatures. On the 

4 The complementarity here is due to career concerns, as documented in Hong and Kubik (2003).
5 Following Morris and Shin (2002), beauty contest has been applied to a variety of settings, for instance, 

Angeletos and Pavan (2004) regarding investment games; Dewan and Myatt (2008, 2012) regarding political 
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one hand, we add to the literature on information acquisition with strategic com-
plementarity. This has been recently explored by Myatt and Wallace (2012, 2018) 
and Colombo, Femminis, and Pavan (2016). This literature considers information 
acquisition from sources that are outside of the economy. Closer to our paper, 
Hellwig and Veldkamp (2009) shows that complementarity in actions generates 
complementarity in information acquisition. By introducing information acquisition 
from peers, we highlight a new force present in information acquisition decisions: 
as the signal of an agent is more public, she has less incentive to obtain informa-
tion, as her own signal is more informative regarding the average action. On the 
other hand, we add to the literature on network formation and information acquisi-
tion. Closer to our work, Galeotti and Goyal (2010) models information acquisition 
through social networks to explain the “law of the few,” an empirical observation 
that individuals acquire information from a small subset of their social contacts. In 
their setting, information is acquired by the agents, and is considered a public good. 
When an agent links to another, she gains access to his information. We contribute 
to this literature by micro-founding the usage of information and by introducing 
strategic complementarities in actions. While complementarities make informa-
tion sources non-substitutable, even though all agents’ signals are equally informa-
tive about the state of the world, the micro-foundation disciplines the endogenous  
network formation.

To study information acquisition from peers, we develop a network formation 
model in a beauty contest setting. There is a large literature on network forma-
tion, starting from the seminal work by Jackson and Wolinsky (1996) and Bala 
and Goyal (2000), with different interpretations for forming a link.6 We follow  
Bala and Goyal (2000) in modeling link formation as a one side individual decision, 
and thus we can rely on standard methods of noncooperative game theory. More 
recently, a large literature focuses on endogenous networks in games with local 
externalities, following the work of Ballester, Calvó-Armengol, and Zenou (2006) 
and Bramoullé and Kranton (2007). For instance, recent work include Cabrales, 
Calvó-Armengol, and Zenou (2011); Baetz (2015); Hiller (2017); and Kinateder 
and Merlino (2017, 2019). However, there are substantial differences in the models, 
and more importantly, in the economic forces behind the results between our work 
and this literature.

Let us first focus on how our model contributes to the literature on endoge-
nous networks in games with local externalities. The literature extends the frame-
work of interdependent linear quadratic utility functions introduced in Ballester, 
Calvó-Armengol, and Zenou (2006) by endogenizing the network of payoffs’ 
interdependence. In those models, agents simultaneously choose a level of costly 
effort, with interdependent linear best responses. If two players are connected, their 
efforts impact each others’ payoff according to a bilateral influence matrix, affecting 
the individual marginal benefit of effort. Thus, bilateral influences generate local 
externalities in their payoffs. If the network is endogenous, i.e., players choose their 

leadership; Allen, Morris, and Shin (2006) regarding financial markets; Pavan (2016) regarding limited attention; 
and Hellwig (2005) and Myatt and Wallace (2015) regarding monopolistic and Cournot competition.

6 Recent work includes Borgatti and Everett (2000); Calvó-Armengol and Zenou (2004); Goyal and 
Vega-Redondo (2005); Hojman and Szeidl (2008); and König, Tessone, and Zenou (2014). See Bloch and Jackson 
(2006), Jackson (2010), and Hellmann and Staudigl (2014) for reviews of the literature.
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connections and effort simultaneously, then a player would like to connect to the 
players whose effort affects more her payoff, given the bilateral influence matrix. 
If the effects are homogeneous and positive (for instance, Baetz 2015) then a 
player wants to connect to players choosing higher efforts. In our model, there are 
local externalities, but not directly through actions. We consider a beauty contest 
game, in which a player’s choice of action affects all other players equally, inde-
pendently of whether they are connected. Thus, any local externality in our model 
is a result of the information acquisition decision and of the equilibrium decision 
of how to use that information. As an example, consider player ​i​ connected to 
player ​j​, then ​i​ observe ​j​’s signal and, consequently, ​i​’s action will be influenced 
by ​j​’s signal. The local externality generated by ​i​’s connection relies on the equi-
librium behavior of agent ​i​. By being influenced by ​j​’s signal, agent ​i​’s action can 
be forecast by it, and as a result, all other players change their connectivity and 
forecast decisions.

Our paper also contributes to the literature on endogenous network formation by 
highlighting a distinct economic mechanism for why nested-split graphs may occur 
in equilibrium. In our setting, two equilibrium properties drive our main result of 
hierarchical networks as an equilibrium outcome (Properties 1 and 2). Property 1, 
in which agents form connections with the most connected players, precisely cap-
tures the definition of directed nested-split graphs. Similar to Hellwig and Veldkamp 
(2009), complementarities in actions generate complementarities in information 
acquisition in our model, because information is acquired from peers. This chan-
nel is captured by Property 1. The difference between Property 1 and the forces 
behind nested-split-graphs in the literature highlight an important contribution of 
our model. In our framework, a player cannot affect how attractive her signal is to 
other players. A player’s signal is attractive if other players choose to observe it and 
use it when making their decisions. Due to strategic complementarity, a player that 
uses the signal of player ​j​ to make her decision will correlate her action with the 
signal of player ​j​. Thus, if the signal of player ​j​ is observed by more agents, then it 
becomes more correlated with the average action than a less observed signal. This 
is a direct result of strategic complementarities in actions, even though actions have 
no local externality effects in our model. In contrast, papers about network forma-
tion typically obtain nested-split graphs by having core players attracting peripheral 
ones through higher effort choices. For example, in a setting of public goods, core 
players further invest in the public good to attract other agents (e.g., Galeotti and 
Goyal 2010), while in a setting of strategic complementarity, a high-tier player in a 
nested-split graph chooses higher costly effort to attract others to form connections 
with her (e.g., Baetz 2015).

While the emergence of equilibrium networks with nested layers of connec-
tions is common to our work and Galeotti and Goyal (2010), Baetz (2015), Hiller 
(2017), and Kinateder and Merlino (2017), Property 2 in our paper advances fur-
ther the characterization of equilibrium networks.7 Property 2 highlights that players 

7 Nested split graphs are also obtained in König, Tessone, and Zenou (2014), however network formation is 
not fully a strategic decision. Also, Belhaj, Bervoets, and Deroïan (2016) and Dessein, Galeotti, and Santos (2016) 
show that nested split graphs may be efficient in a local externalities framework and in an organizational economics 
setting, respectively.
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may free ride on other agents’ information acquisition and link-formation choices. 
Specifically, as more players connect to agent ​j​, agent ​j​ has less incentive to acquire 
further information or to form additional links. There are two important implications 
of Property 2 that contributes to this literature. First, Property 2 defines who bears 
the cost of forming a connection. One of the equilibrium predictions of our paper is 
that, consistent with social hierarchies, players in the bottom layers bear the cost and 
connect with players in the top of the social hierarchy. In contrast, in Baetz (2015) for 
instance, who bears the cost of a link is defined by assumption. Second, Property 2 
further limits the set of networks structures that arise in equilibrium, from the class of 
directed nested-split graphs to a more narrowly defined set of strict hierarchical net-
works (Theorem 1). Finally, our Property 3 further restricts the set of equilibrium net-
works to only core-periphery networks (Theorem 2). In our setting, core-periphery 
networks are hierarchical networks with at most two tiers of players, in which all 
players observe the core-players’ signals. Core-periphery networks discipline the 
information acquisition of different players using the diminishing marginal benefit of 
additional information, an endogenous feature of our beauty contest model.

