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Abstract

The mammalian NLR gene family was first reported over 20 years 
ago, although several genes that were later grouped into the family 
were already known at that time. Although it is widely known that 
NLRs include inflammasome receptors and/or sensors that promote 
the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive 
inflammation and cell death, the other functions of NLR family 
members are less well appreciated by the scientific community. 
Examples include MHC class II transactivator (CIITA), a master 
transcriptional activator of MHC class II genes, which was the first 
mammalian NBD–LRR-containing protein to be identified, and NLRC5, 
which regulates the expression of MHC class I genes. Other NLRs govern 
key inflammatory signalling pathways or interferon responses, and 
several NLR family members serve as negative regulators of innate 
immune responses. Multiple NLRs regulate the balance of cell death, 
cell survival, autophagy, mitophagy and even cellular metabolism. 
Perhaps the least discussed group of NLRs are those with functions 
in the mammalian reproductive system. The focus of this Review is to 
provide a synopsis of the NLR family, including both the intensively 
studied and the underappreciated members. We focus on the function, 
structure and disease relevance of NLRs and highlight issues that have 
received less attention in the NLR field. We hope this may serve as an 
impetus for future research on the conventional and non-conventional 
roles of NLRs within and beyond the immune system.
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In 2000, our group noted that similarities exist between NBS–LRR 
proteins, MHC class II transactivator (CIITA)4 and nucleotide-binding 
oligomerization domain-containing 1 (NOD1) in terms of their NBD 
and LRR sequences, and additionally noted the similarity in size and 
spacing of these domains5. Subsequently, we identified a large family 
of 22 NBD–LRRs encoding human genes, with CIITA as the founding 
member6 (Figs. 1,2). These genes were identified by BLAST homology 
searches of available genome sequences before the human genome 
was fully assembled. Family members have divergent N-termini, includ-
ing the acidic transactivation domain of CIITA, baculovirus inhibitor 
of apoptosis repeat (BIR) domain, pyrin domain (PYD) or caspase 
recruitment domain (CARD).

Several other research groups reported parallel findings regard-
ing NBD–LRR family members. Human neuronal apoptosis inhibitory 

Introduction
The initial description of the human nucleotide-binding oligomeri-
zation domain (NOD)-like receptor (NLR, also known as  nucleotide-
binding domain (NBD), leucine-rich repeat (LRR) protein) family was 
preceded by the identification of a related family in plants (Fig. 1). The 
plant nucleotide-binding sequence LRR (NBS–LRR) proteins are the lar
gest group of plant disease resistance (R) proteins1. These proteins 
contain an NBD and LRR domain with variable C-terminal and N-terminal 
domains. The majority of plant NBS–LRR proteins have either a Toll–IL-1 
receptor (TIR) domain (referred to as TNL (TIR–NBS–LRR) proteins) or 
coiled-coil (CC) domains (referred to as CNL (CC–NBS–LRR) proteins), 
and these domains are considered important for protein–protein inter-
actions. NBS–LRR proteins are critical for host defence against viruses, 
bacteria, nematodes, fungi, oomycetes and insects2,3.
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Fig. 1 | Nucleotide-binding and oligomerizing sensors as a universal strategy 
for cellular defence. a, The STAND ATPase module consisting of the nucleotide-
binding domain (NBD), helical domain 1 (HD1) and winged helix domain (WHD) 
is used for cellular defence across species from prokaryotes to eukaryotes. 
An additional helical domain 2 (HD2) is present in many STAND proteins, including 
a NACHT-specific domain used in the NBD–LRR-containing protein (NLR) family. 
b, The primary structural organization of human NLRs. Here, NLRs are grouped 
according to subfamily, which is determined by the effector domain at the 
N-terminus. The variable domains associated with the NACHT domain are colour 
coded and indicated in the domain legend below. MHC class II transactivator 
(CIITA) exhibits cell-type specific alternative promoter usage, and this is 
designated with arrows. The oligomerized inflammasome for neuronal  
apoptosis inhibitory protein (NAIP)–NBD-, LRR- and CARD-containing 4  
(NLRC4) is shown with the single NAIP subunit indicated with darker shading 

(Protein Data Bank (PDB) 3JBL)287. c, Two representative members of the plant 
disease resistance proteins with either Toll–IL-1 receptor (TIR) or coiled-coiled 
(CC) domains are shown. The NB-ARC module lacks the HD2 domain. The 
C-terminal sensor is also an LRR domain for these proteins. The oligomerized 
resistosome for ZAR1 is shown (PDB 6J5T)326. d, Two representative members of the  
recently described prokaryotic antiviral STAND (Avs) protein family are shown. 
The effector domain in the proteins shown is a nuclease instead of a protein-
recruitment domain, and the sensor domain is composed of tetratricopeptide 
repeats (TPR). The oligomerized complex for EcAvs4 is shown (PDB 8DGF)29. 
Cryogenic electron microscopy structure representations in this figure were  
created using VMD and the referenced PDB files. AAD, acidic activation domain:  
BIR, baculovirus inhibitor of apoptosis repeat; FIIND, domain with function 
to find; MLS, mitochondrial localization signal; NOD, nucleotide-binding 
oligomerization domain; NLRP, NBD-, LRR- and pyrin domain-containing protein.

http://www.nature.com/nri


Nature Reviews Immunology | Volume 23 | October 2023 | 635–654 637

Review article

protein (NAIP) was originally thought to be deleted in spinal muscu-
lar atrophy7, but the deletion was later attributed to a neighbouring 
genetic region. Nonetheless, the encoded protein was noted as having 
a BIR–NBD–LRR domain arrangement and to negatively regulate apop-
tosis8. Koonin and Aravind used NAIP, CIITA and two other proteins to 
define the conserved NACHT domain, which includes the sequences 
that cover the ATP/GTPase-specific P-loop, the Walker A and Walker B 
motifs and five additional motifs9. Two CARD-containing proteins, 
NOD1 (also known as CARD4)10,11 and NOD2 (also known as CARD15)12, 
were found to activate NF-κB and are sensors of processed fragments 
of bacterial peptidoglycan13–16. Additionally, NOD2 frameshift and 
missense variants are genetic risk factors associated with Crohn’s 
disease17,18, first establishing these as pathogen-recognition molecules 
important in inflammatory diseases. Inohara and Nuñez noted similari-
ties in the NOD of APAF1, Ced-4, NOD1, NOD2 and plant disease resist-
ance genes and proposed that these constitute a family — the NOD 
family19. Another CARD–NBD–LRR protein, IPAF (now referred to as 
NBD-, LRR- and CARD-containing 4 (NLRC4)), was discovered by Poyet 
et al. and found to associate with pro-caspase 1, leading to caspase 1  
maturation20. Two other groups focused on the PYD-containing sub-
group: Martinon et al. first showed that NALP1 (now known as NBD-, 
LRR- and pyrin domain-containing 1 (NLRP1)) has caspase matura-
tion activity, for which they coined the term ‘inflammasome’21, and  
later reported a 14-member PYD-containing family22; Wang et al.  
and Grenier et al. focused on the PYD-containing APAF1-like proteins, 
which they named PYPAFs, and showed that PYPAF7 (now known 
as NLRP12) and PYPAF5 (now known as NLRP6) induced caspase 
1-dependent cytokine-processing activity and NF-κB-activating func-
tion when co-expressed with the adaptor protein ASC23,24. The relevance 
of these caspase 1 maturation proteins to human health was first dem-
onstrated by a transformative human genetics study by Hoffman et al. 
in 2001, which identified mutations in NLRP3 (previously known as 
CIAS1) to be the cause of two rheumatological diseases, namely familial 
cold autoinflammatory syndrome 1 (FCAS1) and Muckle–Wells syn-
drome25. Soon after, others reported NLRP3 mutations in more severe 
autoinflammatory disorders26,27. NLRP3 was later shown to also direct 
the cleavage of pro-caspase 1, thereby representing the second inflam-
masome effector protein to be described28. These initial discoveries 
of NLR family members between the 1990s and early 2000s kicked off 
over two decades of exciting progress in the field of innate immunity 
(Fig. 2). In a surprising twist, a family of prokaryotic antiviral STAND 
(Avs) proteins was recently described that utilizes a similar oligomer-
izing NBD and sensor domain architecture to eukaryotic NLRs29 (Fig. 1). 
Some of these Avs proteins use their sensor domains to detect the 
presence of phage proteins, and oligomerization brings N-terminal 
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Fig. 2 | Key historical events in the NLR field. The timeline highlights some 
of the key discoveries and conceptual advances that have influenced the field 
over the last two decades. There are clearly many important contributions to 
the field which are not included here, and we apologize to those who have been 
left out due to space constraints. ASC, apoptosis-associated speck-like protein 
containing a CARD; CIITA, MHC class II transactivator; cryo-EM, cryogenic 
electron microscopy; DPP8, dipeptidyl peptidase 8; dsDNA, double-stranded 
DNA; dsRNA, double-stranded RNA; LRR, leucine-rich repeat; NAIP, neuronal 
apoptosis inhibitory protein; NEK7, NIMA related kinase 7; NLR, NBD–LRR-
containing protein; NOD, nucleotide-binding oligomerization domain-containing 
protein; NLRC, NBD-, LRR- and CARD-containing protein; NLRP, NBD-, LRR- and 
pyrin domain-containing protein; ROS, reactive oxygen species.
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endonuclease domains into a complex to degrade phage DNA. Thus, 
this threat-dependent, induced-proximity mechanism has remarkably 
been consistently used for cellular defence in all kingdoms of life.

In this Review, we provide an overview of our current understand-
ing of the NLR protein subgroups and discuss their biology, mechanisms 
of action and physiological relevance. Due to the expansiveness of 
this topic, we cannot credit all relevant work in the field; we apolo-
gize for this and refer the reader to other reviews for topics that have 
been extensively reviewed30,31. The intention here is to present a brief 
overview of the well-known NLRs but to also discuss those members 
that have received less attention. NLR family members mediate a wide 
variety of functions, including serving as transactivators of MHC gene 
transcription, as inflammasome receptors and sensors, as positive and 
negative modulators of signalling pathways, and in a variety of cell death 
processes. We discuss the key roles of each of these NLR functional 
subgroups and offer a forward-looking perspective on the field.

NLRs as transcriptional regulators
Although NLR proteins are primarily thought of as innate immune 
sensors, the founding member, CIITA, and the related protein NLRC5 
are master transcriptional regulators of MHC class II (MHC II) and 
MHC I genes, respectively (Fig. 1 and Table 1). CIITA was identified via 
complementation cloning using a mutant cell line devoid of MHC II 
expression, and mutations in CIITA were found in bare lymphocyte 
syndrome, an immunodeficiency caused by the lack of MHC II4. CIITA 
shuttles between the nucleus and cytoplasm32, and its expression pat-
tern precisely matches that of MHC II and its accessory proteins33,34. 
Consistent with its role as a transcriptional co-activator, CIITA contains 
an N-terminal acidic transactivation domain. The NACHT domain of 
CIITA was shown to bind GTP, although this study was not conducted 
with highly purified protein35. There is no clear evidence that CIITA 
binds DNA directly; therefore, it likely mediates its activity via interac-
tions with transcription factors bound to the SXY cis-elements36 in the 
promoters of all MHC II genes, leading to the recruitment of chromatin 
modifiers, including histone acetyltransferases and methylases37. CIITA 
has interesting associations with cancer, including its absence in some 
cancers38,39, its transduction to active tumour immunity40 and its role 
as a gene fusion partner in lymphoid cancers41.

Similarly to CIITA, NLRC5 also shuttles between the nucleus and 
cytoplasm, and its primary function is to upregulate MHC I and acces-
sory protein gene expression42. NLRC5 also requires an SXY cis-acting 
module in MHC I promoters for transcriptional activation. In contrast 
to CIITA, the N-terminus of NLRC5 is composed of an atypical CARD and 
lacks an acidic activation domain. NLRC5 also contains a much larger 
C-terminal LRR region with up to 38 LRRs. In contrast to the highly 
restricted expression of CIITA, NLRC5 is expressed constitutively with 
elevated expression observed in T cells, B cells and natural killer (NK) 
cells. The role for NLRC5 in MHC I gene expression was clearly shown 
in NLRC5-deficient mice generated by several groups43–45. The loss of 
NLRC5 has the greatest effect on MHC I expression in T cells, NK cells 
and NK T cells, whereas MHC I expression in macrophages is more 
modestly reduced in NLRC5-deficient mice. The role of NLRC5 in con-
trolling MHC I expression in other cell types is modest to absent. Hence, 
NLRC5 differs from CIITA in that its impact is not observed in all MHC 
I-positive cells. Similarly to CIITA, it is also a target of immune evasion 
in cancer46. An additional role in regulating inflammatory cytokines has 
been proposed for NLRC5. In one model, direct interaction between 
NLRC5 and IKKα/β was reported to block interaction with IKKγ, result-
ing in reduced NF-κB activation47. However, analysis of NLRC5-deficient 

mice has not consistently verified this physiological role for NLRC5; 
these conflicting studies have been reviewed elsewhere48.

NLRs in inflammasomes and pyroptosis
In this section, we provide a brief overview of the NLR family members 
that form inflammasomes (Fig. 3 and Table 1). Regulated inflammasome 
signalling is vital for homeostasis and tissue repair, whereas dysregu-
lated inflammasome signalling is central to the pathology seen in many 
diseases (Fig. 3 and Table 1).

NLRP3 inflammasomes
NLRP3, the best studied of the inflammasome sensors, detects pathogen-
associated molecular patterns (PAMPs) and damage-associated molec
ular patterns (DAMPs). Its significance in autoinflammatory diseases 
and its mechanisms of activation have been detailed in many excellent 
reviews31,49; therefore, this section is not intended to provide a compre-
hensive review of this topic. NLRP3 inflammasome assembly with pro-
caspase 1 and ASC leads to proteolytic maturation of caspase 1 (ref. 28). 
Caspase 1 in turn cleaves and activates more than 70 substrate proteins, 
including the pro-inflammatory cytokines IL-1β and IL-18. Cleavage 
of gasdermin D (GSDMD) by caspase 1 was found to be necessary and 
sufficient for pyroptosis50,51. The N-terminal fragment of GSDMD forms 
a multimeric membrane pore to cause pyroptotic cell death52–55 and 
facilitate the release of IL-1β and IL-18 via a non-conventional mode of 
secretion. Discovery of the inflammasome activity of NLRP3 helped to 
define its role in IL-1β release in cryopyrin-induced autoinflammatory 
syndromes (CAPS)25,28. CAPS include several diseases with increasing 
disease severity, including FCAS1, Muckle–Wells syndrome, and the 
severely debilitating chronic infantile neurological cutaneous and 
articular syndrome26,27,56 (also known as neonatal-onset multisystem 
inflammatory disorder). The NLRP3 inflammasome has also been impli-
cated in many other diseases, including autoinflammatory, metabolic, 
neurodegenerative and infectious diseases57.

Assembly of the fully functional NLRP3 inflammasome is initi-
ated by two distinct steps: priming and activation. The priming step 
involves the recognition of PAMPs or DAMPs via receptors such as 
Toll-like receptors (TLRs) or NOD2, or the detection of TNF and IL-1β, 
which leads to NF-κB activation and increased cellular expression 
of NLRP3, caspase 1 and IL-1β58–60. In addition, post-translational 
modifications of NLRP3, including phosphorylation61 and deubiqui-
tination62,63, promote NLRP3 activation, while ubiquitination64 and 
sumoylation65 suppress NLRP3 inflammasome activity. In the activation 
step, NLRP3 oligomerizes through homotypic interactions between 
NACHT domains, creating a scaffold to nucleate ASC filament forma-
tion through PYD interactions66,67. ASC and pro-caspase 1 combine 
via CARD–CARD interactions leading to the formation of prion-like 
filaments. Pro-caspase 1 undergoes auto-proteolytic cleavage and 
processing into mature caspase 1 within this complex68. Several groups 
identified NIMA-related kinase 7 (NEK7) as an essential component 
of NLRP3 inflammasome activation69–71 (Fig. 3). NEK7 oligomerizes 
with NLRP3 to form a complex that promotes ASC speck formation 
and caspase 1 activation72. NEK7 interacts with NLRP3 but not with the 
NLRC4 and AIM2 inflammasome sensors.

Whereas the so-called ‘canonical’ activation of the NLRP3 inflam-
masome activates caspase 1, non-canonical activation of the NLRP3 
inflammasome activates caspase 4 and caspase 5 in humans, and cas-
pase 11 in mice73–75. Non-canonical NLRP3 inflammasome activation 
occurs in response to intracellular lipopolysaccharide (LPS) sensing 
by caspase 4 or caspase 11, resulting in the secretion of IL-1β and IL-18 
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Table 1 | NLR functions and human disease associations

NLR Function Pathway Diseases

CIITA MHC class II transcriptional 
regulator

Regulation of MHC class II 
expression

Bare lymphocyte syndrome4, primary mediastinal B cell lymphoma and 
classical Hodgkin lymphoma41, susceptibility to rheumatoid arthritis, multiple 
sclerosis and myocardial infarction300

NAIP Flagellin/T3SS sensing, 
pyroptosis, inhibition of apoptosis

TAK1-dependent JNK1 
activation, inflammasome 
assembly

Increased susceptibility to legionella

NOD1 PRR for diaminopimelic acid RIPK2-dependent NF-κB and 
MAPK activation

Asthma and inflammatory bowel disease172

NOD2 PRR for MDP and viral single-
stranded RNA, autophagy

RIPK2-dependent NF-κB and 
MAPK activation

Crohn’s disease17,18, Blau syndrome176, Yao syndrome301, atopic dermatitis302, 
susceptibility to leprosy and tuberculosis172

NLRC3 Negative regulation of T cell 
activation and TLR response

Interaction with STING to 
reduce STING–TBK1 association

 Unknown

NLRC4 PRR for flagellin and rod 
protein, pyroptosis, phagosome 
maturation

Inflammasome formation Increased susceptibility to bacterial infection, multiple sclerosis, 
autoinflammation with infantile enterocolitis150,303,304, neonatal-onset 
multisystem inflammatory disease150, FCAS4 (refs. 150,305), ulcerative colitis306

NLRC5 MHC class I upregulation, 
regulates innate immune response

MHC class I regulation, type I 
interferon response

Lymphoid cancers, CNS infection, cerebral ischaemia–reperfusion injury, 
glioma, chronic periodontitis307, pulmonary aspergillosis308

NLRP1 PRR for MDP Inflammasome formation Vitiligo105,106, multiple self-healing palmoplantar carcinoma108,309, NLRP1-
associated autoinflammation with arthritis and dyskeratosis109, recurrent 
respiratory papillomatosis111, Alzheimer disease310, coeliac disease311, Addison 
disease312, type 1 diabetes, autoimmune thyroid disorders313, systemic lupus 
erythematosus314, systemic sclerosis105, giant cell arteritis315, congenital 
toxoplasmosis316, rheumatoid arthritis317, chronic obstructive pulmonary 
disease110

NLRP2 Negative regulation of NF-κB, 
embryonic development

Inflammasome formation Beckwith–Wiedemann syndrome260, female infertility258

NLRP3 PRR for PAMPs, DAMPs and 
irritants

Inflammasome formation Familial cold autoinflammatory syndrome 1 (ref. 25), Muckle–Wells syndrome25, 
chronic infantile neurological, cutaneous and articular syndrome56, autosomal 
dominant deafness 34 (ref. 318), keratoendotheliitis fugax hereditaria319, 
myelodysplastic syndrome320, gout, type 1 diabetes, coeliac disease, psoriasis, 
multiple sclerosis, increased susceptibility to HIV1 infections, inflammatory 
bowel diseases, type 2 diabetes