Finally, our theoretical predictions are consistent with several empirical findings 
as well. In finance, Hollifield, Neklyudov, and Spatt (2017) and Li and Schürhoff 
(2019) document core-periphery networks in over-the-counter markets.8 More gen-
erally, hierarchical networks have been documented in a wide array of information 
acquisition situations, from product brands and fashion changes to US Senate voting 
decisions.9 Focusing on online information diffusion, Kumar, Novak, and Tomkins 
(2010) documents the structure of Flicker and Yahoo!360°, social networks with 
more than five million users, and observes the existence of multiple connected com-
ponents, each organized roughly as a core-periphery structure. Along similar lines, 
Goel, Watts, and Goldstein (2012) documents how information and behavior spread 
online through multiple online platforms, such as Twitter News and Videos. Instead 
of a viral diffusion process, long sequences of links of contagion, triggering large 
cascades, diffusion of information is characterized by almost all adoption (94 per-
cent to 99 percent) happening within one degree of a seed node.

I.  Model

We consider an economy populated by a finite set of agents, ​N  = ​ {1, 2, … , n}​​, 
who first choose whom to acquire information from and then choose an action. Each 
agent wants to choose an action close to both the true state of the economy and the 
average action. Next, we describe the information structure of the game and agents’ 
payoffs.

8 In finance, a recent literature has focused on modeling the emergence of core-periphery networks as a result 
of specific elements of the financial setting. For instance, Farboodi (2017) focuses on financial intermediation, 
Oberfield (2018) on input-output, Sambalaibat (2018) on over-the-counter markets, Akerlof and Holden (2016) on 
networks of investors, and Babus (2016) on interbank networks. Recent work on endogenous network formation and 
finance also includes Golub and Livne (2010), Erol and Vohra (2017), Erol and Lee (2018), and Sambalaibat (2018).

9 See, for instance Galeotti and Goyal (2010) for stylized facts and a review of the literature, or Rombach et al. 
(2017) for a method to identify core-periphery networks and many examples of its use, in particular the voting 
pattern of the US Senate.
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Information.—There exists a normally distributed unknown state of the econ-
omy, ​θ  ∼  ​(0, 1)​.​ Each agent ​i​ observes one costless signal, ​​e​i​​​, of ​θ​:

	​ ​e​i​​  =  θ + σ​ε​i​​,​

where ​​ε​i​​ ​ ∼​​ iid ​  ​(0, 1)​​ and each ​​ε​i​​​  is independent from ​θ​. Besides observing her signal 
and the common prior, an agent ​i​ can observe, at a cost, the signal of other agents.

Agents’ interconnections implied by the decisions of observing each other’s sig-
nals constitute a directed network, which we define as the economy’s information 
structure. An information structure ​G  = ​​ {​g​i, j​​}​​i, j​​​ is a list of ordered pairs of agents, 
such that if agent ​i​ observes the signal of agent ​j​, then the pair is in the list: ​​g​i, j​​  =  1​. 
Otherwise, ​​g​i, j​​  =  0​. The links carry no intensity attachments and are nonrecipro-
cal, in the sense that an agent observing another agent’s signal does not imply the 
symmetric relation.

The benefit of connecting to an agent is that if ​i​ connects to ​j​, agent ​i​ is able 
to observe ​j’s​ signal, even if ​j​ does not observe ​i​’s signal. In addition, there is no 
retransmission of information: by connecting to ​j​, agent ​i​ does not observe any other 
signal that ​j​ has observed, unless ​i​ observes those signals as well. Making connec-
tions is costly, and the linking party alone bears the cost.

The information set of agent ​i​ is composed of the common prior, her own 
signal, and the signals she has chosen to observe, which can be described 
by ​​I​i​​  =  {​e​j​​ with j  =  0, 1, …, i, …, n,​ such that ​​g​ij​​  =  1}.​ To simplify notation, 
we define ​​e​0​​  =  0​ as the mean of the common prior. In addition, since all 
agents observe their own signal and share the common prior, we consider 
that ​​g​i,i​​  = ​ g​i,0​​  =  1, for every agent i  =  1, …, n​.

Figure 1 presents examples of information structures and their respective infor-
mation sets. In panel A, we present a wheel network with four agents. Each agent 
observes one additional signal, obtaining three signals: her own, the common prior, 
and the additional signal being observed. Furthermore, each agent has her signal 
observed by only one other agent, forming a wheel. In panel B, we present a star 
network. Agents focus only on the first agent, as all observe the signal of agent 1. 
The first agent does not observe any additional signal. The first agent’s information 
set is composed only of her own signal and the common prior, while another agent’s 
information set is composed of his signal, the common prior and the first agent’s 
signal.

Payoffs.—Once agent ​i​ learns from the signals she has observed, she 
chooses an action, ​​a​i​​​, to maximize her expected payoff given other agents’ 
actions, ​​a​−i​​  = ​​ {​a​j​​}​​ j=1, j≠i​ 

n ​ ​. Agent ​i​ would like to choose an action as close as pos-
sible to the bliss action, ​​a​ i​ ∗​​, which is a convex combination of the true state of the 
world and the average action, excluding agent ​i​. Agent ​i​’s payoff is given by

(1)	​ Π​(​a​i​​, ​a​−i​​)​  =  − ​​(​a​i​​ − ​a​ i​ ∗​)​​​ 2​ − C​(​​i​​)​,​

where ​​a​ i​ ∗​  = ​ (1 − r)​θ + r ​​a –​​−i​​​ is the bliss action, ​​​a –​​−i​​  = ​ (1/(n − 1))​ ​∑ j=1, j≠i​ n  ​​ ​a​j​​​  
is the average action excluding agent ​i​’s own action, ​​​i​​  = ​ ∑ j=1,  j≠i​ n  ​​​g​ij​​​ is the number 
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of connection formed by agent ​i​, and ​C​( · )​​ is a link formation cost function.10 If an 
agent knew both the true state and the average action, she would choose a linear 
combination of both. The parameter ​r  ∈ ​ (0, 1)​​ captures conformity: how much an 
agent cares about the average action. The agent’s payoff is a function of the distance 
between her action and the bliss action.

An agent bears a cost of acquiring information, represented by ​C​(​​i​​)​​, where ​​​i​​  ∈ ​
{0, 1, …, n − 1}​​ is the number of signals that agent ​i​ observes in addition to her own 
signal and the common prior. Throughout the paper, we assume that the cost func-
tion is increasing (Assumption 1) and, in Section IIB, we discuss how increasing 
marginal cost (Assumption 2) affects the equilibrium information structure of the 
economy.

ASSUMPTION 1: Observing an additional agent’s signal is costly:

	​ C​(​​i​​ + 1)​ − C​(​​i​​)​  >  0.​

ASSUMPTION 2: Obtaining information has weakly increasing marginal cost:

	​ C​(​​i​​ + 2)​ − C​(​​i​​ + 1)​  ≥  C​(​​i​​ + 1)​ − C​(​​i​​)​.​

As a solution concept, Definition 1 formalizes pure strategy Nash equilibria in 
our framework.

DEFINITION 1 (Equilibrium): A pure strategy Nash equilibrium consists of ​n​ 
connection decisions, ​​g​i​​  ∈ ​​ {0, 1}​​​ n​​ for all ​i  ∈  N​, and an action rule functional,  
​a​(​g​i​​, ​g​−i​​)​ : ​​{0, 1}​​​ n×n​  →  ​, where  is a set of functions whose domain is the set 

10 Alternatively, we could have defined ​​a​ i​ ∗​  =  ​(1 − ​r ̃ ​)​θ + ​r ̃ ​​a –​​, where ​​a –​  =  ​(1/n)​ ​∑ j=1​ n  ​​​a​j​​​. This leads to the same 
optimal action, by setting ​​r ̃ ​  =  rn/​(r + n − 1)​​.

Figure 1. Examples of Networks and Implied Information Sets

Notes: In panel A, agent ​1​ observes agent ​2​’s signal; thus, ​1​’s information set is ​​I​1​​  =  ​{​e​0​​, ​e​1​​, ​e​2​​}​​, while for agent ​4​, 
it is ​​I​4​​  =  ​{​e​0​​, ​e​1​​, ​e​4​​}​​. In panel B, agent ​4​ observes agent ​1​’s signal; thus, ​4​’s information set is ​​I​4​​  =  ​{​e​0​​, ​e​1​​, ​e​4​​}​​, 
while for agent ​1​, it is ​​I​1​​  =  ​{​e​0​​, ​e​1​​}​​.

1

2

3

4

Panel A. Wheel

1

2

3

4

Panel B. Periphery-sponsored star
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of possible signals’ realization and codomain is the set of possible actions. The 
function ​​a​i​​  =  a​(​I​i​​)​  =  a​(​g​i​​, ​g​−i​​)​​ specifies agent ​i​’s actions as a function of her 
observed signals’ realizations. Given other agents’ connection decisions, ​​g​−i​​​, and 
action rules, ​​​{​a​j​​}​​j≠i​​​, agent ​i​’s connections, ​​g​i​​​, and action rule, ​​a​i​​​, maximize agent ​i​’s 
expected payoff. An equilibrium is strict, as usual, if agent ​i​’s choices strictly max-
imize her payoff.

We focus on Nash equilibria, agent ​i​ chooses her connections ​​g​i​​​ and action rule ​​a​i​​​ 
to maximize agent ​i​’s expected payoff, taking as given other agents’ connections and 
action rules. Even though agents do not observe each others’ signal selection, in equi-
librium agents conjecture the correct network structure when choosing their actions. 
Following the literature,11 our equilibrium concept imposes that agents actions are 
a function of their information set, i.e., ​​a​i​​  =  a​(​I​i​​)​​. This implies a symmetric action 
choice, as any two agents with identical information sets will necessarily take the 
same action. However, as we discuss at length in Section II, asymmetric equilibria 
can arise because agents can choose to acquire different signals. As a result, agents 
can have heterogeneous information sets and take distinct actions in equilibrium.

A. Action Choice

This game can be represented as a two-stage game. In the first stage, agents 
acquire information about the state of the world by observing other agents’ signals, 
thus forming an information structure. In the final stage, each agent chooses an 
action, given her implied information set. In this section, we discuss the solution of 
the second stage. Online Appendix Section A has the detailed derivations.

The agent chooses an action in order to maximize her expected payoff. An agent 
does not know either the true state of the world or the average action, but uses the 
information available to her to choose an optimal action that solves

	​ ​max​ ​a​i​​
​ ​  −E​[​​(​a​i​​ − ​a​ i​ ∗​)​​​ 2​ + C​(​​i​​)​ | ​I​i​​]​.​

The first-order condition leads to the following optimal action:

	​ ​a​i​​  =  E​[​a​ i​ ∗​ | ​I​i​​]​  = ​ (1 − r)​E​[θ | ​I​i​​]​ + rE​[​​a –​​−i​​ | ​I​i​​]​.​

An agent’s optimal action is a linear combination of the best predictor of the 
true state and the best predictor of the average action. The weight given to each is 
determined by the parameter ​r​, which captures how much the agent conforms to the 
average action.

The following proposition shows that in any equilibrium, given the resulting 
information structure ​G​, agents’ actions will be a unique linear combination of the 
realized signals they observe.12

11 For example, see Hellwig and Veldkamp (2009).
12 The restriction to linear equilibrium is a standard assumption in the literature using the normal-quadratic 

approach. For instance, see Angeletos and Pavan (2007), Calvò-Armengol, de Martí, and Prat (2015), and Dewan 
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PROPOSITION 1: In any equilibrium with a resulting information structure ​G​, the 
action rule function ​a​(​I​i​​)​​ is unique and linear in the realized signals.

The proof of the proposition, presented in online Appendix Section A.1, consists 
of guessing and verifying a linear equilibrium, and showing that it is unique. The 
proposition implies that an action is a linear combination of the signals in the econ-
omy, with the obvious restriction that a signal not observed must be assigned to a 
coefficient of zero. Formally,

(2)	​ ​a​i​​  = ​  ∑ 
j=0

​ 
n

  ​​ ​λ​ij​​ ​e​j​​,​

where ​​λ​ij​​​ are coefficients determined in equilibrium. The coefficient ​​λ​ij​​​ represents the 
relative influence of agent ​j​’s signal on the action of agent ​i​. In equilibrium, ​​λ​ij​​  =  0​ 
whenever agent ​i​ does not observe signal ​j​.

As result, the average action of the economy is also a linear combination of the 
signals:

(3)	​​ a –​  = ​  1 _ n ​​ ∑ 
i=1

​ 
n

  ​​ ​a​i​​  = ​  ∑ 
j=0

​ 
n

  ​​ ​β​j​​ ​e​j​​,​

where ​​β​j​​  =  (1/n) ​∑ k=1​ n  ​​​λ​kj​​​ is a coefficient determined in equilibrium and it rep-
resents the relative influence of agent ​j​’s signal on the average action ​​a –​​. Furthermore, 
if agent ​i​’s action and the average action are linear combinations of signals, it must 
be that the average action of all other agents, excluding agent ​i​, is also a linear com-
bination of the signals:

(4)	​​​ a –​​−i​​  = ​   1 _ 
n − 1 ​​  ∑ 

s=1,s≠i
​ 

n

  ​​ ​a​s​​  = ​  ∑ 
j=0

​ 
n

  ​​​β​−i, j​​ ​e​j​​,​

where ​​β​−i, j​​  = ​ (1/(n − 1))​​∑ k≠i​   ​​​ λ​kj​​​ is also determined in equilibrium and measures 
the relative influence of agent ​j​’s signal on the average action excluding agent ​i​’s 
action (​​​a ¯ ​​−i​​​). It is important to highlight that ​​β​−i, j​​​ depends exclusively on the action 
of agents other than ​i​ and therefore agent ​i​’s actions have no direct impact on ​​β​−i, j​​​. 
We show in online Appendix Section A.1 that the linear coefficients sum to 1:

(5)	​ ​ ∑ 
j=0

​ 
n

  ​​ ​λ​ij​​  =  1, ∀ i, ​  ∑ 
j=0

​ 
n

  ​​ ​β​j​​  =  1,  and  ​ ∑ 
j=0

​ 
n

  ​​ ​β​−i, j​​  =  1.​

Agent ​j​’s coefficient ​​β​j​​​ is a network centrality measure. It indicates the influence 
of agent ​j​’s signal on the average action of the economy and it is given by the fol-
lowing recursive formulation:

(6)  ​​  [n − ​r ̃ ​​(​​ 
–
 ​​j​​ + 1)​]​ ​β​j​​ 

	     = ​ (1 − ​r ̃ ​)​​ ∑ 
i=1

​ 
n

  ​​ ​ 
​g​ij​​ _  

​σ​​ 2​ + ​​i​​ + 1
 ​​​ ​​+ ​r ̃ ​​ ∑ 

i=1
​ 

n

  ​​ ​ 
​g​ij​​ _  

​σ​​ 2​ + ​​i​​ + 1
 ​​[​ ∑ 

s=0
​ 

n

  ​​​β​s​​​(1 − ​g​is​​)​]​,​

and Myatt (2008). We, however, follow Hellwig and Veldkamp (2009) and show that only the unique linear action 
function is an equilibrium.



2139HERSKOVIC AND RAMOS: ACQUIRING INFORMATION THROUGH PEERSVOL. 110 NO. 7

where ​​r ̃ ​  =  rn/​(r + n − 1)​​, ​​​ 
–
 ​​j​​  = ​ ∑ s=1,s≠j​ n  ​​ ​g​sj​​​ and ​​​i​​  = ​ ∑ s=1,s≠i​ n  ​​ ​g​is​​​. The equiva-

lent expression for the influence of the common prior, namely ​​β​0​​​, is given by13

(7)  ​n​(1 − ​r ̃ ​)​ ​β​0​​  = ​ (1 − ​r ̃ ​)​​ ∑ 
i=1

​ 
n

  ​​​  ​σ​​ 2​ _  
​σ​​ 2​ + ​​i​​ + 1

 ​ + ​r ̃ ​​ ∑ 
i=1

​ 
n

  ​​​  ​σ​​ 2​ _  
​σ​​ 2​ + ​​i​​ + 1

 ​​[​ ∑ 
s=0

​ 
n

  ​​​β​s​​​(1 − ​g​is​​)​]​.​

The influence of agent ​j​’s signal on the average action is a measure of her central-
ity in the network.14 Although our model does not feature retransmission of infor-
mation through an agent’s connections, an agent’s signal influence goes beyond her 
immediate connections. Influence is expressed as a recursive formula, depending on 
the influence of every agent. Formally, influence of agent ​j​’s signal is a linear com-
bination of two terms, weighted by the conformity parameter, ​r​. The first term on the 
right-hand side of equation (6) is the number of agents observing agent ​j​’s signal, 
weighted by how many signals each one of them observes. This represents the influ-
ence of agent ​j​’s signal on the posterior distribution of the true state of the economy. 
If more agents observe agent ​i​’s signal, then it becomes more influential as more 
agents use that signal to forecast the true state. The following lemma solves for 
influence coefficients under two limiting cases, one without coordination motives 
as ​r​ approaches 0 from above (i.e., ​r  → ​ 0​​ +​​) and another with strong complemen-
tarities as ​r​ approaches 1 from below (i.e., ​r  → ​ 1​​ −​​). These two extreme case have 
distinct implications for the equilibrium influence coefficients.

LEMMA 1: For a given network structure, the influence coefficients ​β​ specified in 
equations (6) and (7) feature the following limiting results:

(a)	​ ​lim​r→​0​​ +​​​ ​β​j​​  = ​
⎧
 

⎪
 ⎨ 

⎪
 

⎩
​
​ 1 _ n ​ ​∑ i=1​ n  ​​​  ​σ​​ 2​ _ 

​σ​​ 2​ + ​​i​​ + 1
 ​
​ 

if j  =  0
​   

​ 1 _ n ​ ​∑ i=1​ n  ​​​g​ij​​ ​  1 _ 
​σ​​ 2​ + ​​i​​ + 1

 ​
​ 

if j  ≥  1,
​​​ 

and

(b)	​ ​lim​r→​1​​ −​​​ ​β​j​​  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​

​  ​σ​​ 2​ _ 
​σ​​ 2​ + ​​PU​​

 ​

​ 

if j  =  0

​  ​  1 _ 
​σ​​ 2​ + ​​PU​​

 ​​  if j  ≥  1, j  ∈  PU​   

0

​ 

if j  ≥  1, j  ∉  PU,

​​​

where ​PU  = ​ {j : j  ≥  1, ​g​ij​​  =  1, ∀ i  =  1, …, n}​​ is the set of signals observed by 
every agent, i.e., public signals, and ​​​PU​​​ is the number of elements in ​PU​.

The proof of Lemma 1 is presented in online Appendix Section A.2. The  
coefficients ​​​{​β​i​​}​​ i=0​ n  ​​ depend on the entire network structure according to equations 
(6) and (7), however Lemma 1 shows closed-formed solution for these coefficients 
in the limit as ​r​ approaches 0 and 1. For the case of ​r​ approaching 0, agents do not 

13 Equations (6) and (7) are derived in online Appendix Section A.1.
14 Our measure relates more closely to the degree centrality and to eigenvector centrality, depending on the level 

of complementarity in the economy. For more details, Bloch, Jackson, and Tebaldi (2017) provides an excellent 
analysis on network centrality measures.
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care for the average action (i.e., ​r  → ​ 0​​ +​​ and thus ​​r ̃ ​  → ​ 0​​ +​​). In this case, the influ-
ence of agent ​j​’s signal becomes entirely driven by how agents rely on ​j​’s signal 
when updating their forecast of the state of the world according to Bayes’ rule. This 
is captured by the first term on the right-hand side of equation (6).

When ​r​ approaches 1, agents care only about the average action, and the influence 
of a signal depends primarily on how public that signal is. Lemma 1 shows that, if 
a signal is not observed by everyone in the economy, i.e., there is at least one agent 
not observing it ( ​j  ≥  1, j  ∉  PU​), then its influence converges to 0. However, pub-
lic signals’ influence converge to a constant. Hence, if agents care more about the 
average action and less about state of the economy, then (in the limit) agents only 
consider signals that are known to everyone. Effectively, as ​r​ goes to 1 and coordina-
tion becomes the main driver of information acquisition, agents perfectly coordinate 
on the public information available.