NLRP4 Negative regulation of type I 
interferon signalling by double-
stranded RNA, DNA or viral 
infection; reduces autophagy in 
response to bacterial infection

DTX4-dependent TBK1 
degradation, Beclin 1 
dependent autophagy

Exacerbation of asthma in smokers321

NLRP5 Embryogenesis Mitochondrial function, ROS Female infertility270

NLRP6 Negative regulation of NF-κB Inflammasome formation Rheumatoid arthritis322

NLRP7 PRR for lipopeptide Inflammasome formation Recurrent hydatidiform moles272, testicular seminoma, endometrial cancer, 
colon cancer

NLRP8 Unknown Unknown  Unknown

NLRP9 Unknown Unknown  Unknown

NLRP10 Unknown Increased susceptibility to bacterial infection, atopic dermatitis323

NLRP11 Association with MAVS during viral 
infection, inhibits type I interferon 
signalling

NLRP3 licenses NLRP11 for 
inflammasome activation

 Unknown

NLRP12 Negative regulation of signalling 
pathways; inflammasome 
formation

Interference with signalling 
components such as NIK; 
association with ASC to form 
an inflammasome

FCAS2 (ref. 223), atopic dermatitis324, glioblastoma221

NLRP13 Unknown Unknown Unknown

NLRP14 Spermatogenesis Unknown Spermatogenic failure248
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and induction of pyroptosis, which can lead to endotoxaemia-induced 
death74,76,77. Caspase 11 can be induced by TRIF and senses intracellular 
LPS from cytosolic Gram-negative bacteria that have escaped vacuoles75. 
Caspase 8 can activate canonical and non-canonical NLRP3 inflamma
somes in response to many pathogens78–81. Caspase 8 initiates apoptosis 
in response to FASL and TNF and protects against necroptosis.

Several studies have shown that inflammasome activation can 
involve more than one sensor. For example, NLRC4 and NLRP3 both 
activate caspase 1 in response to PAMPs from Salmonella enterica 
subsp. enterica serovar Typhimurium82,83 and in response to DAMPs 
such as lysophosphatidylcholine in neuroinflammation84. NLRP3 and 
AIM2 inflammasomes are activated by Plasmodium parasite-derived 
haemozoin and DNA85 and by Aspergillus fungi86. Cytosolic DNA sensed 
by cGAS activates the NLRP3 and AIM2 inflammasomes via cGAMP 
production87. Mechanisms involving multiple sensors may indicate 
cooperative function within a cell or independent inflammasomes 
within a cell or different cells.

Despite extensive studies, the precise mechanism through which 
NLRP3 becomes activated remains unclear (see also the section Struc-
ture of NLR proteins). However, NLRP3 can be activated by many diverse 
pathways, including through the chemical disruption of glycolysis88 or 
by cellular accumulation of cholesterol crystals89 or free fatty acids90. 
It is presumed that common downstream molecules associated with 
cellular damage are the critical activators of NLRP3. Mitochondrial 
DNA is a candidate for a downstream mediator that can increase NLRP3 
activation91,92. RNA has also been shown to activate NLRP3, and the 
mitochondrial antiviral signalling (MAVS) protein has been implicated 
in this process93–96. Although K+ efflux is also suggested to be a common 
activation pathway of NLRP3 (ref. 97), N-acetylglucosamine-induced 
hexokinase re-localization promotes NLRP3 inflammasome activation 
independently of K+ efflux in certain bacterial infections98.

The intense focus on the role of NLRP3 inflammasome activation 
and pyroptosis in numerous disease models has led to the development 
of many NLRP3 inhibitors99. While some of these inhibitors affect the 
conformation of NLRP3 (oridonin, MCC950 and tranilast), others affect 
its function (OLT1177 and parthenolide) or its binding to signalling 
partners (BAY11-7082 and VI-16)100. These inhibitors show promise as 
future therapeutics for a range of inflammatory diseases.

NLRP1 inflammasomes
Human NLRP1 (also known as DEFCAP, CARD7, NAC and NALP1)21,101–103 
is a PYD-containing and CARD-containing NLR protein first found to 
induce pro-IL-1β cleavage in an in vitro, cell-free reconstitution assay 
when combined with caspase 1, caspase 5 and ASC. Indeed, experiments 

with NLRP1 led to coining of the term ‘inflammasome’ (Fig. 2). NLRP1 
is highly expressed in keratinocytes and has been associated with sev-
eral skin diseases104–109 (Table 1). NLRP1 is also found in the lung and is 
associated with chronic obstructive pulmonary disease110 and recur-
rent respiratory papillomatosis111. Finally, NLRP1 polymorphisms are 
associated with a novel autoinflammatory disorder, NLRP1-associated 
autoinflammation with arthritis and dyskeratosis109.

NLRP1 exhibits significant genetic divergence in different species. 
Humans have one NLRP1 gene, while mice have four Nlrp1 homologue/
paralogue genes112. Human and mouse NLRP1 are also divergent in 
their protein structure. Human NLRP1 contains an N-terminal PYD 
and a C-terminal CARD that flank a central NACHT, LRR and domain 
with function to find (FIIND), while mice have an N-terminal NR100. 
Although the N-termini of human and mouse NLRP1 are different, they 
both represent autoinhibitory domains113,114, which are removed by 
proteolytic cleavage resulting in NLRP1 activation115,116. For example, the 
N-terminal NR100 domain of mouse NLRP1B117 and rat NLRP1 (ref. 118) 
is cleaved by Bacillus anthracis lethal toxin119–121; in contrast, the human 
N-terminal PYD is resistant to lethal toxin. This cleavage exposes a 
new N-terminus that undergoes N-end rule-mediated degradation by 
ubiquitin ligase-mediated degradation, resulting in the release of the 
C-terminus, which is freed to interact and recruit pro-caspase 1 through 
its CARD, resulting in caspase 1 maturation122–124. Ubiquitin ligases 
and proteases that can cause NLRP1 cleavage include ubiquitin ligase 
UBR2 (ref. 124), Shigella flexneri IpaH7.8 (ref. 123) and picornavirus 3C 
proteases125. The 3C protease cleaves human NLRP1, exposing a new 
N-terminus, which then undergoes N-glycine-mediated degradation, 
thus liberating the UPA (which is conserved in UNC5, PIDD and ankyrin) 
and CARD domains to form an inflammasome.

The FIIND of NLRP1 also undergoes proteolytic cleavage. The 
serine proteases dipeptidyl peptidase 8 (DPP8) and DPP9 interact 
with FIIND of human NLRP1 to maintain it in an inactive state, and a 
DPP8/DPP9 inhibitor, ValboroPro (VbP, or talabostat) reverses this 
inhibition113,126–128. VbP causes proteasome-dependent degradation 
of the N-terminus of NLRP1 and autoproteolytic cleavage of FIIND 
at the ZU5 (present in ZO-1 and UNC5) and UPA subdomains, releasing 
the C-terminal domain that includes CARD to recruit pro-caspase 1 
(refs. 115,116,129). Cryogenic electron microscopy (cryo-EM) shows 
a ternary complex composed of DPP9 full-length NLRP1 and the 
C-terminus of NLRP1 (refs. 130,131). It is postulated that full-length 
NLRP1 inhibits activation of the C-terminal NLRP1 since an autocatalytic 
deficient full-length NLRP1 promotes inhibition of the C-terminal frag-
ment. Thus, VbP weakens the inhibitory interaction of NLRP1–DPP9 to 
induce inflammasome activation.

NLR Function Pathway Diseases

NLRX1 ROS generation, autophagy and 
mitophagy

Blocks STING–TBK-mediated 
antiviral responses, negatively 
regulates NF-κB pathway 
through TRAF6

Increased susceptibility to chronic hepatitis B325, viral infections, tumour 
suppressor in cancer

The table shows the 22 human NLRs with the first column indicating their principal function and the second column showing the best-characterized pathways by which they mediate their 
function (transcription, inflammasome, signalling pathway, etc.). Finally, the last column shows human diseases that have been linked to mutations in human NLRs. This list includes a  
spectrum of affected states ranging from polymorphisms that increase disease susceptibility to severe gain-of-function inflammasomopathies. We have attempted to be thorough, but  
we are aware that there may be some research that is not cited here. CIITA, MHC class II transactivator; CNS, central nervous system; DAMP, damage-associated molecular pattern; FCAS, 
familial cold autoinflammatory syndrome; MAVS, mitochondrial antiviral signalling protein; MDP, muramyl dipeptide; NAIP, neuronal apoptosis inhibitory protein; NIK, NF-κB-inducing kinase; 
NLR, nucleotide-binding domain (NBD) leucine-rich repeat (LRR)-containing protein; NLRC, NBD-, LRR- and CARD-containing protein; NLRP, NBD-, LRR- and pyrin domain-containing protein; 
NLRX1, NLR family member X1; NOD, nucleotide-binding oligomerization domain-containing protein; PAMP, pathogen-associated molecular pattern; PRR, pattern recognition receptor;  
RIPK2, receptor-interacting serine/threonine kinase 2; ROS, reactive oxygen species; STING, stimulator of interferon genes; T3SS, type III secretion system; TAK1, TGFβ-activated kinase 1; 
TLR, Toll-like receptor; TRAF6, TNF receptor-associated factor 6.