B. Link-Formation Incentives

We now consider agents’ information acquisition decisions. When an agent 
decides which connections to form, she has not observed any signal yet and the 
only information she has about the state of the world is the common prior. The first 
step is to compute the agent’s ex ante expected payoff as a function of other agents’ 
connections and their resulting optimal actions. Let ​​g​i​​  = ​​ (​g​ij​​)​​ j=0​ 

n ​ ​ be agent ​i​’s con-
nections and ​​g​−i​​​ be all the other connection in the network, then, given other agents’ 
connections, agent ​i​’s payoff from forming connections ​​g​i​​​ is given by

	​ E​[​U​i​​​(​g​i​​, ​g​−i​​)​ | ​g​−i​​]​  =  − E​[​​(E​[​a​ i​ ∗​ | ​I​i​​]​ − ​a​ i​ ∗​)​​​ 2​ | ​g​−i​​]​ − C​(​​i​​)​,​

where ​​U​i​​​(​g​i​​, ​g​−i​​)​​ is the payoff from the second stage assuming all other agents are 
optimizing their actions taking the network as given.

The following proposition characterizes the expected payoff of an agent as a 
function of other agents’ link-formation decisions.

PROPOSITION 2: The ex ante expected payoff of agent ​i​ choosing a set of signals to 
observe can be written as a function of her own information acquisition choices, ​​g​i​​​, 
and the influence that agents have over the average action not including agent ​i​’s 
action:

	​ E​[​U​i​​​(​g​i​​, ​g​−i​​)​]​  =  − ​  ​σ​​ 2​ _  
​σ​​ 2​ + ​​i​​ + 1

 ​ ​​(1 − r ​ ∑ 
j=0

​ 
n

  ​​ ​g​ij​​ ​β​−i, j​​)​​​ 
2

​​

	​ − ​r​​ 2​ ​σ​​ 2​ ​ ∑ 
j=0

​ 
n

  ​​​(1 − ​g​ij​​)​​β​ −i, j​ 2  ​ − C​(​​i​​)​​.

The proof of the proposition is presented in online Appendix Section A.3. It con-
sists of a long sequence of algebraic manipulation, in which the last step is a direct 
result of the Sherman-Morrison theorem regarding the inversion of matrix additions.

By definition, ​​β​−i, j​​​ does not depend on the action-strategy of agent ​i​ since it 
builds on action-strategies used by all other agents, except on agent ​i​’s, as defined 
in equation (4). It is important to emphasize that agents take other agents’ actions 
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as given when choosing which connections to form. Formally, this translates into 
agent ​i​ taking each ​​β​−i, j​​​ as given when making decisions. Therefore, the pay-
off formulation above implies that agent ​i​’s decision of forming connections, 
i.e., the choice of ​​​{​g​ij​​}​​j​​​, depends only on the action-strategies of other agents,  
namely ​​​{​β​−i, j​​}​​j​​​.

The payoff specification from Proposition 2 also makes the trade-off involved in 
making a connection explicit. By observing another agent’s signal, agent ​i​ increases 
her payoff in two ways. First, she increases the information that she knows, thus 
increasing the first term. At the same time, she reduces the information that she does 
not know, thus increasing the second term. In addition, by observing another agent’s 
signal, her payoff decreases by the link-formation cost.

An important feature of the payoff formulation above is concavity of the benefits 
of information acquisition. How much a connection adds to agent ​i​’s payoff decreases 
with how much information agent ​i​ already has. For instance, if all agents have the 
same influence on the average action excluding ​i​’s action, that is ​​β​−i, j​​  =  b, ∀ j​, then 
a connection adds more to agent ​i​’s payoff than any subsequent one.

Another feature of the payoff formulation from Proposition 2 is mono-
tonicity. From agent ​i​’s perspective, the payoff gain from connecting to an 
agent ​j​ is higher the more influential ​j​ is. Given the connections that other agents 
are choosing, as well as the resulting influence on the average action not includ-
ing agent ​i​’s action, agent ​i​ chooses to connect to the most influential agents 
(agent ​j​ with highest ​​β​−i, j​​​). However, as agent ​i​ makes a decision, she is con-
cerned about the most influential signals regarding the average action not includ-
ing her own action. Hence, in principle, different agents may rank other agents’ 
influence differently. In the next section, we show that this is not the case in  
equilibrium.

C. Equilibrium Properties

Next, we characterize two network properties, and later, in Proposition 3, we 
show that both hold in equilibrium. Properties 1 and 2 along with Proposition 3 for-
malize three main lessons regarding connection decisions. First, in equilibrium, all 
agents share the same ranking over signals’ influence. Second, an agent’s influence 
is monotonic in her in-degree centrality, which is the number of agents observing 
her signal. And, third, information acquisition is more valuable to agents whose 
signals are less influential. Property 1 formalizes the first and second lessons, while 
Property 2 formalizes the third.

PROPERTY 1: If an agent is observing another agent’s signal, she must also be 
observing the signal of any other agent with a higher in-degree centrality.

	​ For all  i and l  ≠  i, ​ g​i,l​​  =  1  ⇒ ​ g​i,m​​  =  1,  ∀ m : ​​ 
–
 ​​m​​  ≥ ​​  

–
 ​​l​​,​

where ​​​ 
–
 ​​j​​  = ​ ∑ s=1,s≠j​ n  ​​ ​g​sj​​​.

Property 1 establishes a monotonicity result: if agent ​i​ is connected to agent ​l​, 
then ​i​ must also be connected to any agent ​m​ whose signal is more observed than ​l​’s 
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signal.15 The intuition for Property 1 is that, when observing a signal, an agent 
obtains information regarding not only the true state of the world, but also about the 
average action. Even though all signals are equally informative about the state of the 
world, the same is not true of the average action: the more influential the source, the 
more informative the signal.

The fact that agents are ex ante identical does not imply that the signals are equally 
informative. If an agent’s signal is being observed by more agents, her own signal 
is more informative about the average action. As a result, she has less incentive to 
acquire additional information than an agent whose signal is not as public. Property 
2 summarizes this feature.

PROPERTY 2: If an agent’s signal is more observed than another agent’s, she can-
not be observing more signals:

	​​​  
–
 ​​f​​  ≥ ​​  

–
 ​​h​​  ⇒ ​ ​f​​  ≤ ​ ​h​​  ∀ f, h,​

where ​​​ 
–
 ​​j​​  = ​ ∑ s=1,s≠j​ n  ​​ ​g​sj​​​ and ​​​i​​  = ​ ∑ s=1,s≠i​ n  ​​ ​g​is​​​.

Property 2 establishes a different monotonicity result: if agent ​f​  ’s signal is more 
observed than agent ​h​’s signal, then agent ​f​ must be observing fewer signals than 
agent ​h​ is. While Property 1 ranks signals by the number of agents observing them, 
Property 2 ranks agents by the number of agents observing their signals and implies 
that a higher-ranked agent must observe fewer signals. Properties 1 and 2 combined 
provide the intuition that the more observed agent ​f​  ’s signal is, the more it informs 
about the average action. For this reason, agent ​f​ has less incentive to acquire addi-
tional information, thereby observing fewer signals. The following proposition 
shows that both properties hold true in equilibrium.

PROPOSITION 3: Given Assumption 1, any strict Nash equilibrium of the game 
above satisfies Properties 1 and 2.

The proof is presented in online Appendix Section B.1. The main contribution 
of the proposition is to restrict the information structures that can occur in equi-
librium. For instance, neither the wheel nor the bilateral star in Figure 2 occurs in 
equilibrium. The wheel does not satisfy Property 1, while the bilateral star does 
not satisfy Property 2. The wheel violates Property 1 since ​​g​1,2​​  =  1​, but ​​g​1,3​​  =  0​ 
although ​​​ 

–
 ​​2​​  = ​​  

–
 ​​3​​​. The bilateral star violates Property 2 since ​​​1​​  > ​ ​2​​​ 

although ​​​ 
–
 ​​1​​  > ​​  

–
 ​​2​​​.

The intuition of Property 1 holding in equilibrium relies on players’ incentives to 
form connections. After accounting for equilibrium behavior of agents, the impor-
tance of a signal is summarized by its agent’s in-degree centrality. In other words, 
in-degree centrality, namely ​​ 

–
 ​​’s, is a sufficient statistic that agents take into account 

when forming connections. As more agents observe a signal, the more important 
that signal is in equilibrium. For Property 2, the intuition is different. As more 

15 Given our direct network setup, Property 1 coincides with the definition of nested-split graphs. See Definition 
2 in Hiller (2017).
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agents observe a given agent’s signal, say agent ​i​’s signal, that signal becomes more 
influential in equilibrium. As a result, agent ​i​ endogenously becomes endowed with 
a more informative signal, which diminishes her incentive to acquire additional 
information. Thus, as more agents observe a signal from an agent, fewer is the num-
ber of signals that agent acquires in equilibrium.

Properties 1 and 2 hold true only in equilibrium. In online Appendix Section B.2, 
we provide an example highlighting how neither of the properties is an immediate 
implication of our setup. The fact that ​j​’s signal being observed by more agents 
implies that it is more informative about the average action is not a mechanical fea-
ture of agents’ influence, but an equilibrium result as well.

II.  Equilibrium

In this section, we characterize equilibrium information structures. In 
Subsection  IIA, we show that Properties 1 and 2 are sufficient to characterize 
all information structures in equilibrium as hierarchical networks. Subsection 
IIB discusses sufficient conditions on the link formation cost function to have 
only core-periphery networks in equilibrium, a particular case of a hierarchical 
network.

A. Hierarchical Network

Proposition 3 is a first step in characterizing the set of equilibria, by showing that 
every equilibrium satisfies Properties 1 and 2. On the one hand, Property 1 suggests 
that agents are organized in a hierarchy of influence, ranked by their in-degree cen-
trality. On the other hand, Property 2 suggests that a more influential agent has less 
incentive to acquire information. The following definition of hierarchical networks 
captures these intuitions.

Figure 2. Property 1 and Property 2 Restrict Equilibrium Information Structures

Notes: In panel A, the wheel information structure is not an equilibrium because it violates Property 1. In panel B, 
the bilateral star information structure is not an equilibrium because it violates Property 2.
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DEFINITION 2: A network is a hierarchical directed network if, and only if, there 
exists a partition on the set of agents, ​​A​s∈​{1,2, …,N}​​​​, such that

	 (i)	​ i  ∈ ​ A​s​​​ if, and only if, ​∀ j  ∉ ​ ∪​ k=1​ s  ​ ​A​k​​, ​g​j,i​​  =  1​;

	 (ii)	 if there is ​i  ∈ ​ A​s​​​ and ​j  ∉ ​ ∪​ k=1​ s−1 ​ ​A​k​​, such that ​g​i, j​​  =  1​, then ​​g​l,m​​  =  1 
∀ l, m  ∈ ​ A​s​​​; and

	 (iii)	 if there is ​i  ∈ ​ A​s​​​ and ​j  ∉ ​ ∪​ k=1​ s  ​ ​A​k​​ , such that ​g​i, j​​  =  1​, then ​j  ∈ ​ A​s+1​​​ and 
for any ​l  ∈ ​ A​s​​, ​g​l, j​​  =  1​. Furthermore, ​​g​l,m​​  =  0​ for any other ​m  ∉ ​ ∪​ k=1​ s  ​ ​A​k​​​.

A network is a hierarchical directed network if agents can be partitioned into 
tiers, such that the signal of any agent of a certain tier is observed by all agents in 
tiers below hers. Formally, item (i) specifies that an agent ​i​ is a member of the first 
tier if her signal is observed by all agents who are not in the first tier. An agent is in 
the second tier if her signal is observed by all agents who are not in the first or sec-
ond tier. By induction, it specifies that an agent ​i​ is in tier ​s​ if her signal is observed 
by all agents who are not in a tier above hers. Furthermore, within a certain tier, 
either all agents are observing the signals of all other agents in that tier or no one is. 
Item (ii) specifies that if agent ​i​ observes the signal of a member of her own tier ​s​ 
or of any tier below hers, then everyone in her tier observes each other’s signals. 
Finally, item (iii) specifies that if an agent ​i​ observes the signal of an agent in a tier 
below hers, then there will be only one such signal, and all other members of her tier 
also observe that same signal, as well. Intuitively both items (ii) and (iii) specify that 
agents in a tier are “equal.” All members of the same tier equally observe and are 
equally observed by members of their own tier. Either everyone looks at everyone’s 
signal or no one look at no one’s signal. Furthermore, they observe the same set of 
signals outside their own tier.

To help clarify the definition, we present a couple of examples in Figure 3. The 
wheel network in panel A is not hierarchical since, if all agents were in the same 
tier, then agents would not observe all or none of the signals within that tier, while if 
the agents were in different tiers, not all agents from a level below would be looking 
to all agents in the upper tiers. On the other hand, the network depicted in panel B 
satisfies the hierarchical definition with the partition that places agents 1 and 2 in 
one group, agent 3 in a second group, and the other agents in a third group.

Next, we show one of our main results specifying conditions for the emergence 
of hierarchical directed networks.

THEOREM 1: Any directed network satisfying Property 1 and Property 2 is a hier-
archical directed network.

The proof is by induction on the tiers of the network and is detailed in online 
Appendix Section B.3. The theorem is more general than our benchmark model. It 
relies on how Properties 1 and 2 restrict the network formation process, instead of 
on other specific modeling assumptions. Theorem 1 shows that any network satis-
fying both properties is hierarchical. For the purpose of our game, Theorem 1 along 
with Proposition 3 imply that all strict Nash equilibria feature a hierarchical directed 
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network. This result characterizes the set of equilibria, and we summarize it in the 
following corollary.

COROLLARY 1: Given Assumption 1, the network resulting from any strict Nash 
equilibrium is a hierarchical directed network.

A hierarchical information structure resembles what has been commonly defined 
as a social hierarchy: an implicit or explicit rank of individuals with respect to a 
certain social dimension.16 In our model, the number of people observing a signal 
is the social dimension that ranks agents in the social hierarchy. Furthermore, this 
implies a ranking regarding the influence that each agent’s signal has over the aver-
age action, with influential agents being at the top of the social hierarchy.

In equilibrium, agents endogenously sort themselves into tiers. Members of a 
group acquire the same information and have the same influence on the average 
action. Although the equilibrium may be asymmetric, information acquisition strat-
egies are symmetric within each tier. Furthermore, the hierarchy of influence is 
self-enforcing. If more agents observe the same signal, then this signal has more 
influence on the average action and becomes more attractive to be observed.