Table 1 (continued) | NLR functions and human disease associations
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NLRP1 can also be activated by Toxoplasma parasites, bacteria, 
viruses and long double-stranded RNAs (dsRNAs)132–135. Regarding the 
latter, it was shown that human but not mouse NLRP1 binds dsRNA 
through its LRR domain136. NLRP1B can also be activated by energy 
deprivation and nutrient depletion of ATP. In contrast to other NLRs, 
where ATP binding is necessary for their functional activity, the ATP-
binding domain in NLRP1B inhibits its function137 and this inhibition 
of NLRP1B by ATP also requires the FIIND region138. A recent paper 
sheds some light on the effect of ATP on NLRP1 activation, showing 
that oxidized but not reduced thioredoxin 1 (TRX1) can interact with 
the NLRP1 NACHT-LRR domain to restrain the activation of NLRP1, in 
an ATP-dependent process139. Furthermore, both patient-derived and 
ATPase-deficient NLRP1 mutations disrupt binding to oxidized TRX1, 
leading to inflammasome activation. The authors suggest that, under 

reductive stress, when oxidized TRX1 is reduced, NLRP1 can be acti-
vated. Others have shown that inhibition of TRX1 activity induces the 
β-amyloid-activated NLRP1–caspase 1–GSDMD pyroptotic response140. 
Recently, another form of stress, ribosome stress, was also found to 
cause the hyperphosphorylation and activation of human NLRP1 by 
the ribotoxic stress response kinase ZAKα (also known as MAP3K20) 
and p38 (ref. 141). Therefore, NLRP1 is activated by a number of cell 
stress inducers.

NLRC4 and NAIP inflammasomes
NLRC4 was the first NLR shown to associate with pro-caspase 1, leading  
to caspase 1 activation and subsequent cell death20. NLRC4 is important for 
caspase 1 activation after exposure to Salmonella enterica subsp. enterica 
serovar Typhimurium142 due to Salmonella flagellin143. Components  
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Fig. 3 | Inflammasome activators and related disorders. The NBD-, LRR- and 
pyrin domain-containing 3 (NLRP3), NLRP1, NBD-, LRR- and CARD-containing 4 
(NLRC4), NLRP12 and NLRP6 inflammasomes with their intracellular mediators 
involved in activation are summarized. Dysregulated or chronically activated 
inflammasomes may lead to inflammatory diseases. NLRP3 is a sensor for 
numerous pathogen-associated molecular patterns and damage-associated 
molecular patterns responding to intracellular damage induced by pathogenic  
or sterile insults. NLRP1 is a sensor for ribotoxic stress and double-stranded  
RNA (dsRNA). Dipeptidyl peptidase 8 (DPP8)/DPP9 inhibitors are activators 
of the NLRP1 inflammasome. The current model for NLRP1 inflammasome 
activation involves ASC-dependent recruitment of pro-caspase 1 by the UPA-
CARD C-terminal fragment of NLRP1. The NLRC4 inflammasome detects type III  

secretion system (T3SS) bacterial proteins via neuronal apoptosis inhibitory 
proteins (NAIPs) and can assemble an inflammasome with or without ASC. 
The NLRP12 inflammasome is assembled in response to Yersinia pestis and 
Plasmodium chabaudi. The NLRP6 inflammasome detects commensal‐derived 
metabolites and lipoteichoic acid (LTA) derived from Gram‐positive bacteria.  
BIR, baculovirus inhibitor of apoptosis repeat; CARD, caspase recruitment domain; 
CINCA, chronic infantile neurological, cutaneous and articular; FCAS, familial 
cold autoinflammatory syndrome; FIIND, domain with function to find; LRR, 
leucine-rich repeat; NBD, nucleotide-binding oligomerization domain; NEK7, 
NIMA related kinase 7; NLR, NBD–LRR-containing protein; NOMID, neonatal-
onset multisystem inflammatory disease; PYD, pyrin domain; ROS, reactive 
oxygen species.
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of the bacterial type III secretion system (T3SS) were also shown to trig-
ger mouse NLRC4-dependent caspase 1 activation144. For these bacterial 
PAMPs, NLRC4 is not the direct sensor but, instead, pairs with mouse 
NAIP5, which recognizes flagellin145, and NAIP1 and NAIP2, which respec-
tively recognize T3SS needle146,147 and rod proteins145. Thus, the NAIP 
proteins recognize bacterial components and recruit NLRC4 to activate 
caspase 1. NAIPs contain N-terminal BIR domains, while NLRC4 displays 
an N-terminal CARD. Humans only have one NAIP gene, and it responds 
to flagellin and both T3SS needle and rod proteins. NLRC4 and NAIP5 
also mediate pyroptosis in response to flagellin148,149, and pyroptosis  
induced by bacterial T3SS needle proteins is NLRC4 dependent144.

Gain-of-function mutations in human NLRC4 lead to inflamma
somopathies that are associated with spontaneous NLRC4 inflamma-
some activation, production of IL-1β and IL-18, and inflammatory cell 
death150. Three NLRC4 inflammasomopathies have been described: 
autoinflammation with infantile enterocolitis, neonatal-onset multi-
system inflammatory disease and FCAS4 (ref. 150). Endogenous short 
interspersed nuclear element RNAs, which promote atrophic macular 
degeneration and systemic lupus erythematosus, induce NLRC4 inflam-
masome activation with DDX17 helicase-mediated sensing of these 
RNAs independent of NAIPs151.

NLRP6 inflammasome-dependent and inflammasome-
independent functions
NLRP6 (also known as PYPAF5)24 is expressed by immune and stromal 
cells; however, its expression is low in typical lymphoid tissues and high 
in intestinal colonic myofibroblasts and epithelial cells152,153. Overex-
pression of NLRP6 leads to its assembly with ASC to form specks (that 
is, large protein complexes) in cells, and these coordinate the activation 
of NF-κB and pro-caspase 1 (ref. 24). It is regulated post-translationally 
by the deubiquitinase CYLD, which targets K63-linked ubiquitination 
of NLRP6 to prevent its binding to ASC154.

NLRP6 functions as an inflammasome in the dextran sodium 
sulfate-induced colitis model and protects against colitis by driving 
IL-18 release, which promotes epithelial barrier integrity152,153,155 via the 
promotion of LGR5+ stem cells and antimicrobial response156. NLRP6 
also protects against colon cancer by inducing IL-18 (ref. 155), resulting 
in reduced intestinal inflammation and reduced proliferative signals 
such as via the SMARRC1, p53, WNT and Notch pathways, all of which 
have been linked with intestinal tumorigenesis152. Additionally, NLRP6 
enhances mucin secretion by intestinal Goblet cells through the promo-
tion of autophagy157. NLRP6 is also reported to influence the intestinal 
microbiota, although this is controversial. Some have found that NLRP6 
expression affects components of the microbiota, such as Prevotella153, 
while others have failed to see this association using littermates from 
different animal facilities158,159.

In addition to functions in the intestine, NLRP6 is expressed in 
the liver and can affect disease development in this tissue. For exam-
ple, expression of NLRP6 was shown to attenuate non-alcoholic fatty 
liver disease160, alcoholic hepatitis161 and hepatocellular carcinoma in 
mice162. These effects were found to be mediated by the reduced pro-
duction of inflammatory cytokines, such as TNF, and by reduced NF-κB 
and TLR4 signalling in the presence of NLRP6. By contrast, others found 
that Candida albicans infection may promote hepatocarcinogenesis in 
patients in an NLRP6-dependent fashion by increasing metabolites that 
can promote tumorigenesis163. Thus, the impact of NLRP6 expression 
may be dependent on the disease and tissue context.

In the setting of infection, NLRP6 can be activated by the micro-
bial metabolite taurine164, bacterial lipoteichoic acid165, and viral RNA 

through the RNA helicase DHX15 to induce type I and type III inter-
feron expression166. Furthermore, viral infection, dsRNA, TNF and 
type I interferon can enhance NLRP6 expression166. A seminal paper 
showed that, during viral infection, NLRP6 is activated by binding to 
dsRNA and undergoes liquid–liquid phase separation, and that a dis-
ordered poly-lysine sequence (K350–354) in the protein is important 
for its function167.

In addition to its role in inflammasome assembly, NLRP6 has an 
alternative role in suppressing inflammatory responses and signals. 
NLRP6-deficient mice show enhanced resistance to bacteria, accom-
panied by increased NF-κB and MAPK activation after TLR activation168. 
NLRP6 also reduces neutrophil influx and granulocytic bactericidal 
activity during Gram-positive bacterial infection169. NLRP6 expres-
sion in inflamed periapical tissues and human periodontal ligament 
cells negatively regulates IL-6 and TNF by inhibiting NF-κB and ERK 
signalling170. Thus, NLRP6 has both inflammasome-dependent and 
inflammasome-independent functions.

In summary, a major role of multiple NLR proteins lies in inflam-
masome function. While the ligands for some NLRs are well defined, 
others are not. Furthermore, some inflammasome-associated NLRs 
have alternative functions such as reducing inflammatory responses. 
In the next section, we focus on NLRs that control a variety of signalling 
pathways.

NLRs as regulators of diverse signalling pathways
This section focuses on NLRs that contribute to pathogen sensing and 
diverse immune signalling responses independently of inflammasome 
assembly (Fig. 4), with the exception of NLRP12 and NLRP11. NLRP12 
has been reported to assemble inflammasomes in response to cer-
tain infections but is included herein due to its well-described role in 
negatively regulating inflammation. NLRP11 does not itself form an 
inflammasome, yet is reported to regulate the NLRP3 inflammasome, 
as discussed below.

Sensing of peptidoglycan fragments by NOD1 and NOD2
NOD1 and NOD2 represent the earliest and best-characterized sig-
nalling NLRs, with their function being to detect PAMPs and activate 
inflammatory signalling pathways. NOD1 and NOD2 have been exhaus-
tively reviewed elsewhere171,172; hence, only a brief synopsis is provided 
herein. In addition to a central NACHT domain and C-terminal LRR 
domain, the N-terminus of NOD proteins consists of a single CARD 
(in the case of NOD1) and two CARDs (for NOD2). NOD1 and NOD2 
detect the cytosolic presence of processed fragments of peptidoglycan 
derived from bacterial cell walls: γ-D-glutamyl-meso-diaminopimelic 
acid13,14 and muramyl dipeptide15,16, respectively. A recent study high-
lights the critical role of host peptidoglycan processing by showing 
that muramyl dipeptide is phosphorylated by N-acetylglucosamine 
kinase (NAGK), and this modification is essential for the activation 
of NOD2 in THP-1 cells (a monocytic cell line) and in primary mouse 
macrophages173. Recognition of these PAMPs results in oligomerization,  
CARD-mediated recruitment of receptor-interacting serine/threonine 
kinase 2 (RIPK2), and the downstream activation of NF-κB and MAPK 
signalling pathways174, leading to the production of inflammatory 
cytokines and chemokines and to inflammatory cell recruitment. 
In addition, NOD1 can cause apoptosis in a caspase 8-dependent and 
RIPK2-dependent manner175.