Another feature of our equilibrium is that, although agents are ex ante identical, 
agents are ordered by their payoffs.17 Those at the top of the hierarchy must have 
a higher payoff than agents in the lower tiers. Notice that a member of a higher tier 
can always mimic someone in a lower tier. Hence, by revealed preference, it must be 
that agents in higher tiers have higher payoffs in equilibrium, as well. Interestingly, 

16 For a formal definition, see Magee and Galinsky (2008).
17 This contrasts the results in Garicano (2000), in which ex ante identical agents differentiate themselves 

through costly information acquisition and occupy different positions in a social hierarchy, but all receive the same 
payoff.

Figure 3. Examples of Networks: One Not Hierarchical and One Hierarchical

Notes: In panel A, the wheel is not a hierarchical directed network. In panel B, the three-tier network is a hierar-
chical directed network.
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agents in lower tiers observe at least the same number of signals as those in higher 
tiers, and, as a result, they have more information. However, lower-tier agents bear 
a higher cost to have more information than those at the top, which outweighs the 
payoff gains from having more information.

B. Core-Periphery Network

In the previous subsection, we showed that any equilibrium information structure 
is hierarchical. Next, we further restrict the set of information structures that occur 
in equilibrium. We show that if the marginal cost of link formation is positive and 
weakly increasing (Assumptions 1 and 2), then any equilibrium information struc-
ture is core-periphery (Theorem 2 and Corollary 2).

PROPERTY 3: If an agent ​i​ observes two distinct agents’ signals, say ​k​ and ​j​, then 
both agents ​k​ and ​j​ observe the signal of each other. Formally,

	​ ​g​i, j​​  =  1    and  ​  g​i,k​​  =  1  ⇒ ​ g​k, j​​  =  1​

for any distinct agents, i, j, and k.

Property 3 establishes that if agent ​i​ observes both agents ​j​’s and ​k​’s signals, then 
agent ​k​ must observe ​j​’s signal. Symmetrically, the property also implies that agent ​j​ 
observes ​k​’s signal. Thus, there is at most one signal observed by agent ​i​ but not 
observed by agent ​j​: agent ​i​’s signal.

PROPOSITION 4: Given Assumptions 1 and 2, any strict Nash equilibrium of the 
game described above satisfies Properties 1, 2, and 3.

The intuition behind Proposition 4 is a revealed preference argument. If, in 
equilibrium, an agent ​i​ observes the signals from both agents ​j​ and ​k​, then agent ​i​ 
is willing to pay the cost of forming these links. Because networks are hierarchi-
cal in equilibrium (Corollary 1), agent ​i​ formed at least the same connections as 
agent ​k​. Thus, by the concavity of the payoff function, the benefit of an additional 
signal for agent ​i​ is lower than for agent ​k​. At the same time, Assumption 2 implies 
that agent ​i​’s marginal cost of forming a link is greater than or equal to agent ​k​’s. 
Therefore, by revealed preference, if agent ​i​ is willing to observe agent ​j​’s signal, 
then it must be that agent ​k​ is willing to observe ​j​’s signal as well because agent ​k​ 
faces higher benefit and lower cost if compared to agent ​i​. The formal proof of the 
proposition is in online Appendix Section B.4.

The three-tier hierarchical network presented in panel B of Figure  3 violates 
Property 3. Agent ​5​ observes both agents ​1​’s and ​3​’s signals, but agent ​1​ does not 
observe agent ​3​’s signal. If agent ​1​ chooses not to observe agent ​3​’s signal, it must 
be that the benefit did not outweigh the cost. However, for agent ​5​, the benefit of 
observing agent ​3​’s signal is smaller, as she observes more signals, and the cost 
is larger, given Assumption 2. Thus, agent ​5​ should find it optimal to not observe 
agent ​3​’s signal. This example shows that a weakly increasing marginal cost func-
tion helps to further restrict the set of possible equilibrium networks. Theorem 2 and 
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Corollary 2 show that if the cost function is strictly increasing with weakly increas-
ing marginal costs, then any equilibrium information structure is core-periphery. 
Before discussing this result, we define directed core-periphery networks.

DEFINITION 3: A hierarchical directed network is core-periphery if, and only if, 
the set of agents can be partitioned into two, the core ​​A​1​​​ and the periphery ​​A​2​​​, such 
that

	 (i)	 for any ​j​ in ​​A​1​​​, ​​g​ij​​  =  1​ for any ​i  =  1, …, n​; and

	 (ii)	 for any distinct ​s​ and ​r​ in ​​A​2​​​, ​​g​sr​​  =  0​.

A core-periphery network is a hierarchical directed network, in which agents are 
partitioned into, at most, two groups: the core and the periphery. Furthermore, all 
agents observe the signals of agents in the core; their signals are effectively public 
information. Agents in the periphery observe only signals from agents in the core. 
Also, note that both the empty and full networks are core-periphery. In the empty 
network, ​​A​1​​​ is empty and all agents are in ​​A​2​​​, while in the full network, ​​A​2​​​ is empty 
and all agents are in ​​A​1​​​.

To illustrate the core-periphery definition, Figure 4 provides four examples with 
six agents. The networks in panels A and B are both core-periphery. The network in 
panel C is not hierarchical and, thus, not core-periphery, while the one in panel D 
is hierarchical but not core-periphery. The network in panel C is not hierarchical 
because it violates condition (iii) of Definition 2. The network in panel D is hier-
archical but not core-periphery since agents 1 and 2 do not observe each other’s 
signals, violating condition (i) of Definition 3.

THEOREM 2: Any directed network satisfying Properties 1, 2, and 3 is a 
core-periphery directed network.

The proof is in online Appendix Section B.5. Similar to Theorem 1, Theorem 2 
is more general than the model presented. Theorem 2 shows that any network satis-
fying the three properties is core-periphery. For the purpose of our game, the theo-
rem implies that all strict Nash equilibria feature a core-periphery directed network 
when the marginal cost of acquiring information is weakly increasing, as captured 
in Corollary 2.

COROLLARY 2: Given Assumptions 1 and 2, the network resulting from any strict 
Nash equilibrium is a core-periphery directed network.

Corollary 2 characterizes the set of equilibrium information structures. If the 
marginal cost of acquiring information is increasing, then all strict Nash equi-
libria have a core-periphery information structure. The corollary also disciplines 
how public each agent’s signal is in equilibrium, as well as each agent’s payoff. 
Specifically, the signal of any core agent is effectively public because all agents 
observe all core agents’ signals, and the signals of core agents influence the aver-
age more than those from the periphery. Hence, we can interpret any equilibrium 
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as a rational ritual in which the signals of the core become endogenously common 
knowledge.

The fact that some signals are more public than others translates into different 
expected payoffs for any given equilibrium network. Agents in the core could mimic 
any peripheral agent’s information acquisition by observing the same set of signals 
at the same cost. However, agents in the core choose not to observe at least a sig-
nal from the periphery. Thus, by revealed preference, core agents ought to have an 
expected payoff at least as high as peripheral agents have. Although core agents 
have higher expected payoffs, peripheral agents have more information because 
they observe at least the same number of signals as core agents do.

To further characterize the core-periphery equilibria, notice that there are two 
types of core-periphery networks. In the first type, agents in the core observe only 
other core agents’ signals, e.g., network in panel A of Figure 4. Let us refer to this  
type of network as simple core-periphery network. In the second type of core- 
periphery network, agents in the core observe not only other core agents’ signals, 
but also one signal from a peripheral agent, e.g., network in panel B of Figure 4. Let 
us call such a peripheral agent the key peripheral agent. The key peripheral agent is 
part of the periphery and not part of the core because, although core players observe 
her signal, other peripheral agents do not observe her signal. Let us refer to the sec-
ond type as core-periphery observing down network. Next, we fully characterize the 
set of equilibria when the conformity parameter, ​r​, goes to either 0 or 1.

PROPOSITION 5: For a given cost function satisfying Assumptions 1 and 2:

	 (a)	 As ​r​ approaches 0, there is a unique equilibrium which is a core-periphery 
observing down network;

	 (b)	 As ​r​ approaches 1, only simple core-periphery networks are equilibrium. 
Moreover, the empty network is always an equilibrium and there exist ​​n​ c​ ∗​  ∈ ​
{0, 1, …, n}​​ such that every simple core periphery network with ​​n​c​​  ≤ ​ n​ c​ ∗​​ 
core players is an equilibrium.

The proof is in online Appendix Section B.6. As ​r​ approaches 0, there is a unique 
equilibrium network structure. For ​r​ sufficiently close to 0, the payoff benefit of 

Figure 4. Different Networks: Only the First Two Are Core-Periphery Networks
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coordinating is approximately 0. As a result, the force behind Property 2 weakens. 
Although different agents have their signals observed by different sets of players, 
their benefit of acquiring information become almost identical. Hence, all agents 
effectively face the same optimization problem: choosing how many signals to 
acquire. Thus, they all choose to acquire the same number of signals. The equi-
librium information structure is unique and given by the core-periphery observing 
down network.

As ​r​ approaches 1, the influence coefficients, ​β​, of nonpublic signals converge 
to 0 (Lemma 1). Thus, agents do not want to observe a nonpublic signal and only 
simple core-periphery networks hold in equilibrium. The empty network is always 
an equilibrium because of the strong coordination incentives that make no agent 
willing to observe a nonpublic signal. Furthermore, starting from an equilib-
rium core-periphery network, if we decrease the number of core players, then the 
influence coefficients of core players increases (Lemma 1), which, according to 
Proposition 2, leads to higher marginal benefit of keeping a connection. Hence, if 
a simple core-periphery network with ​​n​c​​​ core players is an equilibrium, then any 
simple core-periphery network with less than ​​n​c​​​ core players is also an equilibrium 
for ​r​ close enough to 1. The maximum number of core players possible, say ​​n​ c​ ∗​​, is 
given by the incentive constraint that a periphery player does not want to break a 
link with a core player.

In the next section, we discuss an example in which Assumption 2 does not hold 
and a three-tier hierarchical network emerges in equilibrium.

C. Example of Three-Tier Equilibrium

In Section IIA, we showed that every strict Nash equilibrium results in hierar-
chical directed network as information structure whenever Assumption 1 holds 
(Corollary 1). In Section IIB, we add Assumption 2 and further restrict equilibrium 
networks to core-periphery (Corollary 2). To highlight the possibility of multi-tier 
hierarchical networks, we show in this section an example of an economy with a 
three-tier network as an equilibrium outcome.

Let us consider an economy with ​5​ agents, ​σ  =  1​, and ​r  =  0.5​. We assume 
the following nonconvex cost function for ​C​(​​i​​)​​: ​C​(0)​  =  0​, ​C​(1)​  =  0.14​,  
​C​(2)​  =  0.20,​ and ​C​(x)​  =  1​ for every ​x  ≥  3​. Notice that this example violates 
Assumption 2, which means that we cannot apply Theorem 2 and Corollary 2. 
We numerically solve for all equilibria, and there are four different informa-
tion structures that can be equilibrium. All four equilibrium networks are dis-
played in Figure 5, and this example features an equilibrium that does not have 
a core-periphery structure. We have in panels A, B, and D different hierarchical 
core-periphery networks, while in panel C we have a hierarchical directed network 
that is not core-periphery. The network in panel C is a three-tier hierarchical net-
work and holds in equilibrium.

In the three-tier hierarchical network displayed in panel C of Figure 5, agent 
1 constitutes the first tier, agent 2 the second, and the third tier consists of agents 
3, 4, and 5. This network structure holds in equilibrium because the cost func-
tion is nonconvex. More importantly, the additional cost of observing two agents’ 
signals instead of only one is relatively low. Hence, third-tier agents are willing 
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to observe two additional signals, one from agent 1 and another from agent 2. In 
equilibrium, agent 2’s signal is more informative about the average action than are 
signals from the third tier. This difference in signals’ informativeness makes agent 
2 (second tier) willing to observe only the signal from the first tier because she 
already observes her own signal. Assumption 2 prevents a scenario like this one 
from happening. If Assumption 2 holds, then agents in the third tier would find it 
expensive to observe agent 2’s signal, and a three-tier hierarchical network would 
not be an equilibrium.

III.  Final Remarks

In this paper, we characterize all equilibrium information structures of an infor-
mation acquisition game with complementarity in actions. We show that all strict 
Nash equilibria present a hierarchical directed information structure, which is char-
acterized by the existence of different tiers of informational importance. An individ-
ual that belongs to the top tier is more influential, as members of all the other tiers 
observe her signal. A second tier individual’s signal is observed by all members of 
tiers below hers, and so on. A hierarchical directed network implies multiple social 
levels, ranked by their influence over economic outcomes.

Our first result (Theorem 1) is more general than the information acquisition 
model presented in this paper, as it depends on Properties 1 and 2. Property 1 states 
that an agent ranks other agents’ signals by how public they are: that is, according to 
their in-degree centrality in the network. Property 2 states that a more central agent 
benefits less from observing another agent’s signal. We show that any strict Nash 
equilibrium of a network formation game satisfying Properties 1 and 2 is a hierar-
chical directed network.

A particular case of a hierarchical network is core-periphery. In this case, agents are 
partitioned into two groups: the core and the periphery. Members of the core are more 
influential, with their signals being effectively public information in equilibrium. We 
show that if the marginal cost of observing an additional signal is weakly increasing, 
then any equilibrium information structure is core-periphery (Theorem 2).

Figure 5. Example of Equilibrium with a Three-Tier Hierarchical Network

Notes: This figure plots all equilibria from an economy with five agents (​n  =  5​), ​σ  =  1​, and ​r  =  0.5​. We assume 
the following nonconvex cost function for ​C​(​​i​​)​​: ​C​(0)​  =  0​, ​C​(1)​  =  0.14​, ​C​(2)​  =  0.20​, and ​C​(x)​  =  1​ for 
every ​x  ≥  3​. We numerically solve for all equilibria, and there are four different information structures in equilib-
rium. All four equilibria are displayed in panels A, B, C, and D.
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