NOD1 is expressed in a wide variety of cell types, including epi-
thelial cells10, and studies in intestinal epithelial cells have illustrated 
key roles for NOD1 in the immune response to intestinal pathogens. 
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By contrast, NOD2 is primarily expressed in cells of the myeloid line-
age12 and in specialized cells such as intestinal Paneth cells. Gain-of-
function mutations in NOD2 were found to be associated with the 
human inflammatory disease Blau syndrome176. Blau syndrome muta-
tions are restricted to the NACHT domain, and the resultant amino acid 
changes are predicted to destabilize the autoinhibited conformation 
of NOD2, leading to constitutive activation177. In contrast, mutations 
that lead to impaired function of NOD2 represent the most significant 
risk factor for development of Crohn’s disease17,18. Mutations associated 
with Crohn’s disease are dispersed throughout both the NACHT and 
LRR domains of NOD2, potentially interfering with its oligomerization, 
localization or ligand sensing177. Both NOD1 and NOD2 have been shown 
to associate with endosomes, a localization that efficiently places these 
sensors in position to encounter their ligands, which are transported by 
endosomal peptide transporters178,179. Membrane localization of NOD1 

and NOD2 is dependent on S-palmitoylation mediated by the palmi-
toyltransferase ZDHHC5, and mutations that disrupt palmitoylation 
result in impaired NF-κB signalling in response to NOD activators180.

The mitochondrial sensor NLRX1
NLRX1 is ubiquitously expressed in mammals. It has a central NACHT 
and LRR domain and a unique N-terminus, which functions as a mito-
chondrial targeting sequence181,182. The C-terminus of human NLRX1 
was found to be required for oligomerization and binds single-stranded 
RNA, dsRNA and lipid metabolites but not DNA183–185. The precise 
location of NLRX1 in mitochondria may be dynamic. It is found in 
the mitochondrial outer membrane and thought to interact with the 
CARD of MAVS through its LRR domain181. Additionally, it localizes to 
the mitochondrial matrix to regulate mitochondria reactive oxygen 
species production182,186. Multiple studies have shown that NLRX1 
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Fig. 4 | Regulatory functions of NLRs. Different NBD–LRR-containing proteins 
(NLRs) act as either positive or negative regulators in transcription, MAPK,  
NF-κB and type I interferon signalling pathways, and in autophagy. MHC class II  
transactivator (CIITA) and NOD-, LRR- and CARD-containing 5 (NLRC5) induced 
by IFNγ acts as transactivators of MHC genes. NLRC5 also negatively regulates  
the NF-κB and type I interferon signalling pathways. In addition to NLRC5, several 
NLRs reduce either NF-κB or type I interferon signalling pathways or both.  
These NLRs are NLRC3, NLR family member X1 (NLRX1), NBD-, LRR- and pyrin 
domain-containing 2 (NLRP2), NLRP4, NLRP11, NLRP12 and NLRP14. On the other 
hand, NLRP7 may positively regulate the NF-κB pathway, and NLRP2 promotes  
MAPK signalling. Likewise, nucleotide-binding oligomerization domain-
containing 1 (NOD1) and NOD2 recognizes γ-d-glutamyl-meso-diaminopimelic  

acid (iE-DAP) and muramyl dipeptide (MDP) separately and interact with  
RIPK2 to activate the NF-κB and MAPK signalling pathway. Additionally, NOD2 
recognizes MDP and recruits ATG16L1 to the plasma membrane to induce 
autophagy327. The right shows that NLRX1 interacts with elongation factor Tu, 
mitochondrial (TUFM) to induce autophagy while NLRP4 interacts with Beclin 1 
to inhibit autophagy. The right box shows NLRs that regulate development in  
the reproductive system. NLRP14 is the only NLRP molecule that contributes  
to spermatogenesis, while other NLRPs, including NLRP2, NLRP4, NLRP5,  
NLRP7, NLRP9 and NLRP11, may regulate oogenesis and embryogenesis.  
MAVS, mitochondrial antiviral signalling; RIPK2, receptor-interacting serine/
threonine-protein kinase 2; STING, stimulator of interferon genes; TRAF6, TNF 
receptor-associated factor 6.
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negatively regulates MAVS-mediated activation of IRF3 and type I  
interferon induction in viral infection181,187,188. It also blocks stimulator 
of interferon genes (STING)–TBK-mediated antiviral responses in HIV1 
infection189, negatively regulates NF-κB signalling through interact-
ing with TNF receptor-associated factor 6 (TRAF6)188,190 and has been 
shown to function as a tumour suppressor in cancer191,192. However, 
in contrast to these roles in negatively regulating IRF3-mediated and 
NF-κB-mediated antiviral responses, NLRX1 has been shown to sup-
port early antiviral responses by post-transcriptionally regulating IRF1  
abundance193.

NLRX1 also functions in autophagy and mitophagy187. NLRX1 was 
first reported to induce autophagy by interacting with the elongation 
factor Tu, mitochondrial (TUFM)–ATG5–ATG12 pathway to promote 
virus-induced autophagy and to inhibit RLR-induced type I inter-
feron production upon viral infection194. NLRX1 also interacts with 
Beclin 1 or protein E7 of oncogenic human papillomavirus (HPV16) 
to promote autophagy in cancer cells195,196. Additionally, it promotes 
LC3-associated phagocytosis (a non-canonical form of autophagy) and 
activates the MAPK pathway upon fungal infection197. Furthermore, 
NLRX1 acts as an LC3 interacting region-containing mitophagy recep-
tor to promote mitophagy during Listeria monocytogenes infection198. 
It also regulates mitophagy in metastatic mammary tumours199 and 
intestinal ischaemic–reperfusion injury200, and mediates morphine-
induced immunosupression in microglia by activating an insuffi-
cient mitophagy response201. In contrast to these aforementioned 
studies, NLRX1 was reported to negatively regulate autophagy dur-
ing Group A Streptococcus infection202. However, most studies indi-
cate that NLRX1 may represent a therapeutic target when increased 
autophagy or reduced inflammation is desired. Indeed, an activator 
of NLRX1, NX-13, was found to attenuate inflammatory bowel dis-
ease in a mouse model by decreasing multiple aspects of immune  
activation203.

Negative regulation of immune cell activation by NLRC3
NLRC3 is a CARD-containing NLR and is expressed in both human 
and mouse immune cells6,204. Its highest expression is in T cells, and 
T cell activation downregulates NLRC3 expression, suggesting that 
it may serve as a suppressor of T cell activation204. Indeed, NLRC3 
reduces K63-linked ubiquitination of TRAF6 to downregulate NF-κB 
signalling, expression of IFNγ and TNF, and the mTOR pathway in 
CD4+ T cells in the context of viral infection, T cell-mediated autoim-
munity205 and Mycobacterium tuberculosis infection206. In peritoneal 
macrophages, NLRC3 negatively regulates TLR4-induced and LPS-
induced NF-κB activation by interacting with TRAF6 to mediate its 
deubiquitination in macrophages207. Additionally, NLRC3 also attenu-
ates innate immune cell responses to cytosolic DNA, cyclic di-GMP 
and DNA viruses by interacting with the DNA sensor STING and TBK1 
to impede the STING–TBK1 interaction, thereby limiting interferon 
production and NF-κB activation208. Upon binding of viral dsDNA and  
dsRNA to the LRR domain, ATPase activity of NLRC3 is increased  
and STING–TBK1 is released185. Additionally, NLRC3 NACHT can inter-
act with the scaffold protein IQGAP1, disrupting the NLRC3–STING 
association in regulating type I interferon responses209. Overall, these 
studies reveal the impact of NLRC3 in regulating STING–TBK-mediated 
type I interferon signalling and NF-κB pathways to control cellular 
immune responses. In human cancer, NLRC3 expression is found to 
be a positive prognostic factor210,211, and NLRC3 was shown to medi-
ate protection in a mouse model of colon cancer by inhibiting the 
PI3K–mTOR pathway212.

Cell-specific regulation of inflammation by NLRP12
NLRP12 is expressed in different myeloid cell populations, with promi-
nent expression in granulocytes and dendritic cells213. NLRP12 functions 
as both a negative regulator of inflammation and as an inflammasome. 
It attenuates canonical and non-canonical NF-κB signalling pathways 
by blocking IRAK1 activation214 and by increasing degradation of the 
NF-κB-inducing kinase (NIK)215, respectively. Additionally, NLRP12 can 
interact with TRAF3, which is involved in NIK degradation. Furthermore, 
it associates with ASC to mediate caspase 1 activation23, leading to 
IL-1β and IL-18 release in bone marrow-derived macrophages infected 
with Yersinia pestis and Plasmodium chabaudi216,217, thus serving as an 
inflammasome sensor.

NLRP12 activity in myeloid cells is essential for colonic homeosta-
sis218,219. Inhibition of NF-κB and ERK signalling by NLRP12 suppresses 
colonic inflammation and colitis-associated colorectal cancer in mouse 
models. NLRP12 also mitigates colitis by regulating the gut micro-
biota; for instance, its expression maintains the presence of protective 
commensal strains of Lachnospiraceae in the gut220.

NLPR12 has also been associated with other functions. NLRP12-
deficient tumour cells show decreased cellular proliferation in 
glioblastoma221 and human glioblastoma tissue shows elevated 
NLRP12 expression. During infection with the parasite Leishmania 
major, NLRP12-deficient neutrophils showed increased migration 
towards the chemokine CXCL1, albeit without affecting NF-κB or ERK  
signalling222.

Mutations in NLRP12 are associated with the systemic autoinflam-
matory disease FCAS2 (ref. 223). This is a cold-induced autosomal 
dominant disease characterized by non-infectious periodic fevers and  
inflammatory symptoms in joints, muscles, digestive organs, skin 
and nerves. Interestingly, the IL-1 receptor antagonist (anakinra) only 
partially relieves the symptoms seen in patients with FCAS2 (ref. 224), 
whereas this drug is potently protective in patients with NLRP3-
associated inflammasomopathies and familial Mediterranean fever. 
The role of NLRP12 in inflammasome activation versus modulation of 
other signalling pathways requires further investigation. It remains to 
be explored whether the clinical manifestations are reflective of the 
divergent functions attributed to NLRP12.

A potential anti-inflammatory role for NLRP10
NLRP10 (also known as PYNOD) contains an N-terminal PYD in addition 
to a NACHT domain but is the only mammalian NLR family member 
that lacks an LRR domain225. NLRP10 is expressed in a variety of tissues 
and is highly expressed in heart, skeletal muscle, brain and skin225,226. 
Exogenous expression studies in cell lines225 and transgenic mice226 
found that overexpressed NLRP10 inhibits IL-1β processing. Trans-
genic mice overexpressing NLRP10 were resistant to lethal doses of LPS 
injection, although they showed a more significant reduction in serum 
levels of TNF compared with IL-1β226. Attempts to examine the physi-
ological role of NLRP10 in knockout mice were temporarily hindered 
by the presence of a secondary genetic mutation that was responsible 
for the initially described phenotype227,228. Extensively backcrossed 
NLRP10-deficient mice were shown to have increased inflammatory 
responses to Leishmania major infection, supporting a potential anti-
inflammatory role for NLRP10 (ref. 229). Additional NLRP10-deficient 
mouse strains have been created, and these animals are phenotypically 
normal in the absence of an inflammatory challenge230,231. However, 
although one group reported that NLRP10-deficient mice show 
reduced inflammation in a model of contact hypersensitivity230, 
another group saw no difference between NLRP10-deficient and 
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wild type mice in a similar model231. NLRP10 remains an enigmatic 
NLR protein, and future studies will be required to determine its  
physiological role.

Regulation of inflammatory signalling and autophagy 
by NLRP4
NLRP4 is strongly expressed in placenta, oocytes, testis, spleen, pan-
creas, liver, lung, kidney and thymus232–234. Similarly to other NLRPs, 
NLRP4 has an N-terminal PYD, but the NLRP4 PYD contains unique 
features and does not interact with ASC235. Initially, NLRP4 was found to 
negatively regulate TNF-induced and IL-1β-induced NF-κB activation233. 
Subsequently, NLRP4 was also reported to negatively regulate type I 
interferon signalling in response to dsRNA, DNA or viral infection. The 
NACHT domain of NLRP4 interacts with the E3 ubiquitin ligase DTX4 
to direct the K48-linked polyubiquitination of TBK1, resulting in its 
degradation, and this blocks TBK1-mediated phosphorylation and 
translocation of IRF3 (ref. 234).

Aside from its role in regulating these immune signalling pathways, 
NLRP4 regulates autophagy in response to bacterial infection and 
interacts with the autophagy regulator beclin 1 via its NACHT domain. 
Upon infection with Group A Streptococcus, NLRP4 is recruited to 
autophagosomes and dissociates from Beclin 1, allowing the initiation 
of autophagy236. Additionally, NLRP4 associates with the class C vacu-
olar protein-sorting complex to inhibit autophagosome maturation. 
NLRP4 also interacts with RHO GDP-dissociation inhibitor 1 to regulate 
RHO GTPase signalling and facilitate actin-mediated antibacterial 
autophagy during Streptococcus infection237.

NLRP11 regulates signal transduction and NLRP3 
inflammasome formation
NLRP11 is a primate-specific protein highly expressed in monocytes, 
THP-1 cells, B cells, B cell lymphoma lines, testis, ovary and lung238–241. 
NLRP11 is induced by type I interferon and translocates to the mito-
chondria to interact with MAVS by its LRR and NACHT domain upon 
RNA viral infection242. Furthermore, NLRP11 binds to TRAF6 to promote 
its degradation in a MAVS-dependent manner, reducing type I inter-
feron signalling and virus-induced apoptosis242. NLRP11 also inhibits 
TLR signalling by recruiting the ubiquitin ligase RNF19A to catalyse K48-
linked ubiquitination of TRAF6 for its degradation, resulting in the sup-
pression of NF-κB activation, MAPK signalling and pro-inflammatory 
cytokine production238.

In addition to its roles in regulating these immune signalling path-
ways, NLRP11 has been shown to negatively regulate NLRP3 inflam-
masome activation in cultured human cell lines by interacting with 
DEAD-box protein 3 (DDX3X)243, a protein shown to activate the RLR 
pathway244. This interaction causes NLRP11 to inhibit the function of 
DDX3X in enhancing type I interferon responses and in NLRP3 inflam-
masome activation243. In contrast, another study found that NLRP11 can 
support NLRP3 assembly by functioning as a scaffold. NLRP11 interacts 
with NLRP3 via its LRR domain and with ASC via its PYD domain to 
promote NLRP3 inflammasome assembly and activation but does not 
affect the assembly of other inflammasomes245. This study also reported 
that NLRP11 is necessary for NLRP3 inflammasome responses driven 
by CAPS-linked NLRP3 mutations245. The exact reason for these differ-
ences is currently unknown. This underscores the need for a deeper 
investigation of these understudied NLRs.

Above, we have primarily focused on the immune-associated func-
tions of NLRs. However, NLRs also regulate other biological processes, 
including in the reproductive system, as discussed below.

NLRs in reproduction
There is growing evidence for a mammalian reproduction-associated 
NLR gene cluster, which includes NLRP2, NLRP4, NLRP5, NLRP7, NLRP8, 
NLRP9, NLRP11, NLRP13 and NLRP14. Human NLRs in this reproduc-
tive gene cluster — as well as their murine orthologues, namely Nlrp2, 
Nlrp4a–4g, Nlrp5, Nlrp9a–9c and Nlrp14 — are highly expressed in 
oocytes and ovaries240,246,247. Except for the gene encoding NLRP14, all 
human reproduction-associated NLRP-encoding genes are located 
on chromosome 19, whereas all mouse reproduction-related Nlrp 
genes are located on chromosome 7, with the exceptions of Nlrp4g 
(chromosome 9) and Nlrp4f (chromosome 13)247. Herein, we focus 
on our growing understanding of the functions of some of these  
proteins.

Regulation of nucleic acid signalling and fertilization by 
NLRP14
NLRP14 is expressed in the gonads240 and several NLRP14 mutations 
are linked to spermatogenic failure248. Interestingly, NLRP14 has been 
reported to function as a negative regulator of the nucleic acid-sensing 
pathway in germ cells by interacting with TBK1 through its N-terminus 
to suppress TBK1-mediated IFNγ production, and this role of NLRP14 
supports fertilization in humans249. Furthermore, NLRP14 has been 
found to interact with MAVS and STING through its LRR domain to 
negatively regulate the nucleic acid-sensing pathway; however, MAVS 
and STING also promote degradation of NLRP14, revealing a feedback 
loop to prevent the sustained immunosuppressive function of NLRP14 
(ref. 249). Although these studies were performed in HEK293T cells, 
another group reported that NLRP14 promotes primordial germ cell-
like cell differentiation and spermatogenesis through a complex with 
HSPA2 and BAG2 (ref. 250). These studies provide physiological insights 
on the functions of NLRP14 and indicate its roles in both immune and 
gonadal regulation.

NLRP2 in inflammation, proliferation, reproduction and 
genomic imprinting
NLRP2 was one of the first NLRs shown to interact with ASC to assemble 
an inflammasome, leading to IL-1β production28,251. By contrast, NLRP2 
also acts as an inhibitor of the NF-κB pathway, and a non-functional 
allelic variant within the NLRP2 NACHT contributes to the hyperactiva-
tion of the NF-κB pathway and subsequent downstream inflammatory 
responses251,252.

NLRP2 also regulates inflammation or cell proliferation by sup-
pressing NF-κB activation, such as in the context of hepatic steatosis253, 
in pregnancy, where it suppresses NF-κB signalling and HLA-C expres-
sion in trophoblasts254, and in lung cancer, where it protects against 
epithelial-to-mesenchymal transition255. Additionally, it interacts with 
TBK1 and negatively regulates type I interferon signalling upon viral 
infection256. In the reproductive system, NLRP2 is essential for early 
embryogenesis but not oocyte maturation in mice and humans257,258, 
and interacts with Fas-associated factor 1 (FAF1) in mouse ovaries258,259. 
A germline frameshift mutation in exon 6 of NLRP2 is linked to Beck-
with–Wiedemann syndrome, which is a human imprinting disorder260 
also associated with NLRP5 and NLRP7 mutations261. NLRP2 also main-
tains proliferation and viability in human umbilical vein endothelial 
cells by promoting MAPK signalling262. These studies demonstrate the 
potential of NLRP2 in inflammasome activation but also in the dampen-
ing of inflammatory and interferon activation. The latter may aid in the 
establishment of immune tolerance at the maternal–fetal interface to 
prevent aberrant immune activation.
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NLRP5 regulates embryogenesis
Mater (encoding maternal antigen that embryos require) is a murine 
counterpart of NLRP5 and was one of the first maternal-effect genes 
encoding an oocyte-specific protein to be discovered. It is associated 
with autoimmune oophoritis and is required for embryonic develop-
ment in mice263. Additionally, NLRP5 was found to localize in oocyte 
mitochondria and nucleoli264 and is essential for assembly of the sub-
cortical maternal complex (SCMC), which is a multiprotein complex 
encoded by maternal-effect genes specifically expressed in oocytes 
and early embryos in mice265. NLRP5 also regulates mitochondrial bio-
genesis and mitochondrial respiratory activity and may affect other 
cell death molecules; this may explain why it contributes to successful 
pre-implantation during early embryogenesis266. In humans, NLRP5 is 
predominantly expressed by oocytes and follicular cells267,268 but was 
also identified as a tissue-specific autoantigen involved in hypopar-
athyroidism in patients with autoimmune polyendocrine syndrome 
type 1 (ref. 269). Additionally, NLRP5 variants are found in patients 
with Beckwith–Wiedemann syndrome and in women with multi-locus 
imprinting disturbance, where mutations in NLRP5 have been associ-
ated with reduced maternal reproductive fitness270. Its direct role in 
these diseases will be of interest for future investigation.

NLRP7 regulates inflammation and embryogenesis
NLRP7 is only found in primates240. It is highly expressed in reproductive 
organs but also broadly expressed in cell lines and most other tissues, 
except for skeletal muscle, heart and brain. Expression of NLRP7 is 
increased in LPS-stimulated and IL-1β-stimulated peripheral blood 
mononuclear cells and macrophages271. NLRP7 mutations specifically 
affect the female (but not male) reproductive system and are associ-
ated with abnormal embryogenesis (recurrent hydatidiform moles in 
humans)272–274. In contrast to NLRP2, which inhibits NF-κB but not IL-1β 
production, NLRP7 inhibits caspase 1-dependent IL-1β production271. 
Another report showed that NLRP7 failed to interact with ASC and did 
not activate NF-κB24. By contrast, microbial acylated lipopeptides from 
bacteria can activate the NLRP7 inflammasome function in macro
phages, leading to downstream IL-1β production but not pyroptosis239. 
The precise structures of the NLRP7 PYD interacting with ASC or the 
LRR sensing different ligands need to be further investigated to solve 
these controversial findings. These results suggest that certain NLRs 
might be either positive or negative regulators in different signalling 
pathways upon different stimulations in a cell-type specific manner. 
Others have found that the TLR agonists LPS and Pam3CSK4 can acti-
vate NLRP7 inflammasome activity and that the deubiquitinase STAM-
binding protein increases NLRP7 activity by preventing its trafficking 
to the lysosome, where it is normally degraded275. Additionally, higher 
NLRP7 expression was reported to promote tumour cell proliferation 
and metastasis in human colon cancer and to stimulate the develop-
ment of M2-like macrophages by increasing NF-kB activation and CCL2 
production to promote tumour progression276. It will be of interest 
to investigate if the role of NLRP7 in regulating the inflammasome or 
NF-κB signalling, which has not been studied in cells of the reproductive 
system, can be extended to reproductive cells or disorders.

As a final point of interest, in the consensus phylogenetic cluster, 
the NLRP2 cluster contains NLRP7, suggesting that NLRP7 might origi-
nate from a duplication of the NLRP2 and/or NLRP7 gene ancestor in 
primates240,247. Given that both are highly expressed in the reproduc-
tive organs and regulate inflammatory signalling, these two NLRPs 
might have overlapping functions in regulating the physiological and 
pathological inflammatory processes of pregnancy.

NLRP9 in reproduction and immunity
NLRP9 is mainly expressed in the human and bovine reproductive sys-
tems and in mice (where there are three isoforms, NLRP9a–9c)240,277. In 
mice, NLRP9 is specifically expressed in ovarian follicles during early 
embryonic pre-implantation278,279. However, NLRP9b (but not NLRP9a 
and NLRP9c) is also uniquely expressed in intestinal epithelial cells and  
associates with DExH-box RNA helicase 9 (DHX9) to recognize dsRNA 
and functions as an inflammasome for viral clearance during rota-
virus infection in mice280. Additionally, NLRP9 expression has been 
reported in lung cells and in pericytes, endothelial cells, and micro-
glia in the brain277. Human NLRP9 also interacts with ASC to form an 
inflammasome upon DHX9-mediated rotaviral RNA recognition in 
HEK293T cells280. However, two groups have recently reported the 
crystal structure of human NLRP9 PYD (hNLRP9PYD) and showed that 
it forms a monomer but not oligomers in solution281,282. One paper also 
found that it does not nucleate ASC specks in HEK293T cells, which is in 
contrast to NLRP3, NLRP6 and AIM2 inflammasomes281. Additionally, 
hNLRP9PYD might exhibit autoinhibitory function based on: (1) charge 
inversions in the interfaces of hNLRP9PYD, which might cause repul-
sive effects to prevent self-oligomerization and activation281; and (2) a 
bent N-terminal loop of hNLRP9PYD oriented towards the interior of the 
helical bundle, which might prevent filament formation structure and 
subsequent NLRP9 inflammasome assembly282. NLRP9 is also linked to 
several inflammatory diseases277. One study demonstrated that the lack 
of NLRP9b resulted in reduced neutrophil inflammation but elevated 
levels of pro-inflammatory cytokines, NF-κB activation and oxidative 
stress in a mouse model of acute lung injury283. Much remains unknown 
concerning NLRP9. The analysis of mice lacking this gene will help to 
define its roles in inflammatory diseases and infections in addition  
to its roles in the reproduction system.

Structure of NLR proteins
In the sections above, diverse functions mediated by NLR family mem-
bers have been detailed. A better understanding of the structures of 
the different NLR proteins should enable better definition of their 
biology. Indeed, impressive progress has been made in deciphering 
the structure of several NLR proteins, as described below.

APAF1, plant R proteins and NLRs are members of the STAND sub-
group of P-loop ATPases related to the AAA+ superfamily284, a large fam-
ily of ATPases with diverse molecular functions and a wide assortment 
of accessory domains. AAA+ superfamily proteins share a common 
arrangement of an N-terminal αβα fold (NBD) followed by a helical 
bundle (HD1). Early in the field, X-ray crystallography studies for NLRs 
were limited to isolated domains, including the PYD, CARD and LRR 
domains. A significant milestone was the determination of the crystal 
structure for the NACHT–LRR domain of NLRC4 in the ADP-bound, 
autoinhibited state285 (Fig. 5a, left panel). At the time, the structure 
of the NLRC4 NACHT domain was most similar to the structure deter-
mined for APAF1 in its inactive state286. Both structures showed that 
ADP binding involved contributions from the NBD, HD1 and WHD, 
resulting in a compact, closed conformation. For NLRC4, interdomain 
interactions between the first LRR and the NBD are also observed in 
the autoinhibited conformation. Mutations that disrupt WHD–ADP 
binding or the LRR–NBD interaction destabilize the closed conforma-
tion, resulting in auto-activation of NLRC4 and caspase 1 processing. 
These two basic principles for the autoinhibited state were echoed in 
the crystal structure for the NACHT–LRR domains of NOD2 (ref. 177). 
Similarly to NLRC4 and APAF1, ADP binding involves interactions with 
the NBD, HD1 and WHD, resulting in a compact, closed conformation.  
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In addition, the first two LRR units of NOD2 interact with the HD1 and 
HD2 subdomains within the NACHT domain. The interaction of the LRR 
and NACHT domains aligns with the hypothesis that ligand binding 
to the LRR domain disrupts LRR–NACHT interactions and exposes a 
surface on the NACHT domain for oligomerization.

The advent of cryo-EM for high-resolution structural analysis of 
large proteins and protein complexes allowed for breakthroughs in NLR 
structure determination. High-resolution structures for full-length 
NLRs and oligomerized complexes have now been determined. Cryo-
EM structures for an inflammasome in the activated, oligomerized 
state were solved for NAIP2–NLRC4 inflammasomes activated by the 

bacterial type III secretion inner rod protein PrgJ287,288. These studies 
show that PrgJ binding to NAIP2 results in a 90° rotation at a hinge site 
between HD1 and WHD. This conformational change exposes a surface 
in the NACHT of NAIP2, which can interact with an acceptor surface in 
NLRC4, and the activated NLRC4 can promote a similar conformational 
change in another NLRC4 molecule. Propagating NLRC4 activation 
results in the formation of a disc-like structure composed of a single 
NAIP with ten NLRC4 molecules (Fig. 5a, right panel). Subsequent cryo-
EM studies of the NAIP5–NLRC4 complex with bound flagellin provided 
the first glimpse into the molecular interaction of an activating ligand 
with an NLR sensor. The flagellin–NAIP5 interaction shows that binding 
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Fig. 5 | Structural insights into NLR activation. a, Assembly of the neuronal 
apoptosis inhibitory protein (NAIP)–NBD-, LRR- and CARD-containing 4 (NLRC4) 
inflammasome. The primary structure of NLRC4 is shown, and colour coding  
for domains is replicated in the structural depictions. The crystal structure of 
closed, autoinhibited NLRC4 is adapted from Protein Data Bank (PDB) 4KXF285.  
Interactions between the helical domain 2 (HD2) and leucine-rich repeat (LRR) 
domains stabilize the closed conformation. The cryogenic electron microscopy 
(cryo-EM) structure of activated NLRC4 and NAIP5 is adapted from PDB 6b5b289. 
Activated NAIP5 (silver) with bound flagellin (black) initiates a conformational  
change in NLRC4 to an open, activated form that can activate downstream  
NLRC4 molecules. Finally, the cryo-EM structure of the assembled NAIP–NLRC4 
inflammasome is adapted from PDB 3JBL287. A top view of the urface representation 
shows a single NAIP (grey) present in the complex with ten NLRC4 molecules. Red  
bars are added in the centre of the complex to show the location of the NLRC4 
caspase recruitment domains (CARDs), which will recruit pro-caspase 1. b, NLRP3  

structural regulation preceding inflammasome assembly. The primary structure of 
NLRP3 is shown, and colour coding is replicated in the structural depictions. The  
cryo-EM structure for autoinhibited NLRP3 alone is adapted from PDB 7PZC291. 
The left panel shows a surface representation of an oligomeric complex consisting 
of ten NLRP3 molecules. When the LRR domains are excluded from the image, 
the position of the PYDs within the ‘cage’ shows how they are sequestered and 
prevented from initiating spurious inflammation. The cryo-EM structure of NLRP3 
with bound NIMA-related kinase 7 (NEK7) is adapted from PDB 6NPY72. A current 
model suggests that NEK7 interaction with the LRR domain of NLRP3 prevents 
NLRP3 from forming caged oligomers. Upon activation, NLRP3 assembles into 
an inflammasome disc with 10–11 NLRP3 molecules. The cryo-EM structure of the 
NLRP3 inflammasome was released at the final stage of our writing and is adapted 
here from PDB 8EJ4 (ref. 328). Structural representations were created using 
VMD and the referenced PDB files329. NOD, nucleotide-binding oligomerization 
domain; PYD, pyrin domain; WHD, winged helix domain.

http://www.nature.com/nri


Nature Reviews Immunology | Volume 23 | October 2023 | 635–654 648

Review article

of ligand involves multiple domains, including the NACHT, LRR and BIR 
domains289. Whether this mode of ligand–sensor interaction extends 
to other NLR proteins remains to be determined.

A simplistic model for inflammasome formation involves activa-
tion of cytosolic, monomeric NLRs by a ligand, leading to oligomeri-
zation and recruitment of pro-caspase 1. However, recent cryo-EM 
studies of NLRP3 suggest that there are additional layers of regulation 
beyond the presence of a ligand that determine whether an inflam-
masome will form. Cryo-EM studies with NLRP3 alone revealed an 
oligomeric complex in which the pyrin domains are sequestered 
within a cage290–292 (Fig. 5b, left panel). Isolation of pyrin domains in 
such a manner would prevent spurious interaction with ASC, pro-
viding protection against inappropriate inflammasome activation 
(Fig. 5b, middle panel). Interestingly, a previous cryo-EM structure for 
NLRP3 had been determined in a complex with NEK7 (ref. 72), which 

is known to license NLRP3 activation (Fig. 5b, right panel). Both the 
caged NLRP3 and NLRP3–NEK7 structures contain NLRP3 in an autoin-
hibited, ADP-bound conformation. In vitro addition of NEK7 disrupts 
the caged oligomers, suggesting that NLRP3 inflammasome activation 
involves more than just the presence of an activating ligand. Future 
studies will determine if other NLRs employ additional regulatory  
mechanisms.

Emerging concepts and conclusions
In the past two decades, the NLR field has gone through a revolution. 
However, while some NLRs are exceedingly well investigated, many are 
understudied. We propose some emerging concepts as well as areas that 
are deserving of further attention. First, aside from well-established 
reports on the activation and functions of NLRs in innate immunity, there 
is accumulating evidence of NLRs having functions in other cell types.  

Glossary

AIM2
An innate immune sensor that detects 
cytosolic double-stranded DNA, 
resulting in inflammasome formation. 
AIM2 is composed of an N-terminal 
pyrin domain (PYD) and a C-terminal 
double-stranded DNA-binding HIN 
domain distinguishing it from NLR 
inflammasome proteins.

Anakinra
A short-acting human recombinant 
IL-1 receptor (IL-1R) antagonist that can 
competitively inhibit the binding of IL-1β 
and IL-1α to IL-1R and block IL-1 signal 
transduction.

APAF1
A protein of the STAND class of P-loop 
ATPases that is central to initiating 
apoptosis upon mitochondrial 
cytochrome c release into the cytosol. 
In addition to the STAND ATPase module, 
APAF1 contains an N-terminal caspase 
recruitment domain (CARD) and 
C-terminal WD40 repeats. The formation 
of the apoptosome and activation of  
caspase 9 upon cytochrome c 
binding was a biochemical model 
that significantly influenced early 
NLR studies.

ASC
(Also known as PYCARD and TMS1). 
Adaptor protein that contains a 
pyrin domain (PYD) and caspase 
recruitment domain (CARD) allowing 
for inflammasome recruitment of 
pro-caspase 1.

Cryopyrin-induced 
autoinflammatory syndromes
(CAPS). Autoinflammatory diseases 
caused by gain-of-function mutations 
in NLRP3 (cryopyrin).

Hydatidiform moles
A hydatidiform mole is a rare condition 
in which tissue around a fertilized egg 
that would normally have developed 
into the placenta instead develops as 
an abnormal mass of cells.

Imprinting disorder
Diseases caused by genetic defects 
or epigenetic mutations affecting 
imprinted chromosomal regions 
or genes that are expressed in a 
parent-of-origin specific manner.

Inflammasomopathies
Autoinflammatory diseases resulting 
from gain-of-function mutations in 
inflammasome-forming NLRs.

Maternal-effect genes
Genes that are transcribed in the 
mother and influence the development 
of oocytes and embryos.

MHC class II transactivator
(CIITA). The master transcriptional 
regulator of MHC class II expression.

M2-like macrophages
M1 and M2 are classifications historically 
used to define macrophages activated 
in vitro as pro-inflammatory or anti-
inflammatory, respectively. In vivo 
macrophages are highly specialized, 
transcriptomically dynamic and 
extremely heterogeneous. Therefore, 
the M1 or M2 classification is too 
simplistic to explain the true nature of 
in vivo macrophages, but these terms 
are still often used to indicate whether 
the macrophages in question are more 
pro-inflammatory or anti-inflammatory.

NACHT domain
The NACHT domain is a subgroup 
of the STAND class of P-loop NTPases 
and is composed of four subdomains 
(NBD, HD1, WHD and HD2). This 
domain allows for nucleotide-binding-
dependent conformational changes 
and oligomerization to influence 
diverse biological outcomes such as 
transcriptional activation, cytokine 
signalling and pyroptosis.

NR100
N-terminal domain of rodent NLRP1 
proteins, approximately 100 amino 
acids. Whereas human NLRP1 possesses 
an N-terminal PYD, mouse NLRP1 
proteins contain this sequence of 
unknown function. AlphaFold predicts 
this region to be mostly disordered.

STAND
A subgroup of the AAA+ ATPase 
superfamily that includes both 
apoptotic ATPases as well as NACHT 
ATPases. The model for STAND 
protein function involves ADP binding 
stabilizing a closed, inactive state, 
and exchange for ATP triggers a 
conformational change to the open, 
active state.

SXY cis-elements
A regulatory module comprising four 
elements: S or W box, X1 box, X2 box, 
and the Y box. When bound by their 
cognate transcription factors, these 
sites allow for assembly of the MHC 
enhanceosome.

Type III secretion system
(T3SS). A multiprotein membrane 
apparatus present in Gram-negative 
bacteria used to inject proteins into 
host cytosol. Components of this 
nanomachine trigger NAIP–NLRC4 
inflammasome assembly.
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We have discussed NLRs in the reproductive system, highlighting the 
genetic data supporting key roles for NLRs in this setting. Further-
more, several NLRs have roles in regulating adaptive immune responses 
and immunometabolism in cells. Of these, NLRP3 was the first to be 
linked to the crosstalk between innate and adaptive immunity293 and 
metabolism31,294, and remains the best studied in these areas. Other 
studies have shown that adenosine-induced NLRP11 reduces IFNγ and 
IL-17A production by human peripheral CD4+ T cells295, and that NLRC3 
attenuates TRAF6 and modulates CD4+ T cell metabolism. Additionally, 
NLRX1 was found to regulate glycolysis and oxidative phosphorylation 
in T cells296,297. These studies shed light on the roles of NLRs in an array 
of cell types and provide a much broader perspective regarding their 
importance beyond innate immunity.

Second, many NLRs exhibit multiple functions, and this may be 
attributed to numerous reasons. One is that their cellular localization 
may be dynamic. NLRs are located in different cellular compartments 
and their organelle-specific, membranous or non-membranous locali-
zation may determine their ultimate functions. The mitochondrial 
location of NLRX1, and the nuclear localization of transcriptional 
regulators CIITA and NLRC5 have long been known. NLRP3 has been 
shown to be associated with mitochondria and the dispersed trans 
Golgi network298. NOD1 and NOD2 associate with the plasma mem-
brane and endosomes178,179, and membrane localization is dependent 
on S-palmitoylation180, raising the possibility that post-translational 
modifications may influence localization of other NLRs. Another pos-
sibility is that different NLR isoforms, perhaps generated via alterna-
tive splicing or post-translational modification, may show distinct 
functions. One possible approach to address these different pos-
sibilities is to assess if distinct interactomes are formed by an NLR 
protein to conduct different functions in different cell types. Such 
interactomes may vary depending on the factors described above, 
including differential expression in cells with distinct protein compo-
sitions, divergent localization in organelles, varied post-translational 
alterations and different isoforms. Finally, it is important to re-evaluate 
data obtained in vitro without in vivo validation, especially in the 
context of overexpressed proteins, since these findings may not be  
physiologically relevant.

Third, several NLRs are paired to perform their function. The most 
prominent examples are the pairing of NAIPs and NLRC4. NLRP3 and 
NLRC4 are important for the simultaneous activation of inflammas-
omes in response to some stimuli. However, opposing functions have 
also been described; for example, NLRP12-dependent degradation of 
NOD2 results in the functional inhibition of NOD2 (ref. 299). This type 
of crosstalk is envisioned to expand the NLR regulatory network and 
their impact.

Finally, a common theme that emerges for NLR proteins (including 
NLRX1, NLRC3, NLRP3, NLRP6 and NLRP1) is the potential for binding 
to nucleic acid PAMPs and DAMPs. This flexibility would allow a single 
NLR to function both in host responses against pathogens as well as in 
host stress responses. Whether this is a shared function among many 
NLRs and what the divergent functional consequences and down-
stream signalling consequences of this may be will be of great interest 
to explore.

Obviously, there are numerous other areas of NLR biology that 
deserve further investigation such as their therapeutic targeting and 
their precise roles in disease. We trust that the next decades of research 
on the NLR family will be just as exhilarating as the first two.

Published online: 27 March 2023
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